
2306
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

PAPER Special Section on Natural Language Processing and its Applications

Incremental Parsing with Adjoining Operation

Yoshihide KATO†a) and Shigeki MATSUBARA†, Members

SUMMARY This paper describes an incremental parser based on an
adjoining operation. By using the operation, we can avoid the problem of
infinite local ambiguity. This paper further proposes a restricted version
of the adjoining operation, which preserves lexical dependencies of partial
parse trees. Our experimental results showed that the restriction enhances
the accuracy of the incremental parsing.
key words: incremental parsing, tree adjoining grammar, probabilistic
parsing, Penn Treebank, real-time spoken language processing system

1. Introduction

Incremental parser analyzes an input sentence from left to
right and generates partial parse trees which connect all
words in each initial fragment of the sentence. Incremental
parsing is useful to realize real-time spoken language pro-
cessing systems, such as a simultaneous machine interpre-
tation system, an automatic subtitle generating system, or a
spoken dialogue system [1]–[3].

Several incremental parsing methods have been pro-
posed so far [4]–[6]. In these methods, the parsers can gen-
erate the candidates of partial parse trees on a word-by-word
basis. However, they suffer from the problem of infinite lo-
cal ambiguity, i.e., they may generate an infinite number of
candidates of partial parse trees. This problem is caused by
the fact that partial parse trees can have arbitrarily nested
left-recursive structures and there is no information to deter-
mine the depth of nesting in advance.

To solve this problem, we introduce an adjoining oper-
ation to incremental parsing. An adjoining operation is used
in Tree-Adjoining Grammar [7]. By using the operation, we
can avoid the problem of infinite local ambiguity. This ap-
proach has been adopted by the previous methods [8], [9].
However, this raises another problem that their adjoining
operation cannot preserve information which partial parse
trees have. We formalize this problem from the viewpoint
of lexical dependencies, and propose a restricted version of
the adjoining operation, which preserves lexical dependen-
cies. An experimental result showed that our method makes
our incremental parser more accurate.

This paper is organized as follows: The next section
describes the incremental parser proposed by Collins and
Roark [4] and discusses its problem. Section 3 introduces

Manuscript received March 20, 2009.
Manuscript revised July 15, 2009.
†The authors are with Information Technology Center, Nagoya

University, Nagoya-shi, 464–8601 Japan.
a) E-mail: yosihide@el.itc.nagoya-u.ac.jp

DOI: 10.1587/transinf.E92.D.2306

an adjoining operation to incremental parsing and explains
our incremental parser. In Sect. 4, we report an experimental
evaluation of our incremental parser. Section 5 describes
related works.

2. Incremental Parsing

This section gives a description of the Collins and Roark’s
incremental parser [4] and discusses its problem.

2.1 Collins and Roark’s Incremental Parser

The Collins and Roark’s incremental parser uses a grammar
defined by a 6-tuple G = (V,T, S , #,C, B). V is a set of non-
terminal symbols. T is a set of terminal symbols. S is called
a start symbol and S ∈ V . # is a special symbol to mark the
end of constituent. C is a set of allowable chains. An allow-
able chain is a sequence of nonterminal symbols followed
by a terminal symbol. Each chain corresponds to a label
sequence on a path from a node to its leftmost descendant
leaf. B is a set of allowable triples. An allowable triple is a
tuple 〈X,Y,Z〉 where X,Y,Z ∈ V . The triple specifies which
nonterminal symbol Z is allowed to follow a nonterminal
symbol Y under a parent X.

For each initial fragment of an input sentence, the
Collins and Roark’s incremental parser generates partial
parse trees which connect all words in the fragment. The
parsing process proceeds on a word-by-word basis from left
to right.

