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SUMMARY Toponyms and other named entities are main issues in un-
known word processing problem. Our purpose is to salvage unknown to-
ponyms, not only for avoiding noises but also providing them information
of area candidates to where they may belong. Most of previous toponym
resolution methods were targeting disambiguation among area candidates,
which is caused by the multiple existence of a toponym. These approaches
were mostly based on gazetteers and contexts. When it comes to the doc-
uments which may contain toponyms worldwide, like newspaper articles,
toponym resolution is not just an ambiguity resolution, but an area candi-
date selection from all the areas on Earth. Thus we propose an automatic
toponym resolution method which enables to identify its area candidates
based only on their surface statistics, in place of dictionary-lookup ap-
proaches. Our method combines two modules, area candidate reduction
and area candidate examination which uses block-unit data, to obtain high
accuracy without reducing recall rate. Our empirical result showed 85.54%
precision rate, 91.92% recall rate and .89 F-measure value on average. This
method is a flexible and robust approach for toponym resolution targeting
unrestricted number of areas.
key words: natural language processing, toponym resolution, area identi-
fication, statistical information

1. Automatic Toponym Resolution

Many of previous researches on toponym resolution took
dictionary-based approaches. However, when we face doc-
uments which may contain toponyms worldwide, there
should be the problem of dictionary-unregistered toponyms.
It is not realistic to gather all the toponyms in perfect detail
in a gazetteer, or to combine gazetteers worldwide overcom-
ing their difference in format. As a better and more realis-
tic approach, we propose an automatic method to estimate
area candidates for toponyms based only on their surface
statistics. Our system concentrates on the extraction of area
candidates, and an area identification task or an area disam-
biguation task may be required afterward.

2. Related Work

Identification of toponyms in documents generally requires
the following two steps; toponym recognition (Sect. 2.1) and
toponym resolution (Sect. 2.2).
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2.1 Toponym Recognition

Named entity recognition, including toponym recognition,
is a task to extract named entities embedded in documents.
It has been one of the significant issues, concerning the un-
known word problem.

Zhou et al. proposed an HMM-based chunk tagger
based on the mutual information independence assumption
for the named entity recognition problem [1]. Their method
achieved F-measures of 96.6% for English named entity
task.

There also is a maximum entropy tagger proposed by
Curran et al. Their system extracted the required features
with a language independent manner [2]. They resulted that
their system works effectively not only for English but also
for other languages.

2.2 Toponym Resolution

Toponyms sometimes appear in multiple areas. For ex-
ample, Portsmouth is in U.K. and in U.S.A., and Sparta
is in Greece and in U.S.A. Toponym resolution is a task
to identify these multi-area toponyms, to estimate which
Portsmouth the one in the target document is. Most of the
toponym resolution approaches are based on a combination
of gazetteers, context information, and information on the
area.

Hauptmann and Olligschlaeger proposed rule-based
methods [3], which are based on “one referent per dis-
course” assumption and spatial knowledge. This method
achieved to resolve 269 toponyms correctly out of 357 to-
ponyms.

Li et al. used a statistical approach to tag place
names [4], which is based on a combination of pattern
matching rules as well as discourse features based on co-
occurring toponyms. The results were 96% accuracy on
news articles and tourist guides.

Pouliquen et al. proposed a multilingual toponym reso-
lution system based on a preference order [5]. In the disam-
biguation process, they used person name information, im-
portance of the place, country information, geo-stop-word
list and kilometric distance. It showed 0.77 of F-measure
with the combination of the techniques for the toponym dis-
ambiguation.

Clough et al. proposed a toponym resolution system
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based on multiple gazetteers [6]. They used pattern match-
ing rules, ontologies and gazetteer preference orders to
assign confidence scores for toponyms. They reported
89% accuracy focusing on the regions in the U.K., France,
Germany and Switzerland.

Garbin and Mani used a statistical classifier for the
toponym resolution [7]. They used various features, such
as toponym classes, abbreviation information and capital-
ization of letters and collocated terms within a distance of
three tokens from the target toponym. This automatically
tagged data was used to train a machine learner, which dis-
ambiguated toponyms in a human-annotated news corpus at
78.5% accuracy.

