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Static Dependency Pair Method for Simply-Typed Term Rewriting
and Related Techniques

Keiichirou KUSAKARI†a) and Masahiko SAKAI†b), Members

SUMMARY A static dependency pair method, proposed by us, can
effectively prove termination of simply-typed term rewriting systems
(STRSs). The theoretical basis is given by the notion of strong computabil-
ity. This method analyzes a static recursive structure based on definition de-
pendency. By solving suitable constraints generated by the analysis result,
we can prove the termination. Since this method is not applicable to every
system, we proposed a class, namely, plain function-passing, as a restric-
tion. In this paper, we first propose the class of safe function-passing, which
relaxes the restriction by plain function-passing. To solve constraints, we
often use the notion of reduction pairs, which is designed from a reduction
order by the argument filtering method. Next, we improve the argument fil-
tering method for STRSs. Our argument filtering method does not destroy
type structure unlike the existing method for STRSs. Hence, our method
can effectively apply reduction orders which make use of type information.
To reduce constraints, the notion of usable rules is proposed. Finally, we
enhance the effectiveness of reducing constraints by incorporating argu-
ment filtering into usable rules for STRSs.
key words: simply-typed term rewriting, termination, static dependency
pair method, argument filtering, usable rule

1. Introduction

A simply-typed term-rewriting system (STRS), proposed
by Kusakari, is a computational model that provides op-
erational semantics for functional programs and directly
handles higher-order functions [18]. For example, the left-
folding function foldl, a typical higher-order function, is
represented as the following STRS Rfoldl:{

foldl[ f , y, nil] → y

foldl[ f , y, cons[x, xs]] → foldl[ f , f [y, x], xs]

Using the function foldl, the sum function, which calcu-
lates the total sum for an input list, can be represented as
STRS Rsum, which is the union of Rfoldl and the following
rules:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

add[0, y] → y

add[s[x], y] → s[add[x, y]]

sum → foldl[add, 0]

A dependency pair method, proposed by Arts and
Giesl, is a method for proving termination of first-order term
rewriting systems (TRSs) based on recursive structure anal-
ysis [1]. In higher-order settings, there are two kinds of
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analysis for recursive structures. One is a dynamic anal-
ysis based on function-call dependency, and the other is
a static analysis based on definition dependency. In other
words, a dynamic dependency pair method considers a de-
pendency through higher-order variables, but a static depen-
dency pair method need not consider such a dependency.
Hence, a static dependency pair method has more practi-
cal advantage than a dynamic method. Dynamic depen-
dency pair methods were introduced in STRSs [18] and in
HRSs [24], which are natural extensions of the dependency
pair method in TRSs [1]. We also proposed a static de-
pendency pair method in [22]. The key idea of the static
dependency pair method is to analyze a recursive structure
from the viewpoint of strong computability, which was in-
troduced for proving termination in typed λ-calculus [12],
[27]. For the STRS Rsum, the static dependency pair method
returns the following two static recursion components:

{foldl�[ f , y, cons[x, xs]]→ foldl�[ f , f [y, x], xs]}
{add�[s[x], y]→ add�[x, y]}

We can effectively and efficiently prove the termination of
STRSs by showing the non-loopingness of these compo-
nents as will hereinafter be described in detail.

Unfortunately static dependency pair methods are not
applicable to every STRSs, that is, there exists a non-
terminating STRS that has no static recursive structure.
The STRS {foo[bar[ f ]] → f [bar[ f ]]} is a such example.
Hence, we need a suitable restriction under which static de-
pendency pair methods work well. As such a restriction, we
proposed the notion of plain function-passing [22]. Roughly
speaking, plain function-passing means that every higher-
order variable occurs in an argument position on the left-
hand side. For example, the STRS Rapp0⎧⎪⎪⎨⎪⎪⎩

app0[nilF] → nil

app0[consF[ f , f s]] → cons[ f [0], app0[ f s]]

is not plain function-passing because the underlined occur-
rence of the higher-order variable f is not an argument posi-
tion. Hence, the static dependency pair method in [22] was
not applicable to Rapp0 . In this paper, we introduce the no-
tion of a peeling order, and by using this notion we introduce
the notion of safe function-passing, which expands the ap-
plication range of the static dependency pair method. Thus,
we can apply the static dependency pair method to Rapp0 .

To show the non-loopingness of each static recursion
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component, we often use reduction pairs or the subterm cri-
terion. The argument filtering method generates a reduction
pair from a given reduction order. This method was intro-
duced in TRSs [1], and extended to STRSs [18]. However
the method does not work well in general STRSs and may
destroy the well-typedness of terms. In [18], we showed
that the method works well in left-firmness STRSs, that is,
any variable of the left-hand sides occurs at a leaf position.
On the other hand, destroying the well-typedness remark-
ably complicates the application of the argument filtering
method to reduction orders which make use of type infor-
mation [19]. In this paper, we improve the argument filter-
ing method. Although the improved method requires that
target STRSs is left-firmness, this never destroys the well-
typedness. In spite of the fact that the idea is simple, our im-
provement yields very substantial benefits when combined
with reduction orders that make use of type information. In
contrast to the discussion about the applications of the argu-
ment filtering method in [19], we need not individually dis-
cuss application to each reduction order, and we can comb
out some applied conditions.

To reduce the number of constraints when proving the
non-loopingness by reduction pairs, the notion of usable
rules was introduced in TRSs [11], [15], [29]. We extended
the notion onto STRSs [26]. In first-order TRSs, we know
that usable rules can be strengthened by incorporating ar-
gument filtering into usable rules [11], [29]. In this paper,
we also strengthen usable rules by incorporating argument
filtering into usable rules for STRSs.

The remainder of this paper is organized as follows.
The next section provides preliminaries required later in the
paper. In Sect. 3, we introduce the notion of safe function-
passing, and show that the static dependency pair method
works well in safe function-passing STRSs. In Sect. 4, we
introduce the argument filtering method which never de-
stroys the well-typedness, unlike in existing method. In
Sect. 5, we strengthen usable rules by incorporating argu-
ment filtering into usable rules for STRSs. Concluding re-
marks are presented in Sect. 6.

2. Preliminaries

Untyped term rewriting systems (UTRSs) were introduced
by removing arity constraints from first-order term rewrit-
ing systems (TRSs), and simply-typed term rewriting sys-
tems (STRSs) were introduced as UTRSs with simple-type
constraints [18].

In this section, we introduce the basic notations for
simply-typed term rewriting systems, according to the litera-
ture [22]. We assume that the reader is familiar with notions
of term rewriting systems [28].

2.1 Abstract Reduction System

An abstract reduction system (ARS) is a pair 〈A,→〉 where
A is a set and → is a binary relation on A. The transitive-
reflexive closure and the transitive closure of a binary rela-

tion→ are denoted by ∗−→ and +−→, respectively. An element
a ∈ A is said to be terminating or strongly normalizing in an
ARS R = 〈A,→〉, denoted by SN(R, a), if every reduction
sequence staring from a is finite. An ARS R = 〈A,→〉 is
said to be terminating or strongly normalizing, denoted by
SN(R), if SN(R, a) holds for any a ∈ A.

2.2 Untyped Term Rewriting System

The setT (Σ,V) of (untyped) terms generated from a set Σ of
function symbols and a setV of variables with Σ∩V = ∅ is
the smallest set such that a[t1, . . . , tn] ∈ T (Σ,V) whenever
a ∈ Σ ∪ V and t1, . . . , tn ∈ T (Σ,V). If n = 0, we write a
for a[ ]. The identity of terms is denoted by ≡. We often
write s0[s1, . . . , sn] for a[u1, . . . , uk, s1, . . . , sn], where s0 ≡
a[u1, . . . , uk]. Var(t) is the set of variables in t, and args(t)
is the set of arguments in t, defined as args(a[t1, . . . , tn]) =
{t1, . . . , tn}.