As an example, let us consider the following initial
fragment:

We describe . . . (1)

For the first word “we”, the parser generates the partial parse
tree (a) shown in Fig. 1, if the allowable chain 〈S → NP
→ PRP → we〉 exists in C. For other chains which start
with S and end with “we”, the parser generates partial parse
trees by using the chains. For the next word, the parser
attaches the chain 〈VP → VBP → describe〉 to the partial
parse tree (a), i.e., generates the partial parse trees (b) shown
in Fig. 1 ∗. The attachment is possible when the allowable
triple 〈S, NP, VP〉 exists in B.

∗More precisely, the chain is attached after attaching the end-
of-constituent # under the NP node.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



KATO and MATSUBARA: INCREMENTAL PARSING WITH ADJOINING OPERATION
2307

Fig. 1 A process in incremental parsing.

2.2 Infinite Local Ambiguity

Incremental parsing suffers from the problem of infinite lo-
cal ambiguity. The ambiguity is caused by left-recursion.
Incremental parser generates an infinite number of partial
parse trees because it cannot know the depth of left-recursive
embedding in advance.

As an example, let us consider the following initial
fragment:

We describe a . . . (2)

For the initial fragment, there exist several candidates of par-
tial parse trees. Figure 1 shows candidates of partial parse
trees. The partial parse tree (c) represents that the noun
phrase NP1 which starts with “a” has no adjunct (Parse trees
such as (f) are derived from (c).). The partial parse tree
(d) represents that the noun phrase NP3 has an adjunct or
is a conjunct of a coordinated noun phrase (See the parse
tree (g).). The partial parse tree (e) represents that the noun
phrase NP6 has an adjunct and the noun phrase NP5 with
an adjunct is a conjunct of a coordinated noun phrase (See
the parse tree (h).). The partial parse trees (d) and (e) are
the instances of partial parse trees which have left-recursive
structures. The problem is that there is no information to
determine the depth of left-recursive nesting at this point. In
principle, the depth can be arbitrary number, i.e., there exist
an infinite number of candidates of partial parse trees †.

3. Introduction of Adjoining Operation to Incremental
Parsing

The previous section described the problem of infinite local
ambiguity in incremental parsing. This section provides a
solution to this problem.

To avoid the problem, previous works have adopted the
following approaches:

1. A beam search strategy [4]–[6].
2. Limiting the allowable chains to those actually ob-

served in the treebank [4].
3. Transforming the parse trees with a selective left-

corner transformation [10] before inducing the allow-
able chains and allowable triples from the treebank [4].

The first and second approaches can prevent the parser from
infinitely generating partial parse trees, but the parser has
to generate partial parse trees as shown in Fig. 1, and the
local ambiguity still remains. In the third approach, no left
recursive structure exists in the transformed grammar, but
the parse trees defined by the grammar are different from
those defined by the original grammar. Therefore, it is not
clear whether partial parse trees defined by the transformed
grammar represent syntactic relations correctly.

†Regardless of whether the whole input sentence does or does
not have a left-recursive structure, the incremental parser generates
all partial parse trees such as (c), (d) and (e). Without the process
of generating all partial parse trees, the parser cannot process some
input sentences. For example, if the parser does not generate the
partial parse tree (d), it cannot parse the sentence “We describe a
method for incremental parsing.”



2308
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

In this paper, we adopt another approach which is the
introduction of an adjoining operation to incremental pars-
ing. Lombardo, et al. [8] and Kato, et al. [9] have already
adopted this approach. However, their method causes an-
other problem. Their adjoining operations cannot preserve
the information which partial parse trees have. To solve the
problem, this section proposes a restricted version of the ad-
joining operation.

3.1 Adjoining Operation

An adjoining operation is used in Tree-Adjoining Gram-
mar [7]. The operation inserts a tree into another tree. The
inserted tree is called an auxiliary tree. Each auxiliary tree
has a leaf called a foot which has the same nonterminal sym-
bol as its root. An adjoining operation is defined as follows:

adjoining An adjoining operation splits a parse tree σ at a
nonterminal node η and inserts an auxiliary tree β hav-
ing the same nonterminal symbol as η, i.e., combines
the upper tree of σ with the root of β and the lower tree
of σ with the foot of β (see Fig. 2).