Rauch et al. proposed a confidence-based toponym res-
olution system [8] using supportive or negative features such
as the presence in gazetteer, linguistic context, etc.

These approaches require one or more fair gazetteers
and heuristics methodologies for leveraging the context in-
formation. The quality of the systems depends on the
knowledge base.

2.3 A Robust Approach to Toponym Resolution

For more robust processing, we should consider an approach
which does not depend on toponym attributes, such as spa-
tial data or population data.

Sano et al. proposed a statistical method for toponym
resolution based on n-gram data [9]. Their system contained
a set of binary classifiers, and the output was area candidates
for an input toponym according to its surface information.
They gained .93 of F-measure at maximum and .69 at mini-
mum, though the method took a simple approach based only
on letter-unit n-grams. The result showed that surface statis-
tics can be effective in toponym resolution. But when a to-
ponym does not contain sufficient information in its surface,
the system failed to reduce the number of area candidates.
This is because the system was designed for avoiding re-
call rate reduction, and the low precision rate was 55.09% at
minimum.

Sano’s system was robust as a candidate reducer, but it
was not enough as a toponym identifier. Thus we propose
a two-phased method, adding a TFIDF-based phase after
Sano’s SVM-based phase, for better performance as a to-
ponym identifier by gaining more precision with a sufficient
use of letter blocks †, without decreasing recall rate.

3. Two-Phased Toponym Resolution Method

In this paper we propose an automatic estimation method of
area candidates for toponyms, based on surface statistics,
without looking up gazetteers. Our method takes a two-
phased approach; (i) area candidate reduction phase based
on letter-unit information and length information, and (ii)
area candidate examination phase based on block-unit in-
formation. With these two phases, we achieved both high
precision rate and high recall rate.

Fig. 1 Toponym resolution system.

Fig. 2 Data flow.

3.1 Overview

The two phases which constitute our system are as follows:
ACR, area candidate reduction phase which reduces area
candidates with lower possibility, and ACE, area candidate
examination phase which investigates the possibility of each
remaining area candidate (Fig. 1). The top two rows in Fig. 1
show the prepared data. This system requires toponym cor-
pora to extract the surface statistics. Each toponym corpus
is a toponym list which contains toponyms for an area. As
the preparation, we extract length data, letter-unit frequency
data and block-unit frequency data from each toponym cor-
pus. The bottom row in Fig. 1 shows the flow of our system.
The first phase, ACR, outputs several area candidates out of
all the areas prepared for the system. ACR reduces area can-
didates based on letter-unit frequency data and length data
with high recall rate. And ACE ranks the area candidates
in order of their possibility. In this ACE phase, it estimates
the possibility of containing the input toponym for each area
candidate by using TFIDF approach.

For example, when a toponym Madrid is given as an
input, the system returns Spain and Germany as the output
area candidates (Fig. 2). In this example, the set of possible
area candidates contains nine areas. At ACR phase, three
areas (Germany, Greece and Spain) out of nine remained as
area candidates according to the letter-unit frequency data
and the length data. At ACE phase, it ranks them according
to their possibility, and then two area candidates with fair
possibility are returned as system outputs. In this example,
the possibility for Greece is too low to be an area candidate.

3.2 Area Candidate Reduction

Our first phase is an SVM-based system of Sano’s ap-
†A block here is a kind of prefix and suffix. Detailed descrip-

tion is in Sect. 3.4.
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Table 1 Toponym resolution with ACR.

area F-measure Precision (%) Recall (%)
China .85 75.64 97.94
Japan .76 63.74 95.33
Thailand .94 90.74 97.82
Greece .70 56.69 91.22
Finland .69 55.46 91.64
Germany .79 66.30 98.39
France .66 51.94 90.80
Spain .72 59.64 91.29
U.S.A. .80 68.86 94.31
TOTAL .76 63.99 94.30

proach [9]. This system uses statistical information of the
training toponym corpora as the features. As the support
vector machine is a binary classifier, the system was made
on one-versus-rest policy. That is, the system contains
SVMs of the number of areas, each of which replies binary
answers (positive or negative) for the area to an input to-
ponym. The features they introduced were shown below.
The total number of features was 30,833.

• letter-unit unigram, bigram and trigram
• number of letters and number of words in toponym
• number of words for each letter-unit length
• number of letters for each words

Each weight for a feature V is calculated with Expression (1)
according to the n-gram frequency in an area A.