The set of positions of a term t is the set Pos(t) of
strings over positive integers, which is inductively defined
as Pos(a[t1, . . . , tn]) = {ε} ∪⋃n

i=1{ip | p ∈ Pos(ti)}. The pre-
fix order ≺ on positions is defined by p ≺ q iff pw = q for
some w (� ε). The position ε is said to be the root, and a po-
sition p such that p ∈ Pos(t)∧ p1 � Pos(t) is said to be a leaf.
The symbol at position p in t is denoted by (t)p. Sometimes
the root symbol (t)ε in a term t is denoted by root(t).

A substitution θ is a mapping from variables to terms.
A substitution θ is extended to a mapping from terms to
terms, denoted by θ̂, as θ̂( f [t1, . . . , tn]) = f [θ̂(t1), . . . , θ̂(tn)]
if f ∈ Σ; θ̂(z[t1, . . . , tn]) = a[u1, . . . , uk, θ̂(t1), . . . , θ̂(tn)] if
z ∈ V with θ(z) = a[u1, . . . , uk]. For simplicity, we identify
θ and θ̂, and write tθ instead of θ(t).

A context is a term with one occurrence of the spe-
cial symbol �, called a hole. The notation C[t] denotes the
term obtained by substituting t into the hole of C[ ], that
is, C[t] ≡ a[t1, . . . , tn, u1, . . . , uk] if C[ ] ≡ �[u1, . . . , uk]
and t ≡ a[t1, . . . , tn], and C[t] ≡ a[. . . ,C′[t], . . .] if C[ ] ≡
a[. . . ,C′[ ], . . .]. A context is said to be a leaf-context if the
hole occurs at a leaf position, and to be a root-context if
the hole occurs at the root position. For example, s[�] and
foldl[ f ,�] are leaf-contexts, �[0] and �[ f , nil] are root-
contexts, and � is a leaf-context and a root-context.

A term u is said to be a subterm (resp. an extended sub-
term) of t, denoted by t ≥sub u (resp. t ≥esub u), if there
exists a leaf-context (resp. context) C[ ] such that t ≡ C[u].
We also define >sub = ≥sub \ ≡ and >esub = ≥esub \ ≡. We
denote all subterms (resp. extended subterms) of t by Sub(t)
(resp. ESub(t)). The subterm of t at position p is denoted by
t|p. For example, Sub(a′[a[x, y]]) = {a′[a[x, y]], a[x, y], x, y}
and ESub(a′[a[x, y]]) = {a′[ ], a[ ], a[x]} ∪ Sub(a′[a[x, y]]).
A term u is said to be a prefix of a term t, denoted by u � t,
if t has the form u[u1, . . . , un].

A rule is a pair (l, r) of terms, denoted by l → r, such
that root(l) ∈ Σ and Var(l) ⊇ Var(r). The reduction relation
−→

R
of a set R of rules is defined by s −→

R
t iff s ≡ C[lθ] and

t ≡ C[rθ] for some rule l→ r ∈ R, context C[ ] and substitu-
tion θ. We often omit the subscript R whenever no confusion
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arises. An untyped term rewriting system (UTRS) is an ab-
stract reduction system 〈T (Σ,V), −→

R
〉. We often denote an

UTRS 〈T (Σ,V), −→
R
〉 by R.

2.3 Simply-Typed Term Rewriting System

A set of basic types is denoted by B. The set S of simple
types (with product types) is generated from B by type con-
structors→ and ×, that is, S ::= B | (S1 → S2) | (S1 × · · · ×
Sn). To minimize the number of parentheses, we assume
that→ is right-associative and→ has lower precedence than
×. A product type is a simple type of the form α1 × · · · × αn.
A functional type or a higher-order type is a simple type of
the form α → β. We denote the set of functional types by
Sfun, and the set of non-functional types by Snfun. A simple
type α is said to be a suffix of a simple type β, denoted by
β �S α, if β has the form α1 → · · · → αn → α.

A typing function τ is a function from V ∪ (Σ \ {tp})
to S. We assume that for any α ∈ S there exists a vari-
able x ∈ V such that τ(x) = α. We also assume that
Σ contains a special constructor tp, called a tuple. We
write (t1, . . . , tn) instead of tp[t1, . . . , tn]. Each typing func-
tion τ is naturally extended to terms as follows: for any
t ≡ a[t1, . . . , tn] ∈ T (Σ,V), if τ(ti) = αi (i = 1, . . . , n) and ei-
ther τ(a) = α1 → · · · → αn → α or a = tp∧α = α1×· · ·×αn,
then τ(t) = α. A term t ∈ T (Σ,V) is said to be simply-typed
if t has a simple type, that is, τ(t) is defined. A term t, which
has a simple type α, is often denoted by tα. We denote the
set of all simply-typed terms by Tτ(Σ,V). We also denote
the set of functional (resp. non-functional) typed terms by
Tfun(Σ,V) (resp. Tnfun(Σ,V)). We use Vfun to stand for the
set of functionally typed variables (higher-order variables),
andVnfun to stand for the setV\Vfun. Now we restrict sub-
stitutions to type preserving substitutions. We also index the
hole �α with every simple type α, and assume that τ(t) = α
whenever we denote C[t] for each context C[ ] with a hole
�α. In the following, a simply-typed term is often shortly
denoted by a term.

A simply-typed rule is a pair (l, r) of simply-typed
terms, denoted by l → r, such that root(l) ∈ Σ \ {tp},
Var(l) ⊇ Var(r) and τ(l) = τ(r). A simply-typed term
rewriting system (STRS) is an abstract reduction system
〈Tτ(Σ,V), −→

R
〉. We often denote an STRS 〈Tτ(Σ,V), −→

R
〉

by R. For each STRS R, we define TSN(R) = {t | SN(R, t)},
T¬SN(R) = Tτ(Σ,V) \ TSN(R), and T args

SN (R) = {t | ∀u ∈
args(t).SN(R, u)}.

Let R be an STRS and l→ r ∈ R such that τ(l) = α1 →
· · · → αn → α and α ∈ Snfun. The set (l → r)ex of the
expansion forms of a rule l→ r is defined as {l→ r, l[z1]→
r[z1], . . . , l[z1, . . . , zn] → r[z1, . . . , zn]}, where zα1

1 , . . . , z
αn
n

are fresh variables. We also define Rex =
⋃

l→r∈R(l → r)ex.
The rule (l→ r)ex↑ of the full expansion form of l→ r is de-
fined as l[z1, . . . , zn] → r[z1, . . . , zn], where zα1

1 , . . . , z
αn
n are

fresh variables. We also define Rex↑ = {(l → r)ex↑ | l → r ∈
R}.

Proposition 2.1 Let R be an STRS. If s −→
R

t then there exist

a rule l → r ∈ Rex, a leaf-context C[ ], and a substitution θ
such that s ≡ C[lθ] and t ≡ C[rθ].

A term t is said to be finite branching in an STRS R
if {t′ | t −→

R
t′} is finite. An STRS R is said to be finite

branching if any term is finite branching in R.
A well-founded strict order > on terms is said to be a

reduction order (resp. semi-reduction order) if > is closed
under substitutions and contexts (resp. leaf-contexts). We
note that STRS R is terminating iff R ⊆ > for some reduction
order >, and iff Rex ⊆ > for some semi-reduction order >.