We write aη,β(σ) for the partial parse tree obtained by ad-
joining β to σ at η.

We use simplest auxiliary trees, which consist of a root
and a foot †. By using adjoining operation, we can avoid the
problem of infinite local ambiguity.

As an example, let us consider the following sentence:

We describe a method for incremental parsing. (3)

As described in Sect. 2, the Collins and Roark’s incremental
parser generates partial parse trees such as (c), (d) and (e)
for the initial fragment “We describe a”. On the other hand,
our parser generates only the partial parse tree (c). When
a left-recursive structure is required during the process of
parsing the sentence, our parser adjoins it. In the example
above, the parser adjoins the auxiliary tree 〈NP → NP〉 to
the partial parse tree (c) at the point when the word “for”
is read, and attaches the allowable chain 〈PP→ IN→ for〉.
The parsing process is shown in Fig. 3.

3.2 Adjoining Operation and Monotonicity

By using the adjoining operation, we avoid the problem of
infinite local ambiguity. However, there arises another prob-
lem. The problem is that the adjoining operation cannot pre-
serve the information which partial parse trees have. As an
example, let us consider the following sentence:

We describe John ’s method. (4)

The partial parse tree (a) shown in Fig. 4 is a candidate for
the initial fragment “We describe John ’s”. The partial parse
tree represents that the noun phrase “John ’s” is the object
of the verb “describe”. When the parser reads the next word
“method”, it generates the partial parse tree (b) shown in
Fig. 4 by adjoining the auxiliary tree 〈NP → NP〉 and at-
taches the allowable chain 〈NN→ method〉 to generate the

Fig. 2 Adjoining operation.

partial parse tree (c). The partial parse tree (c) represents
that the noun phrase “John ’s” is the determiner of the noun
“method”. The role of the noun phrase “John ’s” is changed
by applying the adjoining operation. This example demon-
strates that the adjoining operation cannot preserve the in-
formation which partial parse trees have.

To formalize the problem described above, we focus
on lexical dependencies of partial parse trees. A lexical de-
pendency is a kind of relation between two words (a depen-
dent and a head), for which we write 〈dependent → head〉.
We can map parse trees to sets of lexical dependencies by
identifying the head-child of each constituent in the parse
tree [11].

First, we define the monotonicity of the adjoining op-
eration. We say that adjoining an auxiliary tree β to a par-
tial parse tree σ at a node η is monotonic when dep(σ) ⊆
dep(aη,β(σ)) where dep is the mapping from a parse tree to
a set of dependencies. An auxiliary tree β is monotonic if
adjoining β to any partial parse tree is monotonic.

Let us go back to the example above. We mark each
head-child with a special symbol ∗. We obtain three lex-
ical dependencies 〈We → describe〉, 〈John → ’s〉 and 〈’s
→ describe〉 from the partial parse tree (a) shown in Fig. 4.
However, the result of applying the adjoining operation to
(a) does not have 〈’s→ describe〉, i.e., the application is not
monotonic.

To prevent the non-monotonic application of the ad-
joining operation, we restrict the form of auxiliary trees. All
auxiliary trees must have the following forms:

adjunct or coordinated structure: The foot of an auxil-
iary tree is the head-child of its parent.

topicalized sentence: The foot of an auxiliary tree is a top-
icalized sentence.

The auxiliary tree 〈NP → NP〉 is in neither of the above
forms. As shown in the example above, adjoining the auxil-
iary tree to the partial parse tree (a) shown in Fig. 4 is non-
monotonic. Therefore, our method processes sentence (4)
without the adjoining operation as shown in Fig. 5. On the
other hand, the auxiliary tree 〈NP → NP∗〉 is in the first
form. As shown in Fig. 3, adjoining the auxiliary tree is
monotonic.