VA(t, s) = PA(s) × N(t, s) (1)

where s is an n-lettered string (1 ≤ n ≤ 3). PA(s) is the prob-
ability of s appearing in an area A, N(t, s) is the frequency
of a string s in a toponym t. The learning process of SVM is
pre-processed for each toponym corpus. For each area, the
toponyms of the area are positive instances and the others
are negative instances. Table 1 shows the result of this ACR
phase. With this phase, we can only obtain the list of area
candidates. Recall rates are over 90% for all the nine areas,
where the precision rates are much lower.

3.3 Area Candidate Examination

The second phase, ACE, calculates scores for each area can-
didate according to their possibility, and determines the out-
put. Each area has its distinctive words. On the other hand,
there also are common words among areas. In this phase
the system calculates the possibility scores according to the
appearance of these words.

For example, assume that there are four corpora for
four areas, China, Finland, Japan and U.S.A., and now the
system tries to estimate the area candidate for a toponym
Mt. Fuji San. If a word Fuji is found only in Japanese train-
ing corpus but not in other areas’ training corpora (Fig. 3),
then the toponym may have strong possibility to be found
in Japan. When all the area corpora were made of the same
source, they may share the influence of the source language.
For example, when the whole corpus set was made of a
source written in English, we may need to consider the pos-
sibility that English words, such as Mt., may be found in
all the area corpora. In this case, the event containing a

Fig. 3 Frequent words in toponym corpora.

Fig. 4 Ratio of words by occurring numbers.

word Mt. should not be treated as an evidence of being a
toponym of U.S.A. And also the possibility of being in Fin-
land should not be changed, as there is no positive evidence
to be in Finland and also there is no negative evidence.

The possibility of a toponym being included in an area
corpus, EA(t), can be defined as follows:

EA(t) =
1
n

n∑

k=1

eA(wk) (2)

where t is a toponym, A is an area, wk is the k-th word in
the toponym, n is the number of words in the toponym and
eA(wk) represents the expectation value of a wk being in-
cluded in an area A. As the average number of words in a
toponym is 1.94 (Sect. 4.1), we normalize the score with n to
avoid the influence of the number of words (Expression (2)).

The expectation value eA(wk) for an area A containing
a word wk is defined with TFIDF model as in

eA(wk) = TFA(wk) log
N

DF(wk)
(3)

where TFA(wk) is a frequency of the word wk in an area A,
and DF(wk) is the number of area corpora in the whole cor-
pus set which contain the word wk, and N is the number
of area corpora. The system calculates the possibility score
of each area candidate, and determines the area candidates
with fair possibility.

3.4 Block-Unit Frequency Data

For the estimation of expectation value eA(wk) in Expres-
sion (3) for the word wk, we need to assume that the words
contained in toponyms hold area-specific data sufficient
enough for appropriate estimation. The words in toponyms,
however, are mostly named entities, and the frequency of
occurrence is not enough. Figure 4 shows the ratio of non-
frequent words in toponyms. “1” in each bar shows the ratio
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of words which occurred only once in each toponym corpus.
“TOTAL” bar represents the ratio of words in the whole set
of nine toponym corpora. More than 30% of the words in
the toponym corpora appeared only once. These words do
not exist in training corpora at open tests, thus the expecta-
tion values for these words are always zero. As most of the
toponyms contain less than three words, even one unknown
word may cause fatal error.

In this paper we propose a new unit, a block, in place
of a word. We consider two types of blocks; prefix-type and
suffix-type. For example, we may find a prefix-type block
yama in Japanese toponym corpus as in Yamagata. And
we may also find a suffix-type block berg in German to-
ponym corpus as in Heidelberg. Though both Yamagata and
Heidelberg are not frequent words, yama and berg should be
frequent blocks.

Our method counts up these blocks instead of words,
with which we can expect more frequent and area-specific
surface data hidden in toponyms. Table 2 shows frequent
five-lettered prefix-type blocks and suffix-type blocks in the
toponym corpora. These are not actual prefixes or suffixes;
they are presenting frequent n-grams at the beginnings and
at the endings of words in toponyms. We can expect more
frequency with blocks than words, which is the significant
point in our surface statistics based approach. The longer
block causes the data sparseness problem like word-unit fre-
quency data have. Thus our method defines a block size as
the maximum length of a block. When our method finds
a word with shorter length than the block size, the method
takes whole the word as a block. The prefix-type block and
the suffix-type block are defined in Expression (4) and in
Expression (5), respectively.