All root symbols of the left-hand sides of rules in an
STRS R, denoted by DR, are called defined, whereas all
other function symbols, denoted by CR, are called construc-
tors.

3. Static Dependency Pair Method

We proposed the static dependency pair method, which
can effectively prove termination of STRSs [22]. This
method analyzes a static recursive structure based on def-
inition dependency, in contrast to dynamic dependency
pair methods that analyze a dynamic recursive structure
based on function-call dependency through higher-order
variables [18], [24]. Hence, static dependency pair methods
have a more practical advantage than dynamic ones. The
key idea of the static dependency pair method is that a static
recursive structure can be formulated as a recursive struc-
ture from the viewpoint of strong computability, which was
introduced for proving termination in typed λ-calculus [12],
[27]. As described in the Introduction, static dependency
pair methods are not applicable to every STRS. Hence, we
proposed the notion of plain function-passing [22]. Roughly
speaking, plain function-passing means that every higher-
order variable occurs in an argument position on the left-
hand side.

From a technical viewpoint, we have noticed that the
unclosedness of strong computability with respect to the
subterm relation is the reason why the static dependency
pair method is not applicable to every STRS. Accordingly,
we introduce the notion of a peeling order and reconstruct
the strong computability by using this peeling order. Then
we can peel a strongly computable term such that peeled
subterms are strongly computable. As a result, we introduce
the notion of safe function-passing which expands the ap-
plication range of the static dependency pair method. Thus,
we can apply the static dependency pair method to Rapp0 dis-
played in the Introduction. Since we change the definition
of strong computability, which gives a theoretical basis for
the static dependency pair method, we prove the soundness
of the static dependency pair method under this new frame-
work.

3.1 Safe Function-Passing

We introduce the notion of a peeling order, and by using
this notion we introduce the notion of safe function-passing
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under which the static dependency pair method works well.

Definition 3.1 (Peeling Order) A well-founded quasi or-
der �S on types is said to be a peeling order if α → β �S α
and α→ β �S β hold.

For any peeling order �S, term t and set A of types, we
define Sub�SA (t) as the smallest set satisfying the following
properties:

• args(t) ⊆ Sub�SA (t)
• if u ≡ a[u1, . . . , un] ∈ Sub�SA (t), a ∈ CR, τ(u) ∈ A and

u �S ui then ui ∈ Sub�SA (t)

Example 3.2 Let Rapp0 be the STRS defined as follows:

{
app0[nilF] → nil

app0[consF[ f , f s]] → cons[ f [0], app0[ f s]]

where τ(app0) = LN→N → LN , τ(nil) = LN , τ(nilF) =
LN→N , τ(cons) = N → LN → LN , τ(consF) = (N →
N) → LN→N → LN→N , and so on. Since simple types can
be interpreted as first-order terms, we present an order �S on
simple-types by the recursive path order with the precedence
LN→N �→ and LN→N � N [5]. Then �S is a peeling order.
For A = {LN→N}, we have Sub�SA (app0[consF[ f , f s]]) =
{consF[ f , f s], f , f s}.

Definition 3.3 (Safe Function-Passing) An STRS R is
said to be safe function-passing with respect to a peeling or-
der �S if there exists a set PT of non-functional types such
that for any l→ r ∈ R and v ∈ Sub(r), the following proper-
ties hold:

• if root(v) ∈ Vfun then there exists u ∈ Sub�SPT (l) such
that u � v, and
• if v ∈ Vnfun and τ(v) ∈ PT then v ∈ Sub�SPT (l).

The set PT is said to be peeling types, and a safe function-
passing STRS is often shortly denoted by SFP-STRS.

Example 3.4 Consider the STRS Rapp0 given in Exam-
ple 3.2. Take PT as the set A in Example 3.2. Then
Rapp0 is safe function-passing because we have f , f s ∈
{consF[ f , f s], f , f s} = Sub�SPT (app0[consF[ f , f s]]).

We note that plain function-passing [22] corresponds to
safe function-passing if PT = {α | α is a product type, α �
τ(z) for all l → r ∈ R and z ∈ Var(r)} and �S is defined as
the subtype relation.

3.2 Strong Computability

In this subsection, we build peeling order/types into the
strong computability, which gives a theoretical basis for the
static dependency pair method.

Definition 3.5 (Strong Computability) Let R be an SFP-

STRS with a peeling order �S and peeling types PT . A
term t is said to be strongly computable in R, if SC(R, t)
holds, which is defined as follows:

• in case of τ(t) ∈ Snfun \ PT , SC(R, t) is defined as
SN(R, t),
• in case of τ(t) ∈ PT , SC(R, t) is defined as SN(R, t) and

SC(R, u) for any u ∈ ⋃{args(t′) | t ∗−→
R

t′, root(t′) ∈ CR}
such that τ(t) �S τ(u).
• in case of τ(t) = α → β, SC(R, t) is defined as

SC(R, u)⇒ SC(R, t[u]) for any uα.

For each SFP-STRS R, we define TSC(R) = {t | SC(R, t)},
T¬SC(R) = Tτ(Σ,V) \ TSC(R), and T args

SC (R) = {t | ∀u ∈
args(t).SC(R, u)}.

Theorem 3.6 The predicate SC is well-defined for SFP-
STRSs.

Proof. Let R be an SFP-STRS with �S and PT . Assume
that SC is not well-defined.

Let t0 be a minimal term with respect to �S such that
SC(R, t0) is not well-defined, that is, SC(R, t) is well-defined
for any t with τ(t0) �S τ(t). From the minimality of t0,
τ(t0) ∈ PT , SN(R, t0), and there exist t′0 and t1 such that
t0

∗−→
R

t′0, t1 ∈ args(t′0), τ(t0) ∼S τ(t1), and SC(R, t1) is not
well-defined, where ∼S is the equivalence part of �S.

Since τ(t0) ∼S τ(t1), t1 is also a minimal term with
respect to �S such that SC(R, t1) is not well-defined. By
applying the procedure above, we obtain t′1 and t2 such that
t1

∗−→
R

t′1, t2 ∈ args(t′1), τ(t1) ∼S τ(t2), and SC(R, t2) is not
well-defined.

By applying this procedure repeatedly, we obtain
t′2, t
′
3, . . . and t3, t4, . . . such that ti

∗−→
R

t′i and ti+1 ∈ args(t′i )
for i = 2, 3, . . .. Since >sub ∪ −→R is well-founded on termi-
nating terms, this contradicts with SN(R, t0). �

We now present the basic properties of strong com-
putability.

Lemma 3.7 For any SFP-STRS R, the following properties
hold:

(1) For any strongly computable terms tα1→···→αn→α and uαi
i

(i = 1, . . . , n), we have SC(R, t[u1, . . . , un]).
(2) For any non-strongly computable term tα1→···→αn→α,

there exist strongly computable terms uαi
i (i = 1, . . . , n)

such that ¬SC(R, t[u1, . . . , un]).
(3) SC(R, t) ∧ t ∗−→

R
t′ ⇒ SC(R, t′) for all t and t′.

(4) Any variable zα is strongly computable, for all α ∈ S.
(5) SC(R, tα)⇒ SN(R, tα), for all α ∈ S.

Proof. The properties (1) and (2) are easily shown by in-
duction on n.

(3) We prove the claim by induction on τ(t). The case τ(t) ∈
Snfun is trivial. Suppose that τ(t) = τ(t′) = α → β.
Let uα be an arbitrary strongly computable term. Then
SC(R, t[u]) follows from SC(R, t). Since t[u] ∗−→

R
t′[u]
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and τ(t[u]) = β, SC(R, t′[u]) follows from the induction
hypothesis. Hence, SC(R, t′) holds.