Finally, we explain the second form of auxiliary tree.
†Since our auxiliary trees have no inner nodes, they cannot

deal with indirect left-recursive structures such as (NP (ADJP
(NP (DT a) (NN lot)) (JJR more)) (NN space)). How-
ever, there are few occurrences of indirect left-recursive structures
in English. See Sect. 4.1.



KATO and MATSUBARA: INCREMENTAL PARSING WITH ADJOINING OPERATION
2309

Fig. 3 Adjoining in incremental parsing.

Fig. 4 An example of non-monotonic adjoining operation.

Fig. 5 Incremental parsing prosess for sentence (4).

The auxiliary tree in the second form is non-monotonic.
However, topicalized sentences occur in the leftmost po-
sition in a parse tree and adjoining auxiliary trees at any
leftmost node does not destroy the lexical dependencies as
shown in Fig. 6, i.e., this type of auxiliary trees can be
treated as monotonic auxiliary trees.

3.3 Our Incremental Parser

This section provides a description about our incremental
parser. Our incremental parser is based on a probabilistic
parsing model. First, we describe a grammar used by our
parser. Next, we propose a probabilistic model which as-

signs a probability to each partial parse tree. Finally, we
explain the parsing strategy.

3.3.1 Grammar Extraction

To build a wide coverage grammar, we extracted a grammar
from a treebank. We decomposed parse trees in the tree-
bank into allowable chains and auxiliary trees. The decom-
position is a reverse process of incremental parsing. The
decomposition procedure is shown in Fig. 7.



2310
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

Fig. 6 Adjoining operation for processing topicalized sentences.

Fig. 7 The procedure for extracting allowable chains and auxiliary trees.

3.3.2 Probabilistic Model

This section describes a probabilistic model that evaluates
partial parse trees in incremental parsing. The model assigns
a probability to each operation. The probability of a partial
parse tree is defined by the product of the probabilities of
the operations used in its construction.

We decompose the process of attaching an allowable
chain into three steps to overcome a data sparseness prob-
lem. That is, the probability of attaching the allowable chain
c to the partial parse tree σ is defined as follows:

Pattach(c | σ)

= Proot(root(c) | σ)

×Ptemplate(template(c) | σ, root(c))

×Pword(word(c) | σ, template(c)) (5)

where root(c) is the root label of c, template(c) is the se-
quence which is obtained by omitting the last element from
c and word(c) is the last element of c. On the other hand,
the process of adjoining is not decomposed since all auxil-
iary trees in our grammar are very simple.

We estimate the probability by using the following fea-
tures:

• a current node label
• ancestor node labels
• left-sibling node labels
• a head node label
• a head word and its pos tag

• distance features

The features are similar to those of the previous methods.
It is worth noting that the non-monotonic adjoining op-

eration may be harmful for building the probabilistic model.
We illustrate such situations. As an example, let us con-
sider sentence (4). The probability of the word “’s” is con-
ditioned on its head word. However, the head word is iden-
tified by using the partial parse tree (a) shown in Fig. 4, i.e.,
the head word is “describe” and the probability may be es-
timated incorrectly. Moreover, this example shows that the
model estimates the probability distributions without distin-
guishing the object NP and possessive NP. This fact also
may cause a negative effect in building the model. As an
example, let us consider the construction of the possessive
NP “John ’s.” In the case where the non-monotonic ad-
joining operation is allowed, the probability of construct-
ing the possessive NP is conditioned on the partial parse
tree (b) shown in Fig. 1. The probability of constructing
the object NP such as “a method” is also conditioned on
the same partial parse tree. This means that the model esti-
mates the probability of constructing the possessive NP and
constructing the object NP according to the same distribu-
tion. However, the construction of possessive NPs must be
distributed according to the different distribution. The rea-
son is that possessive NPs always include possessive end-
ing POS while object NPs rarely include it. On the other
hand, when the non-monotonic adjoining operation is not
allowed, the probability of constructing the possessive NP is
conditioned on the partial parse trees shown in Fig. 5. At the
point when the allowable chain 〈NP→NP→NNP→John〉 is
attached, the possessive NP has the parent labelled with NP.
This information enables the model to identify the NP as
possessive. Therefore, the model can estimate the probabil-
ity of constructing the possessive NP according to the dif-
ferent distribution. In Sect. 4, we assess such influence on
probabilistic model.