BP(wk,m) = c1 · · · ci (i = min(m, l)) (4)

BS (wk,m) = c j · · · cl ( j = max(l − m + 1, 1)) (5)

where m is a block size, wk is the word, ci is the i-th let-
ter of the word and l is the length of the word. Now we

Table 2 Frequent five-lettered blocks.

area prefix-type block suffix-type block
China hsien shang huang chang

chuan chian shuik
huang hsien chang xi-
ang hiang huiku cheng

Japan shima machi misak nishi
shimo higas shira

shima machi isaki betsu
gashi shimo inami

Thailand khlon ampho muang chang
thung river luang

hlong muang mphoe
thung luang river chang

Greece ormos nisis vrach potam
nisos nisid ayios

ormos nisis isida nisos
aiika tamos orion

Finland stora fjard sodra norra
lilla svart vaste

jarvi niemi vaara saari
lahti selka olmen

Germany gross forst klein unter
bahnh niede stein

ausen sdorf ingen ndorf
forst nberg hnhof

France saint rivie ruiss grand
foret ville chate

saint ville viere sseau
court foret ieres

Spain arroy caser villa punta
sierr barra corti

rroyo serio punta ierra
ranco santa casas

U.S.A. creek churc cemet schoo
sprin branc mount

creek hurch etery chool
ranch pring enter

put a block-unit expectation value, in place of a word-unit
expectation value eA(wk) in Expression (3). Thus the possi-
bility score, EA(t) in Expression (2), is here replaced with
Expression (6).

EA(t) =
1
n

n∑

k=1

eA(BP(wk,m)) + eA(BS (wk,m))
2

(6)

Expression (6) enables the use of both the prefix-type blocks
and the suffix-type blocks to represent the surface informa-
tion of a toponym, instead of the direct use of words con-
tained in a toponym.

4. Empirical Result

4.1 Toponym Corpora

We used the toponym corpus set † shown in Table 3. #to-
ponym, #word and #letter indicate the number of toponyms,
the number of words and the number of letters included in
each area corpus, respectively. We have no discrimination
between lowercase and uppercase letters, and eliminate spe-
cial letters like umlaut marks. This corpus set is made on
English-language basis, thus these corpora may include En-
glish words in toponyms, such as Elbe River in Germany.

4.2 Effectiveness of Two-Phased Toponym Resolution
with Block-Unit Frequency Data

Table 4 shows the empirical results of our proposing method

Table 3 Toponym corpus set.

area #toponym #word #letter
China 10, 000 15, 975 98, 773
Japan 10, 000 16, 960 102, 311
Thailand 10, 000 28, 974 131, 128
Greece 10, 000 14, 612 109, 818
Finland 10, 000 11, 050 97, 447
Germany 10, 000 13, 206 109, 615
France 10, 000 19, 820 121, 945
Spain 10, 000 22, 797 135, 947
U.S.A. 10, 000 25, 622 165, 509

Table 4 Toponym resolution results for each case.

case F-measure Precision (%) Recall (%)
ACR .76 63.99 94.30

ACEw .67 92.96 52.77
ACEb .87 90.51 83.84

ACR+ACEw .82 72.87 93.37
ACR+ACEb .89 85.54 91.92

†The toponym corpus set except U.S.A. corpus is created
from the database of GEOnet Names Server (GNS) of National
Geospatial-Intelligence Agency. The U.S.A. corpus is created from
the data of Geographic Names Information System (GNIS) which
is provided by United States Board on Geographic Names. GNS
and GNIS contain approximately 5.5 million and 2 million names,
respectively. We extracted 10,000 toponyms randomly from the
database. In our experiment, we used only location name despite
including many attributes such as longitude, latitude, etc.
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Table 5 Empirical result of ACR+ACEb with possibility score ranking (%).