(4, 5) We prove claims by simultaneous induction on α.
The case α ∈ Snfun is trivial. Suppose that α = α1 →
· · · → αn → β and β ∈ Snfun.
(4): Assume that z is not strongly computable for some
z ∈ Vα. From (2), there exist strongly computable
terms uα1

1 , . . . , u
αn
n such that z[u1, . . . , un] is not strongly

computable. From the induction hypothesis (5), each
ui is terminating, hence so is z[u1, . . . , un]. Since
z[u1, . . . , un] is not strongly computable and β ∈ Snfun,
we have β ∈ PT and there exist terms u′ and u such that
z[u1, . . . , un] ∗−→

R
u′, u ∈ args(u′), and u is not strongly

computable. Since root(l) � V for all l → r ∈ R, there
exists i such that ui

∗−→
R

u. From (3), ui is not strongly
computable. This is a contradiction.
(5): From the induction hypothesis (4), an arbitrary
variable zα1

1 is strongly computable. Thus, t[z1] is
strongly computable. From the induction hypothesis
(5), t[z1] is terminating, hence so is t. �

We previously mentioned that we can peel a strongly
computable term such that peeled subterms are strongly
computable. In the proof of the soundness of the static de-
pendency pair method, this mention is formulated as the fol-
lowing lemma.

Lemma 3.8 Let R be an SFP-STRS, l → r ∈ R, and θ be a
substitution such that lθ ∈ T args

SC (R). Then SC(R, uθ) holds
for any u ∈ Sub�SPT (l).

Proof. Since u ∈ Sub�SPT (l), we have either u ∈ args(l) or
there exists u′ ≡ a[. . . , u, . . .] ∈ Sub�SPT (l) such that a ∈ CR,
τ(u′) ∈ PT and τ(u′) �S τ(u). In the former case, we have
SC(R, uθ) because of lθ ∈ T args

SC (R). In the latter case, it suf-
fices to show that SC(R, uθ) whenever SC(R, u′θ), which is
directly deduced from the definition of strong computability.

�

3.3 Static Dependency Pair Method

We present a static dependency pair method for SFP-STRSs.
Since we modified the definition of strong computability,
which gives a theoretical basis for the static dependency pair
method, we prove the soundness of the static dependency
pair method under this new framework.

Definition 3.9 For each f ∈ DR, we provide a new function
symbol f �, called the marked-symbol of f . For each t ≡
a[t1, . . . , tn], we define the marked term t� by a�[t1, . . . , tn] if
a ∈ DR; otherwise t� ≡ t.

Let R be an SFP-STRS. For each l → r ∈ Rex↑ and
a[r1, . . . , rm] ∈ Sub(r) such that

• a ∈ DR,
• there exists no u ∈ Sub�SPT (l) such that u � a[r1, . . . , rm],

and

• there exists no u ∈ Sub(l)\{l} such that u ≡ a[r1, . . . , rm]
and τ(u) ∈ Snfun \ PT ,

we define a static dependency pair of R as a pair
〈l�, a�[r1, . . . , rm, z1, . . . , zn]〉, denoted by

l� → a�[r1, . . . , rm, z1, . . . , zn],

where τ(a�[r1, . . . , rm, z1, . . . , zn]) ∈ Snfun and z1, . . . , zn are
fresh variables. We denote by SDP(R) the set of all static
dependency pairs of R.

Example 3.10 Let RsumF be the following STRS:

RsumF = Rsum ∪ Rapp0 ∪ {sumF[ f s]→ sum[app0[ f s]]}

where Rsum and Rapp0 are displayed in the Introduction.
Since Rsum∪Rapp0 is safe function-passing (cf. Example 3.4)
and f s ∈ args(sumF[ f s]), then STRS RsumF is safe function-
passing. Thus, the set SDP(RsumF) consists of the following
seven static dependency pairs:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

foldl�[ f , y, cons[x, xs]] → foldl�[ f , f [y, x], xs]

add�[s[x], y] → add�[x, y]

sum�[z] → foldl�[add, 0, z]

sum�[z] → add�[z′]

app0
�[consF[ f , f s]] → app0

�[ f s]

sumF�[ f s] → sum�[app0[ f s]]

sumF�[ f s] → app0
�[ f s]

Definition 3.11 Let R be an SFP-STRS. A (possibly in-
finite) sequence u�1 → v�1, . . . , u

�
n → v�n of static depen-

dency pairs of R is said to be a static dependency chain of
R if there exist θ1, . . . , θn such that u�i θi, v

�
i θi ∈ T

args
SC (R) and

v�i θi
∗−→
R

u�i+1θi+1 for any i. A static dependency graph of R is
a directed graph, in which nodes are SDP(R) and there exists
an arc from u� → v� to u′� → v′� if u� → v�, u′� → v′� is a
static dependency chain.

Definition 3.12 A (maximal) static recursion component of
R is a set of nodes in a (maximal) strongly connected sub-
graph of a static dependency graph. We denote by SRC(R)
the set of all static recursion components of R.

A static recursion component C ∈ SRC(R) is said to
be non-looping if there exists no infinite static dependency
chain u�0 → v�0, u

�
1 → v�1, · · · such that u�i → v�i ∈ C for all i

and every u� → v� ∈ C occurs infinitely many times.

Example 3.13 Referencing to Example 3.10. The set
SRC(RsumF) consists of the following three static recursion
components:

{foldl�[ f , y, cons[x, xs]]→ foldl�[ f , f [y, x], xs]}
{add�[s[x], y]→ add�[x, y]}
{app0�[consF[ f , f s]]→ app0�[ f s]}
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In the remainder of this subsection, we show the sound-
ness of the static dependency pair method on SFP-STRSs.
That is, we show that if any static recursion component of
SFP-STRS R are non-looping, then R is terminating. We
need prepare two key lemmas.

Lemma 3.14 If an SFP-STRS R is not terminating then
Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args

SC (R) � ∅.

Proof. Since R is not terminating, T¬SC(R) � ∅ follows from
Lemma 3.7 (5).

Let s be a minimal term in T¬SC(R) with respect to term
size. Then s ∈ T args

SC (R) holds because the strong com-
putability of each s′ ∈ args(s) follows from the minimality
of s. Hence, we have T¬SC(R) ∩ T args

SC (R) � ∅.
Let t be a minimal term in T¬SC(R) ∩ T args

SC (R) with re-
spect to type size. It suffices to show that t ∈ Tnfun(Σ,V).
Assume that t � Tnfun(Σ,V). Let τ(t) = α→ β and uα be an
arbitrary strongly computable term. Since t ∈ T args

SC (R) and
u ∈ TSC(R), we have t[u] ∈ T args

SC (R). From τ(t[u]) = β
and the minimality of τ(t) = α → β, we have t[u] �
T¬SC(R) ∩ T args

SC (R). Hence, t[u] ∈ TSC(R). Then we have
t ∈ TSC(R), which is a contradiction. �

Lemma 3.15 Let R be an SFP-STRS. For any t ∈
Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args

SC (R), there exist l� → v� ∈
SDP(R) and θ such that t� ∗−→

R
l�θ and lθ, vθ ∈ Tnfun(Σ,V) ∩

T¬SC(R) ∩ T args
SC (R).

Proof. Let t ∈ Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args
SC (R). Then t ∈

T args
SN (R) follows from t ∈ T args

SC (R) and Lemma 3.7 (5).