3.3.3 Parsing Strategy

To achieve efficient parsing, we use a beam search strategy
like the previous methods. For each word position i, our
parser has a priority queue Hi. Each queue Hi stores the only
N-best partial parse trees and discards the others. Moreover,
the partial parse tree σ is discarded, if its probability P(σ) is
less than the P∗γ where P∗ is the highest probability on the
queue Hi and γ is a beam factor.



KATO and MATSUBARA: INCREMENTAL PARSING WITH ADJOINING OPERATION
2311

4. Experimental Evaluation

To evaluate the performance of our incremental parser, we
conducted a parsing experiment. We implemented the fol-
lowing three types of incremental parsers to assess the influ-
ence of the adjoining operation and its monotonicity:

• without the adjoining operation
• with the non-monotonic adjoining operation
• with the monotonic adjoining operation

The grammars were extracted from the parse trees in sec-
tion 02-21 of the Wall Street Journal in Penn Treebank [12].
We discard the allowable chains which occured only once
in these sections. We identified the head-child in each con-
stituent by using the head rule of Collins [11]. Moreover, we
added the information, such as gaps, arguments and coordi-
nated phrases by using the rules in the literature [13]. The
probabilistic models were built by using the maximum en-
tropy method [14]. We set the beam-width N to 300 and the
beam factor γ to 10−11

4.1 Statistics of Grammars

Table 1 shows the number of different types of allowable
chains and the coverage of the grammars. The coverage of
a grammar is defined as follows:

∑
c∈C∩Ctest

f req(c)
∑

c∈Ctest
f req(c)

(6)

where C is the set of allowable chains of the grammar, Ctest

is the set of allowable chains extracted from test corpus and
f req(c) is the number of occurrences of allowable chain c
in the test corpus. We used section 24 for evaluation of
the coverage. The coverage of each grammar is very high.
This means that each grammar provides the allowable chains
enough to parse sentences correctly.

We counted the frequency of occurrences of allowable
chains which include indirect left-recursive structures. Our
method cannot deal with indirect left-recursive structures by
adjoining operation. We observed that only 57 occurrences
of chains (0.01%) include indirect left-recursive structures.
This means that the simplest auxiliary trees cover the major-
ity of left-recursive structures.

4.2 Impacts of Adjoining and Its Monotonicity

We evaluated the parsing accuracy by using section 23. We
measured labeled recall and labeled precision [15]. Table 2
shows the results. Our incremental parser is competitive
with the previous methods†. The incremental parser with the
monotonic adjoining operation outperforms the others. The
incremental parser with non-monotonic adjoining does not
outperform the one with no adjoining. The results mean that
our proposed constraint of auxiliary trees improves parsing
accuracy.

To investigate whether there exist any influences other

Table 1 Statistics of the grammars.

Grammar type coverage(%)
No adjoining 2792 99.5
Non-monotonic adjoining 1740 99.7
Monotonic adjoining 1839 99.7

Table 2 Parsing results.

LR(%) LP(%) F(%)
Roark 2004 86.4 86.8 86.6
Collins et al. 2004 (w/o punctuation features) 86.5 86.8 86.7
Collins et al. 2004 (w/ punctuation features) 88.4 89.1 88.8
No adjoining 86.3 86.8 86.6
Non-monotonic adjoining 86.1 87.1 86.6
Monotonic adjoining 87.2 87.7 87.4

Table 3 Parsing results without lexical dependencies.