rank China Japan Thailand Greece Finland Germany France Spain U.S.A. TOTAL
1 86.2 88.7 96.1 79.4 80.2 86.2 73.8 80.4 92.0 84.8
2 1.7 1.2 1.0 2.4 1.8 1.6 6.3 3.3 1.4 2.3
3 .0 .0 .0 .1 .1 .1 .1 .1 .1 .1

4 – 9 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0
unknown 10.0 5.4 .6 9.3 9.6 10.5 10.6 7.5 .9 7.1
negative 2.1 4.7 2.2 8.8 8.4 1.6 9.2 8.7 5.7 5.7

(ACR+ACEb), comparing to other four related methods
(ACR, ACEw, ACEb, ACR+ACEw). ACR+ACEb stands
for the combination of ACR and block-unit ACE, and
ACR+ACEw stands for the combination of ACR and word-
unit ACE.

We set 5 as the block size, for both the prefix-type
blocks and the suffix-type blocks. For this experiment our
system returns only top one area as the area candidate, ac-
cording to the possibility. Based on the five-fold cross-
validation on the corpora, we calculate the scores being in
each area and compared the scores for each input toponym.
Our method, ACR+ACEb, succeeded in obtaining high val-
ues both in precision (85.54%) and recall (91.92%), com-
bining a high-recall area candidate reduction module and
a high-precision area candidate examination module effi-
ciently. Our block-unit examination approach was effective
enough to cover the problem of data sparseness with word-
unit examination approach.

Table 5 shows the result of ranking for all the to-
ponyms in each toponym corpus (with an open test on cross-
validation). Rank 1 in Table 5 shows the ratio of correct ar-
eas with top scores. “Unknown” in Table 5 indicates the ra-
tio of toponyms which were decided as unknown toponyms
(that is, no blocks in the toponyms found in the training cor-
pora) at ACEb. There were 7.1% unknown toponyms in our
system’s output. “Negative” indicates the ratio of toponyms
whose correct area were rejected as area candidates in ACR,
and it contained 5.7% negatives. Table 5 shows that our
system outputs correct area candidate with the top score for
84.8% of the toponyms.

5. Discussion

5.1 Word-Unit Frequency Data

Table 6 shows the example of the frequent words which
appeared in most of the nine corpora. The number in the
column DF shows the number of areas which contained the
words. As shown in Table 6, most of the words with high
document frequency are English words. This is because the
toponym corpora were made on English gazetteer, and it
contained English terms in toponyms, such as in Biwako
Canal. Though included in Table 6, de and la gained more
than 3% term frequency only in French toponym corpus and
Spanish toponym corpus. These words can be regarded as
area-specific words of France and Spain.

Table 7 shows the top 5 frequent words in each corpus.
In Table 7, frequent words are mostly area-specific and En-

Table 6 Examples of frequent words in whole corpus set.

DF frequent words
9 canal
8 river point
7 i bay island lake la de san
6 a e o station pass south cape channel north to

west en

Table 7 Examples of frequent words in each corpus.

area frequent words
China shan hsien ho chen xian
Japan yama mura saki gawa shima
Thailand ban khlong huai khao nong
Greece akra ormos nisis cape rema
Finland iso stora sodra stor norra
Germany berg bach bahnhof see wald
France de la le saint les
Spain de la del arroyo rio
U.S.A. creek church cemetery school lake

Fig. 5 Comparison between word-unit examination and block-unit ex-
amination.

glish words appeared only in U.S.A. corpus. The distribu-
tion of frequent words is different among the area corpora.
In the Spanish corpus and in the French corpus, the most fre-
quent word is de and the second frequent word is la. These
two are very frequent in these two corpora, and it is natural
that these two area corpora show strong positive correlation.

5.2 Effectiveness of Block-Unit Frequency Data

Figure 5 shows the comparison between word-unit exam-
ination, ACEw and block-unit examination, ACEb at the
second phase. The circles in Fig. 5 indicate block-unit re-
sults, and the diamonds indicate word-unit results, show-
ing the overall results with big marks. Precision rates are
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Fig. 6 Influence of block size and block usage type.

good enough (around 90% in total) for both. There were
difference in recall rates. The word-unit approach gained
only 50% recall rate, while the block-unit approach ob-
tained 80%. This difference is caused by the problem of
data sparseness and unknown words in toponyms for the
word-unit approach, which is described in Sect. 3.4. Thus
we resulted that the use of the block-unit data instead of the
word-unit data can be a key for the recall rate improvement
without the precision rate reduction.