• Consider the case that t � TSN(R). Since t ∈ T args
SN (R) ∩

Tnfun(R), there exist l→ r ∈ Rex↑ and θ′ such that t� ∗−→
l�θ′, ¬SN(R, lθ′) and ¬SN(R, rθ′). Hence, ¬SC(R, lθ′)
and ¬SC(R, rθ′) follow from Lemma 3.7 (5).
• Consider the case that t ∈ TSN(R). Since t ∈ T¬SC(R) ∩
Tnfun(R), we have τ(t) ∈ PT and there exist terms t′

and t′′ ∈ args(t′) such that t ∗−→ t′, root(t′) ∈ CR,
τ(t) �S τ(t′′), and t′′ ∈ T¬SC(R). Assume that root(t) ∈
CR. Then SC(R, t) follows from t ∈ TSN(R) ∩ T args

SC (R),
root(t) ∈ CR, and Lemma 3.7 (3). This is a contradic-
tion. Hence, root(t) � CR. Thus, there exist l → r ∈
Rex↑ and θ′ such that t� ∗−→ l�θ′ and lθ′ −→ rθ′ ∗−→ t′.
Since t′′ is not strongly computable, so is t′. From
Lemma 3.7 (3), we have ¬SC(R, lθ′) and ¬SC(R, rθ′).

In both cases above, we have {v′ ∈ Sub(r) | ¬SC(R, v′θ′)} �
∅ because r ∈ Sub(r) and ¬SC(R, rθ′). Let v′ ≡
a[r1, . . . , rm] be a minimal size term in this set. Then
SC(R, riθ

′) holds for every i. From Lemma 3.7 (2), there
exist v1, . . . , vk ∈ TSC(R) such that τ(v′θ′[v1, . . . , vk]) ∈ Snfun

and ¬SC(v′θ′[v1, . . . , vk]). Here v′θ′[v1, . . . , vk] ∈ T args
SC (R).

Now take v by a[r1, . . . , rm, z1, . . . , zk] where z1, . . . , zk

are fresh variables, and θ(x) is defined by vi if x = zi

(i = 1, . . . , k); otherwise by θ′(x). Then we have lθ =
lθ′ and vθ = v′θ′[v1, . . . , vk]. Since lθ ∈ T args

SC (R) fol-
lows from t ∈ T args

SC (R) and Lemma 3.7 (3), we have

lθ ∈ Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args
SC (R). Because vθ ∈

Tnfun(Σ,V) ∩ T¬SC(R) ∩ T args
SC (R) also holds, it suffices to

show that l� → v� ∈ SDP(R). We prove this by contradic-
tion. Assume that l� → v� � SDP(R). Let l ≡ l′[z′1, . . . , z

′
p]

and r ≡ r′[z′1, . . . , z
′
p] such that l′ → r′ ∈ R and z′1, . . . , z

′
p

are fresh variables.

• Assume that a ∈ Vnfun and τ(v) � PT . Since vθ ≡ aθ ∈
Sub(lθ) and lθ ∈ T args

SN (R), SN(R, vθ) holds, and hence
SC(R, vθ) also holds. This is a contradiction.
• Assume that either a ∈ Vfun or a ∈ Vnfun and τ(v) ∈

PT . Since R is safe function-passing, SC(R, vθ) follows
from Lemma 3.8, vθ ∈ T args

SC (R), and Lemma 3.7 (1).
This is a contradiction.
• Assume that a ∈ CR. Since vθ ∈ T args

SN (R) from
Lemma 3.7 (5), vθ is terminating. Since vθ ∈
Tnfun(Σ,V) ∩ T¬SC(R), we have τ(vθ) ∈ PT and there
exist terms u′ and u′′ ∈ args(u′) such that vθ ∗−→ u′,
root(u′) ∈ CR, τ(vθ) �S τ(u′′) and u′′ ∈ T¬SC(R). Since
root(vθ) = a ∈ CR and vθ ∈ T args

SC (R), u′ ∈ T args
SC (R)

follows from Lemma 3.7 (3). This is a contradiction.
• Assume that a ∈ DR and there exists u ∈ Sub�SPT (l)

such that u � a[r1, . . . , rm]. From Lemma 3.8, we have
SC(R, uθ). From vθ ∈ T args

SC (R) and Lemma 3.7 (1), we
have SC(R, vθ). This is a contradiction.
• Assume that a ∈ DR and there exists u ∈ Sub(l) \ {l}

such that u ≡ a[r1, . . . , rm] and τ(u) ∈ Snfun \ PT . Then
u ≡ v follows from τ(u) ∈ Snfun. Since lθ ∈ T args

SC (R),
lθ ∈ T args

SN (R) follows from Lemma 3.7 (5), and hence
vθ is terminating. Since τ(vθ) ∈ Snfun \ PT , vθ is
strongly computable. This is a contradiction. �

We obtain the fundamental theorem of the static depen-
dency pair method.

Theorem 3.16 Let R be an SFP-STRS. If there exists no
infinite static dependency chain then R is terminating.

Proof. Assume that ¬SN(R). From Lemma 3.14, there ex-
ists t ∈ Tnfun∩T¬SC(R)∩T args

SC (R). By applying Lemma 3.15
repeatedly, we have an infinite static dependency chain,
which leads to a contradiction. �

Note that the inverse of the theorem does not hold.
For example, let Rfix be the SFP-STRS {fix[ f , x] →
f [fix[ f ], x]}. Although Rfix is terminating, the infinite se-
quence composed of the static dependency pair f ix�[ f , x]→
f ix�[ f , z] is an infinite static dependency chain. Hence, the
static dependency pair method has a theoretical limitation
for the completeness.

Corollary 3.17 Let R be an SFP-STRS such that there ex-
ists no infinite path† in the static dependency graph. If all
recursion components in SRC(R) are non-looping then R is
terminating.

†Each node cannot appear twice in a path.
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3.4 Non-loopingness of Recursion Components

In this subsection, we present a powerful and efficient
method for proving termination by using notions of
(semi-)reduction pairs and the subterm criterion, which
prove that recursion components do not loop.

First, we introduce the notion of (semi-)reduction pairs
according to the literature [22]. The notion of reduction
pairs was introduced in [17], which is a slight abstraction
of weak-reduction order [1]. The notion of semi-reduction
pairs was introduced in [18].

Definition 3.18 For a predicate P, a relation Υ is P-closed
under substitutions if sθΥtθ for any substitution θ and terms
s, t such that P(s, t) holds.

A pair (�, >) of a quasi-order � and a well-founded
strict order > is said to be a semi-reduction pair w.r.t. a
predicate P if � is closed under leaf-contexts, � and > are P-
closed under substitutions, and either � ·> ⊆ > or > ·� ⊆ >.
A semi-reduction pair (�, >) w.r.t. a predicate P is said to be
a reduction pair w.r.t. P if � is closed under contexts.

Proposition 3.19 Let R be an STRS and C be a static re-
cursion component. If there exists a reduction pair (resp.
semi-reduction pair) (�, >) w.r.t. a predicate P satisfying the
following conditions, then C is non-looping.

• P(s, t) holds for any (s, t) ∈ R∪C (resp. (s, t) ∈ Rex∪C),
• R ⊆ � (resp. Rex ⊆ �), and
• C ⊆ � ∪ > and C ∩ > � ∅.

The argument filtering method, which generates a
reduction pair from a given reduction order, was intro-
duced in first-order TRSs [1]. The method was extended
to STRSs [18] and will be improved in the next section. In
both the methods in STRSs, as a predicate P in the definition
above, we need to use left-firmness (cf. Definition 4.3).

Although the path order based on strong computability
in [19] generates reduction pairs, the path order based on
the simplification order in [18] does not generate reduction
pairs and only generates semi-reduction pairs.