LR(%) LP(%) F(%)
No adjoining 86.1 86.8 86.5
Non-monotonic adjoining 85.1 86.2 85.6
Monotonic adjoining 86.6 87.3 86.9

than those of incorrect lexical dependencies, we estimated
the models in which the lexical dependencies features are
removed. The results are shown in Table 3. The incremen-
tal parser with non-monotonic adjoining yielded the worst
result. This result demonstrates that the non-monotonic ad-
joining operation not only destroys lexical dependencies but
also has a bad influence on the probabilistic model.

5. Psycholinguistic Models Using Adjoining Operation

Incremental parsing has been investigated in the area of psy-
cholinguistics. This section describes the relation between
our method and psycholinguistic parsing models.

In psycholinguistic literature, it is widely assumed that
human language processing is incremental. Sturt, et al. [16]
models a process of recognizing VP coordination by using
an adjoining operation. Demberg, et al. [17] and Mazzei, et
al. [18] propose an incremental version of the tree-adjoining
grammar. In their grammars, the derivation process pro-
ceeds from left to right and each derived tree is a fully con-
nected tree. These properties are suitable for incremental
parsing.

These researches support the validity of introducing the
adjoining operation to incremental parsing. The difference
between our method and these psycholinguistic model is
that these models lack mechanisms of resolving structural
ambiguity of initial fragments, while our method has the
probabilistic model to rank partial parse trees.

†The Collins and Roark’s parser achieves the best performance,
but we cannot compare it directly with our incremental parser. The
reason is that the Collins and Roark’s parser utilizes the final punc-
tuation as a feature. Our incremental parser is strictly on a word-
by-word basis, while Collins and Roark’s parser is not. Especially,
using final punctuation means that the parser cannot generate any
partial parse trees until it reads the whole sentence. This property
is unsuitable for real-time spoken language processing systems.



2312
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

6. Conclusion

This paper introduced an adjoining operation to incremen-
tal parsing in order to solve the problem of infinite local
ambiguity. The adjoining operation causes another prob-
lem that the parser cannot preserve lexical dependencies of
partial parse trees. To tackle this problem, we defined the
monotonicity of adjoining operation and restricted the form
of auxiliary trees to satisfy the constraint of the monotonic-
ity. Furthermore, our experimental result demonstrated that
the monotonic adjoining operation makes incremental pars-
ing more accurate.

In future work, we will investigate the incremental
parser for head-final languages such as Japanese. Unlike
English, head-final languages include many indirect left-
recursive structures. In this paper, we dealt only with direct
left-recursive structures. To process indirect left-recursive
structures, we need to extend our method.

References

[1] G. Aist, J. Allen, E. Campana, C.G. Gallo, S. Stoness, M. Swift, and
M.K. Tanenhaus, “Incremental understanding in human-computer
dialogue and experimental evidence for advantages over nonincre-
mental methods,” Proc. 11th Workshop on the Semantics and Prag-
matics of Dialogue, ed. R. Artstein and L. View, pp.149–154, June
2007.

[2] J. Allen, G. Ferguson, and A. Stent, “An architecture for more real-
istic conversational systems,” Proc. International Conference of In-
telligent User Interfaces, pp.1–8, Jan. 2001.

[3] Y. Inagaki and S. Matsubara, “Models for incremental interpretation
of natural language,” Proc. 2nd Symposium on Natural Language
Processing, pp.51–60, Aug. 1995.

[4] M. Collins and B. Roark, “Incremental parsing with the perceptron
algorithm,” Proc. 42nd Meeting of the Association for Computa-
tional Linguistics (ACL’04), pp.111–118, Main Volume, Barcelona,
Spain, July 2004.

[5] B. Roark, “Probabilistic top-down parsing and language modeling,”
Computational Linguistics, vol.27, no.2, pp.249–276, June 2001.

[6] B. Roark, “Robust garden path parsing,” Natural language engineer-
ing, vol.10, no.1, pp.1–24, March 2004.