5.3 Consideration on Effective Use of Block-Unit Fre-
quency Data

Here we describe the basic ideas on the definition of the
blocks shown in Expression (4) and Expression (5) in
Sect. 3.4. Fig. 6 shows the F-measure values according to
the block sizes, block types (prefix-type and/or suffix-type),
and the inclusion/exclusion of shorter words. Block size
indicates the number of letters of a block. For example,
block size 1 means that a block consists only the first/last
letter of a word. When a word contains less letters than the
block size, we call it a shorter word. For example, de is
a shorter word for five-lettered blocks. Our proposing sys-
tem includes these shorter words as blocks, for better per-
formance by including short significant words in toponyms.
We also show the difference of F-measure values by the in-
clusion and the exclusion of these shorter words in Fig. 6.
The x-axis indicates the block size. And the y-axis stands
for the F-measure value on ACE phase. There are five lines
drawn in the graph, each stands for a different type of block
usage described as follows:

B∗P Prefix-type blocks only, shorter words excluded
B∗S Suffix-type blocks only, shorter words excluded
BP Prefix-type blocks only, shorter words included
BS Suffix-type blocks only, shorter words included

BP + BS Both prefix-type and suffix-type blocks, shorter words
included

The horizontal line in the graph indicates the F-
measure value .67 of the word-unit examination result. In-
clusion of shorter words was also effective, especially at the
experiments on longer blocks. Comparing the F-measure

Fig. 7 F-measure values with multiple outputs.

values of the prefix-type and the suffix-type, there is no sig-
nificant difference between B∗P vs. B∗S and BP vs. BS . With
this result we consider that both the prefix-type blocks and
the suffix-type blocks have effectiveness at the same level for
the scoring. The combination of the two, BP + BS , showed
the best score for most of the block sizes. Thus we defined
BP and BS as in Expression (4) and Expression (5), using
both the prefix-type blocks and the suffix-type blocks, con-
sidering shorter words. The best block size should be 5,
according to Fig. 6.

5.4 Number of Output Area Candidates

ACE is not designed to provide only one topmost-scored
area candidate, thus we can consider multiple outputs ac-
cording to the score ranking for better recall rates. To ex-
plain the influence of multiple outputs with ACE, we show
the F-measure values for varied number of outputs in Fig. 7.
The line with black dots shows the values with ACR+ACEb,
and the line with white dots shows the values with ACEb.
The x-axis indicates the maximum number of outputs at
ACEb, and the y-axis indicates the F-measure values. For
both approaches, F-measure values showed the best at one
output and the F-measure values are almost the same at that
point. The F-measure values show difference with bigger
output numbers, which is caused by the decreasing of pre-
cision values with ACEb. As shown in Table 5, over 80%
of toponyms come to Top 1 and it means that increasing the
number of output area candidates causes decreasing the pre-
cision rather than increasing the recall. Thus we decided
that our system returned only one candidate for the aspect
of the precision rate.

5.5 Capability of Our Toponym Resolution Method

Table 8 shows the detailed result of our toponym resolution
system ACR+ACEb. The result shows 85.54% precision
rate, 91.92% recall rate and .89 of F-measure in total. The
worst in F-measure was .81 with French toponym lists, and
the best was .98 with Thai toponym lists. We consider that
.81 of F-measure at the worst is successful enough with an
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Table 8 Empirical result of ACR+ACEb.

area F-measure Precision (%) Recall (%)
China .92 88.61 96.23
Japan .90 86.74 94.09
Thailand .98 98.39 96.78
Greece .86 82.79 88.66
Finland .84 79.29 89.73
Germany .90 83.89 96.68
France .81 77.16 84.41
Spain .85 82.86 87.86
U.S.A. .92 92.12 92.85
TOTAL .89 85.54 91.92

Fig. 8 Toponym resolution results for each area.

open test.
Figure 8 shows all the empirical results for the tested

areas, showing the overall results with big marks. Two-
phased approaches (ACR+ACEw and ACR+ACEb) have a
capability of high recall rate and small data spread, because
of the letter-unit based ACR module. And ACEw and ACEb
have a capability of high precision rate, which is derived
from the use of block-unit/word-unit frequency data. In ad-
dition, the block-unit approaches (ACEb and ACR+ACEb)
show better results than the word-unit approaches (ACEw
and ACR+ACEw). We considered the block-unit frequency
data resolved the data sparseness problem of the word-
unit approach. Our method is effective for any areas and
achieved high precision rate and high recall rate by the com-
bination of these capabilities.