We next introduce the subterm criterion [22] and the
strictly subterm criterion, which are slight improvements of
the criterion in [15]. Although the original definition of the
codomain of π (see the following definition) in [15] allows
only positive integers, the improved definition allows se-
quences of positive integers [22].

Definition 3.20 ((Strictly) Subterm Criterion) Let R be
an SFP-STRS and C ∈ SRC(R). We say that C satisfies
the subterm criterion if there exists a function π fromDR to
non-empty sequences of positive integers such that

• u|π(root(u)) >esub v|π(root(v)) for some u� → v� ∈ C, and
• the following conditions hold for any u� → v� ∈ C:

– u|π(root(u)) ≥esub v|π(root(v)),
– (u)p � V for all p ≺ π(root(u)), and

– q � ε⇒ (v)q ∈ CR for all q ≺ π(root(v)).

Specially, we say that C satisfies the strictly subterm crite-
rion if any u� → v� ∈ C satisfies the following condition:

• u|π(root(u)) >esub v|π(root(v)),
• (u)p � V for all p ≺ π(root(u)), and
• q � ε⇒ (v)q ∈ CR for all q ≺ π(root(v)).

We can easily see that if C satisfies the strictly subterm
criterion, then any subset of C satisfies the subterm criterion.

Proposition 3.21 Let R be an STRS and C be a static recur-
sion component. If C satisfies the subterm criterion, then C
is non-looping.

From Corollary 3.17, and Proposition 3.19 and 3.21,
we obtain the following method for proving termination of
SFP-STRSs.

Theorem 3.22 Let R be an SFP-STRS such that there exists
no infinite path in the static dependency graph. If each C ∈
SRC(R) satisfies one of the following properties, then R is
terminating.

(1) C satisfies the subterm criterion.
(2) There exists a reduction pair (resp. semi-reduction pair)

(�, >) w.r.t. a predicate P such that P(s, t) holds for any
(s, t) ∈ R ∪ C (resp. (s, t) ∈ Rex ∪ C), R ⊆ � (resp.
Rex ⊆ �), C ⊆ � ∪ >, and C ∩ > � ∅.

(3) There exists a maximal static recursion component C′

such that C ⊆ C′ and C′ satisfies one of the following
properties:

(i) C′ satisfies the strictly subterm criterion.
(ii) There exists a reduction pair (resp. semi-reduction

pair) (�, >) w.r.t. a predicate P such that P(s, t)
holds for any (s, t) ∈ R∪C′ (resp. (s, t) ∈ Rex∪C′),
R ⊆ � (resp. Rex ⊆ �), and C′ ⊆ >.

In case of |SDP(R)| = n, there exist 2n − 1 static re-
cursion components in the worst case, but the number of
maximal static recursion components is at most n. Hence,
by checking (3) before checking (1) and (2), we can prove
the termination more efficiently. This idea has already been
formulated in [14], and used in early implementations in
TRSs [2], [6].

Example 3.23 Consider the SFP-STRS RsumF shown in Ex-
ample 3.10. All C ∈ SRC(RsumF) shown in Example 3.13
satisfy the subterm criterion by setting π to the underlined
parts below (π(foldl) = 3 and π(add) = π(app0) = 1):

{foldl�[ f , y, cons[x, xs]]→ foldl�[ f , f [y, x], xs]}
{add�[s[x], y]→ add�[x, y]}
{app0�[consF[ f , xs]]→ app0�[xs]}

Hence, the termination is shown by Theorem 3.22.
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4. Argument Filtering Method

The argument filtering method, designed by eliminating un-
necessary subterms, generates a reduction pair from a given
reduction order. Arts and Giesl first introduced the method
on first-order TRSs [1], Kusakari then extended the method
to STRSs [18].

In the argument filtering method in [18], the term
sub[x, y] is transformed into sub[x] after argument filter-
ing. Thus, the type of sub should be interpreted as τ(sub) =
N → N after argument filtering. However, when add[x, y]
does not change by argument filtering, the type of add
should not change, that is, τ(add) = N → N → N.
Hence, for a higher-order variable f N→N→N we cannot de-
cide the type of f after argument filtering, because the type
should correspond with both substitutions { f := add} and
{ f := sub}. As a consequence, the argument filtering
method in [18] may destroy the well-typedness of terms.
When the method applies to a reduction order which makes
use of type information, this fact remarkably complicates
the application, and some redundant condition may be re-
quired (cf. [19]).

In this section we improve the argument filtering
method. In the new argument filtering method, the term
sub[x, y] is transformed into sub[x,⊥] instead of sub[x].
The method, then, never destroys the well-typedness. Al-
though the idea is surely simple, our improvement yields
very substantial benefits when combined with reduction or-
ders that make use of type information. Indeed, in contrast
to the method in [19], we need not individually discuss ap-
plication to each reduction order, and we can comb out some
applied conditions as described later.

Definition 4.1 We prepare the fresh function symbol ⊥α
with τ(⊥α) = α, for each α ∈ S.

An argument filtering function is a function π such that
for any f ∈ Σ, π( f ) is a list of positive integers [i1, . . . , ik]
with i1 < · · · < ik ≤ n, where τ( f ) = α1 → · · · → αn → β
and β ∈ Snfun. We extend π over terms as π(a[t1, . . . , tn]) =
a[t′1, . . . , t

′
n], where t′i ≡ ⊥αi if a ∈ Σ and i � π(a); otherwise

t′i ≡ π(ti). We also define θπ by θπ(x) = π(θ(x)).
For given argument filtering function π and binary re-

lation >, we define s �π t by π(s) ≥ π(t), and s >π t by
π(s) > π(t).

We often omit the index α in ⊥α whenever no con-
fusion arises. We hereafter assume that if π( f ) is not de-
fined explicitly then it is intended to be [1, . . . , n], where
τ( f ) = α1 → · · ·αn → β and β ∈ Snfun.

In the definition above, it is easily seen that if t has a
type α then so does π(t).

Example 4.2 Let Rdiv be the following STRS.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sub[x, 0] → x

sub[0, y] → 0

sub[s[x], s[y]] → sub[x, y]

div[0, s[y]] → 0

div[s[x], s[y]] → s[div[sub[x, y], s[y]]]

Let π(sub) = [1] for a function symbol sub with τ(sub) =
N → N → N. Then π(sub[x, y]) = sub[x,⊥N].

Unfortunately, as indicated in [18], �π is not closed un-
der substitutions. Our improved method cannot solve this
problem. For example, let θ( f ) = foo, π(foo) = [2] and
>rpo be a recursive path order in [19] (cf. Definition 4.6)
with the precedence 2 � 1 � 0. Then we have π( f [2, 0]) ≡
f [2, 0], π( f [1, 1]) ≡ f [1, 1], π( f [2, 0]θ) ≡ π(foo[2, 0]) ≡
foo[⊥, 0], and π( f [1, 1]θ) ≡ π(foo[1, 1]) ≡ foo[⊥, 1].
Thus, we obtain the following counterexample:

f [2, 0] >rpo f [1, 1], but foo[⊥, 0] <rpo foo[⊥, 1].

Hence, the notion of left-firmness was introduced [18].

Definition 4.3 A term t is said to be firmness if any variable
occurs at a leaf position. A pair (s, t) of terms is said to be
left-firmness, denoted by LF(s, t), if s is firmness.

Definition 4.4 A (semi-)reduction order > satisfies the ⊥-
condition if t ≥ ⊥α for any tα.

Theorem 4.5 For any (semi-)reduction order > with ⊥-
condition, the pair (�π, >π) is a (semi-)reduction pair w.r.t.
the predicate LF.