[7] A.K. Joshi, “Tree adjoining grammars: How much context sensi-
tivity is required to provide a reasonable structural description?,” in
Natural Language Parsing, ed. D.R. Dowty, L. Karttunen, and A.M.
Zwicky, pp.206–250, Cambridge University Press, 1985.

[8] V. Lombardo and P. Sturt, “Incremental processing and infinite lo-
cal ambiguity,” Proc. 19th Annual Conf. of the Cognitive Science
Society, pp.448–453, Aug. 1997.

[9] Y. Kato, S. Matsubara, and Y. Inagaki, “Stochastically evaluating
the validity of partial parse trees in incremental parsing,” Proc. ACL
Workshop Incremental Parsing: Bringing Engineering and Cogni-
tion Together, pp.9–15, July 2004.

[10] M. Johnson and B. Roark, “Compact non-left-recursive grammars
using the selective left-corner transform and factoring,” Proc. 18th
International Conference on Computational Linguistics, pp.355–
361, July 2000.

[11] M. Collins, Head-Driven Statistical Models for Natural Language
Parsing, Ph.D. thesis, University of Pennsylvania, 1999.

[12] M.P. Marcus, B. Santorini, and M.A. Marcinkiewicz, “Building a
large annotated corpus of English: The Penn Treebank,” Computa-
tional Linguistics, vol.19, no.2, pp.310–330, June 1993.

[13] D.M. Bikel, “Intricacies of Collins’ parsing model,” Computational
Linguistics, vol.30, no.4, pp.478–511, Dec. 2004.

[14] A.L. Berger, S.A.D. Pietra, and V.J.D. Pietra, “A maximum entropy
approach to natural language processing,” Computational Linguis-
tics, vol.22, no.1, pp.39–71, March 1996.

[15] E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Grishman, P.
Harrison, D. Hindle, R. Ingria, F. Jelinek, J. Klavans, M. Liberman,
M. Marcus, S. Roukos, B. Santorini, and T. Strzalkowski, “A proce-
dure for quantitatively comparing the syntactic coverage of English
grammars,” Proc. 4th DARPA Speech and Natural Language Work-
shop, pp.306–311, Feb. 1991.

[16] P. Sturt and V. Lombardo, “Processing coordinated structures: In-
crementality and connectedness,” Cognitive Science, vol.2, no.29,
pp.291–305, March 2005.

[17] V. Demberg and F. Keller, “A psycholinguistically motivated ver-
sion of TAG,” Proc. 9th International Workshop on Tree Adjoining
Grammars and Related Formalisms, June 2008.

[18] A. Mazzei, V. Lombardo, and P. Sturt, “Dynamic TAG and lexi-
cal dependencies,” Research on Language and Computation, vol.5,
no.3, pp.309–332, Sept. 2007.

Yoshihide Kato received the B.E. degree,
the M.E. degree, and the Dr. of Engineering de-
gree in information engineering from Nagoya
University, in 1997, 1999 and 2003, respec-
tively. He was an Assistant Professor from 2003
to 2009 at Graduate School of International De-
velopment, Nagoya University. He is currently
a Researcher at Information Technology Cen-
ter, Nagoya University. His research interests
include natural language processing and infor-
mation retrieval. He is a member of the IPSJ,

the NLP and the ACL.

Shigeki Matsubara received the B.E.
degree in electrical and computer engineering
from Nagoya Institute of Technology in 1993,
and the M.E. degree, and the Dr. of Engineering
from Nagoya University in 1995 and 1998, re-
spectively. He was an Assistant Professor from
1998 to 2002 at the Faculty of Language and
Culture, Nagoya University. He is currently an
Associate Professor at Information Technology
Center, Nagoya University. His research inter-
ests include natural language processing, infor-

mation retrieval and digital library. He is a member of the IPSJ, the JSAI,
the NLP, the IEEE and the ACM.