The ACEw result shows the low recall rate. This should
be caused by long word of the toponyms of Finland and
Germany. They have many long words in the toponyms
and they may cause unknown words. On the other hand,
ACR+ACEw shows high recall rate, because ACR can re-
duce the number of area candidates; 1.6 candidates on av-
erage in Finnish toponyms and 1.5 candidates on average
in German toponyms. This means that ACR plays the main
role to perform the toponym resolution and ACE is a module
for the precision rate improvement.

5.6 Experiments on Related Areas

Our experiment assumed 1-to-1 relationship between the ar-

Table 9 Empirical result including related areas.

area F-measure Precision (%) Recall (%)
China .78 ( 84.8%) 74.53 ( 84.1%) 82.50 (85.7% )
Taiwan .83 ( - ) 82.29 ( - ) 83.20 ( - )
Japan .90 (100.0%) 86.99 (100.3%) 93.57 ( 99.5%)
Thailand .97 ( 99.0%) 97.36 ( 99.0%) 96.56 ( 99.8%)
Greece .85 ( 98.8%) 82.80 (100.0%) 88.30 ( 99.6%)
Finland .84 (100.0%) 79.27 (100.0%) 89.34 ( 99.6%)
Germany .90 (100.0%) 83.82 ( 99.9%) 96.48 ( 99.8%)
France .80 ( 98.8%) 76.29 ( 98.9%) 83.36 ( 98.8%)
Spain .75 ( 88.2%) 71.73 ( 86.6%) 78.12 ( 88.9%)
Chile .80 ( - ) 81.39 ( - ) 78.81 ( - )
U.S.A. .92 (100.0%) 91.62 ( 99.5%) 92.43 ( 99.6%)
TOTAL .85 ( 95.5%) 82.36 ( 96.3%) 87.52 ( 95.2%)

eas and their languages. But there are many areas which
use the same language, for example, Spain and Chile as
Spanish-speaking areas or China and Taiwan as Chinese-
speaking areas. Areas may contain same or similar to-
ponyms for linguistic or historical reasons, and we need to
consider these related areas for a better performance. It can
be a problem for the toponym resolution among these areas
because of the similarity of surface statistics.

Table 9 shows a result of our system with eleven areas,
Chile and Taiwan added as related areas of Spain and China
to the initial experiment (Sect. 4.1). The numbers shown
in parentheses in Table 9 represent the ratio comparing to
the result of the initial experiment (Table 8). Table 9 shows
that the addition of Chile and Taiwan, only one related area
each, decreased the accuracy of Spain and China to about
85% of the initial experiment. Thus we need to consider
a language-robust approach to solve this problem. On this
issue, Sano et al. proposed another approach targeting these
related areas [10].

Our approach is mostly based on n-gram frequency,
thus it is obvious that our approach is not robust enough
against an area set including related areas. In this paper we
concentrate on an effective use of prefix-type and suffix-type
blocks as a significant surface information of toponyms for
a robust toponym resolution. Table 9 also shows that few
degradation for all areas except Spain and China. We con-
sider that this shows the robustness of our approach.

6. Conclusion

For a robust toponym resolution, we proposed an automatic
two-phased method with block-unit frequency data based
only on surface statistics of toponyms, which requires only a
simple gazetteer to construct toponym corpora for the train-
ing of area-specific statistical information. Our method is an
efficient combination of an area candidate reduction mod-
ule and an area candidate examination module which uses
block-unit frequency data to improve the precision. We
showed that our method succeeded in obtaining high pre-
cision rate, 85.54% on average, along with high recall rate,
91.92% on average. Our method is based on simple statis-
tical information and it is flexible enough to be adapted to
any area. And also, it is robust enough to be able to estimate
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the area candidates for unknown toponyms.
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