Proof. It suffices to show that π(t)θπ ≥ π(tθ) for any t ≡
a[t1, . . . , tn]. Note that π(s)θπ ≡ π(sθ) for any firmness
term s can be proved as similar to the proof. These proper-
ties show the LF-closedness of �π, >π under substitutions:
π(s) ≥ π(t) ⇒ π(sθ) ≡ π(s)θπ ≥ π(t)θπ ≥ π(tθ) and
π(s) > π(t) ⇒ π(sθ) ≡ π(s)θπ > π(t)θπ ≥ π(tθ). More-
over, the remainder of conditions can be proved similar to
the proof of the early argument filtering method in [18].

We prove the claim by induction on |t|. From the in-
duction hypothesis, π(ti)θπ ≥ π(tiθ) for any i.

In case of a ∈ Σ, we suppose that t′i ≡ ⊥ if i � π(a);
otherwise t′i ≡ π(ti), and t′′i ≡ π(tiθ) if i ∈ π(a); oth-
erwise t′′i ≡ ⊥. Then we have t′iθπ ≥ t′′i , and hence
π(t)θπ ≡ a[t′1θπ, . . . , t

′
nθπ] ≥ a[t′′1 , . . . , t

′′
n ] ≡ π(tθ).

In case of a ∈ V and root(θ(a)) ∈ V, we have π(t)θπ ≡
θπ(a)[π(t1)θπ, . . . , π(tn)θπ] ≥ θπ(a)[π(t1θ), . . . , π(tnθ)] ≡
π(θ(a)[t1θ, . . . , tnθ]) ≡ π(tθ).

In case of a ∈ V and root(θ(a)) ∈ Σ, we suppose
that θ(a) = a′[u1, . . . , uk] and t′′i ≡ π(tiθ) if i + k ∈ π(a′);
otherwise t′′i ≡ ⊥. Then we have π(ti)θ ≥ t′′i , and hence
π(t)θπ ≡ θπ(a)[π(t1)θπ, . . . , π(tn)θπ] ≥ θπ(a)[t′′1 , . . . , t

′′
n ] ≡

π(θ(a)[t1θ, . . . , tnθ]) ≡ π(tθ). �

The argument filtering method improved in this paper
never destroys the well-typedness. Our improvement yields



KUSAKARI and SAKAI: SDP-METHOD FOR SIMPLY-TYPED TERM REWRITING AND RELATED TECHNIQUES
243

very substantial benefits when combined with reduction or-
ders that make use of type information as follows:

Definition 4.6 [19] A precedence � is a strict partial order
on Σ. For any s ≡ a[s1, . . . , sn] and t ≡ a′[t1, . . . , tm], we
define s >rpo t if τ(s) and τ(t) have the same type under
identifying all basic types, and one of the following proper-
ties holds:

• τ(s) ∈ B, a�a′ and for all j either s >rpo t j or ∃i. si ≥rpo

t j,
• a = a′ and {s1, . . . , sn} >mul

rpo {t1, . . . , tm}, where >mul
rpo is

the multiset extension of >rpo, or
• there exists k such that ∃i. si ≥rpo a′[t1, . . . , tk] and
∀ j > k. ∃i j. si j ≥rpo t j.

Proposition 4.7 [19] >+rpo is a reduction order.

Note that >rpo is not transitive, however this is not a
problem for proving termination.

Since the argument filtering method in [18] may de-
stroy the well-typedness of terms, the method with >rpo re-
quires the following strong restriction:

• For any l → r ∈ R and x ∈ Var(π(l)), if τ(x) ∈ Sfun

then for each i ∈ π(root(l)) we have either x ≡ li or
x � Var(π(li)).

On the other hand, the new argument filtering method in this
paper does not require such restrictions.

Example 4.8 Consider the left-firmness SFP-STRS Rdiv
given in Example 4.2. Then the set SRC(Rdiv) consists of
the following two static recursion components:

{sub�[s[x], s[y]]→ sub�[x, y]}
{div�[s[x], s[y]]→ div�[sub[x, y], s[y]]}

The first component satisfies the subterm criterion. For the
second component, we have

div�[s[x], s[y]] >πrpo div�[sub[x, y], s[y]]

sub[x, 0] �πrpo x

sub[0, y] �πrpo 0

sub[s[x], s[y]] �πrpo sub[x, y]

div[0, s[y]] �πrpo 0

div[s[x], s[y]] �πrpo s[div[sub[x, y], s[y]]]

with π(sub) = [1] and div�s�sub. Hence, the termination
of Rdiv can be shown by Theorem 3.22 and 4.5.

Example 4.9 Let Rave be the left-firmness SFP-STRS,
which is the union of Rsum, Rdiv and the following rules:
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
s′[x, y] → s[x]

len → foldl[s′, 0]

ave[xs] → div[sum[xs], len[xs]]

Here Rsum and Rdiv are displayed in the Introduction and

Example 4.8, respectively. Then the function ave calcu-
lates the average x1+···+xn

n for an input list [x1, . . . , xn]. The
set SRC(Rave) consists of the following four static recursion
components:

{add�[s[x], y]→ add�[x, y]}
{foldl�[ f , y, cons[x, xs]]→ foldl�[ f , f [y, x], xs]}
{sub�[s[x], s[y]]→ sub�[x, y]}
{div�[s[x], s[y]]→ div�[sub[x, y], s[y]]}

Any static recursion component except for the last com-
ponent satisfies the subterm criterion. However, different
than Example 4.8, the non-loopingness of the last compo-
nent cannot be shown, because the constraint Rfoldl ⊆ �πrpo
cannot be solved.

To show the termination of Rave we need the notion of
usable rules that will be introduced in the next section.

5. Usable Rules with Argument Filtering

First, we consider why the non-loopingness of the static re-
cursion component

{div�[s[x], s[y]]→ div�[sub[x, y], s[y]]}
can be shown in Example 4.8, but cannot be shown in Ex-
ample 4.9. The reason is that we should solve the constraint
Rfoldl ⊆ �πrpo in Example 4.9, but not in Example 4.8.
Many programmers may query why we should orient rules
for foldl in order to show the non-loopingness for div.
The notion of usable rules solves this problem.

The notion of usable rules was introduced in
TRSs [11], [15], [29], which is based on the technique of in-
terpretation and the notion of Ce-termination [13], [30]. Af-
terward we extended the method to STRSs [26]. By us-
ing the usable rules for STRSs, we can show the non-
loopingness for div, because we can solve the following
constraint:

div�[s[x], s[y]] >πrpo div�[sub[x, y], s[y]]

sub[x, 0] �πrpo x

sub[0, y] �πrpo 0

sub[s[x], s[y]] �πrpo sub[x, y]

cα[x, y] �πrpo x for any α ∈ S
cα[x, y] �πrpo y for any α ∈ S

We can see that the constraint above does not include
Rfoldl ⊆ �πrpo, which prevents us from showing the termina-
tion of the STRS Rave.

Next, we consider the STRS Rsum n of the union of Rsum
and the following rules:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

drop[0, yss] → yss

drop[x, nilL] → nilL

drop[s[x], consL[y, yss]] → drop[x, yss]

sum n[v, x, nilL] → v

sum n[v, s[x], consL[xs, xss]]

→ sum n[add[v, sum[xs]], s[x], drop[x, xss]]
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Then, the function sum n[0, n, xss] calculates the total sum
of the total sums of xs0, xsn, xs2n, . . . for an input list of lists
xss = [xs0, xs1, . . . , xsm]. The set SRC(Rsum n) consists of
the following four static recursion components:

{foldl�[ f , y, cons[x, xs]]→ foldl�[ f , f [y, x], xs]}
{add�[s[x], y]→ add�[x, y]}
{drop�[s[x], consL[y, yss]]→ drop�[x, yss]}
{sum n�[v, s[x], consL[xs, xss]]

→ sum n�[add[v, sum[xs]], s[x], drop[x, xss]]}

Any static recursion component except for the last compo-
nent satisfies the subterm criterion. However, as in Exam-
ple 4.9, the non-loopingness of the last component cannot
be shown, because the constraint Rfoldl ⊆ �πrpo cannot be
solved. This problem cannot be solved by usable rules for
STRSs [18].

In first-order TRSs, we know that usable rules can be
strengthened by incorporating argument filtering into us-
able rules [11], [29]. In this section, we also strengthen us-
able rules for STRSs [26] by incorporating argument filter-
ing into usable rules. Then we can reduce Rfoldl ⊆ �πrpo
from the constraint that we should solve, and hence we can
prove the termination of the STRS Rsum n.

Definition 5.1 For any t ≡ a[t1, . . . , tn], we define Subπ(t)
as {t} ∪ ⋃i∈I Subπ(ti), where I = π(a) if a ∈ Σ; otherwise
I = {1, . . . , n}, and Subint

V,π(t) as {t′ ∈ Subπ(t) | root(t′) ∈ V,
args(t′) � ∅}.

Definition 5.2 For each pair 〈u, v〉 of terms, the subset
U′(〈u, v〉, π) of STRS R is defined by l → r ∈ U′(〈u, v〉, π)
iff l→ r satisfies one of the following conditions:

(1) root(l) = root(v′) and τ(l) �S τ(v′) for some v′ ∈
Subπ(v),

(2) τ(root(l)) �S τ(root(v′)) and τ(l) �S τ(v′) for some
v′ ∈ Subint

V,π(v), or
(3) τ(l) �S τ(root(u′)) for some u′ ∈ Subint

V,π(u) with
root(u′) ∈ Var(v).

We define the set U(〈u, v〉, π) by the smallest set satisfy-
ing U′(〈u, v〉ex↑, π) ⊆ U(〈u, v〉, π), and U(〈l, r〉ex↑, π) ⊆
U(〈u, v〉, π) whenever l → r ∈ U(〈u, v〉, π). For each set
C of pairs of terms, we define usable rules with argument
filtering π byU(C, π) =

⋃
〈u,v〉∈CU(〈u, v〉, π).

Notice that U(C, π) is the same as the usable rules
U(C) without argument filtering in [26] whenever π( f ) =
[1, . . . , n] for any f α1→···αn→β ∈ Σ with β ∈ Snfun.

Example 5.3 We suppose that C is the static recursion com-
ponent

{sum n�[v, s[x], consL[xs, xss]]

→ sum n�[add[v, sum[xs]], s[x], drop[x, xss]]}

of STRS RRsum n , which is the second example in the begin-
ning of this section. Let π(sum n�) = [3]. Then the set
U(C, π) consists of only three rules for drop.

Note that the usable rules U(C) without argument fil-
tering in [26] consist of eight rules for drop, add, sum, and
foldl.

In the following, we assume that R is a finitely branch-
ing STRS, C is a static recursion component, and t ∈ Δ
iff root(t) = root(l) and τ(l) �S τ(t) for some l → r ∈
R \ U(C, π).

Notice that any redex for (R \ U(C, π))ex is in Δ. That
is, if t ≡ lθ for some l → r ∈ (R \ U(C, π))ex and θ, then
t ∈ Δ.

By eliminating rules in R \ U(C, π), the notion of us-
able rules reduces the constraints for non-loopingness. In
this elimination, we must carefully analyze a dependency
between rules. In the definition of U(C, π), condition (1)
is for analysis of a dependency through defined symbols,
which is the same analysis as first-order settings. Condi-
tions (2) and (3) are for analysis of a dependency through
higher-order variables in right- and left-hand sides, respec-
tively. Condition (3) seems to be unnatural because it is
for left-hand sides. However, condition (3) is necessary for
technical reasons (cf. Lemma 5.6).

Lemma 5.4 For each l → r ∈ C ∪ U(C, π)ex and θ, the
following properties hold:

(1) vθ � Δ for all v ∈ Subπ(r) with root(v) ∈ Σ,
(2) vθ � Δ for all v ∈ Subint

V,π(r), and
(3) root(u)θ � Δ for all u ∈ Subint

V,π(l) with root(u) ∈ Var(r).

Proof. (1) Assume that vθ ∈ Δ. Then there exists l′ →
r′ ∈ R \ U(C, π) such that root(vθ) = root(l′) and τ(l′) �S
τ(vθ). Since root(v) ∈ Σ, we have root(v) = root(l′). Since
τ(l′) �S τ(vθ) = τ(v), we have l′ → r′ ∈ U′(〈l, r〉ex↑, π).
Hence, l′ → r′ ∈ U(C, π), which is a contradiction.
(2) Assume that vθ ∈ Δ. Then there exists l′ → r′ ∈
R \ U(C, π) such that root(vθ) = root(l′) and τ(l′) �S
τ(vθ). Since root(v) ∈ V and root(vθ) = root(l′), we have
τ(root(l′)) �S τ(root(v)). Since τ(l′) �S τ(vθ) = τ(v), we
have l′ → r′ ∈ U′(〈l, r〉ex↑, π). Hence, l′ → r′ ∈ U(C, π),
which is a contradiction.
(3) Assume that root(u)θ ∈ Δ. Then there exists l′ → r′ ∈
R \ U(C, π) such that root(root(u)θ) = root(l′) and τ(l′) �S
τ(root(u)θ). Thus, we have l′ → r′ ∈ U′(〈l, r〉ex↑, π). Hence,
l′ → r′ ∈ U(C, π), which is a contradiction. �

Definition 5.5 For each α ∈ S, we prepare the fresh func-
tion symbol ⊥α and cα with τ(⊥α) = α and τ(cα) = α →
α → α. We define the STRS Ce by {cα[x, y] → x | α ∈
S} ∪ {cα[x, y]→ y | α ∈ S}.

The interpretation Iπ is a mapping from terminating
terms in Tτ(Σ,V) to terms in Tτ(Σ ∪

⋃
α∈S{⊥α, cα},V); for

each tα ≡ a[tα1
1 , . . . , t

αn
n ], Iπ(t) is defined as follows:
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{
a[t′1, . . . , t

′
n] if t � Δ

cα[a[t′1, . . . , t
′
n],Redα({Iπ(t′) | t −→R t′})] if t ∈ Δ

where t′i ≡ Iπ(ti) if either a ∈ V or a ∈ Σ and i ∈ π(a);
otherwise t′i ≡ ⊥αi , and

Redα(T ) =

{ ⊥α if T = ∅
cα[least(T ),Red(T \ {t})] if T � ∅

Thanks to the well-ordering theorem, we assume an ar-
bitrary but fixed well-order on Tτ(Σ,V). We denote by
least(T ) the least element in T with respect to the well-
order. For each terminating substitution θ, we define θIπ by
θIπ (x) = Iπ(θ(x)) for each x ∈ V.

The interpretation Iπ is inductively defined on terminat-
ing terms with respect to >sub∪−→R , which is well-founded on
terminating terms. Moreover, the set {Iπ(t′) | t −→R t′} is finite
because R is finitely branching. Hence, the above definition
of Iπ is well-defined.

Lemma 5.6 Let l→ r ∈ C ∪U(C, π)ex and θ be a substitu-
tion such that lθ is terminating. We define σ as σ(x) = u
if x � Var(r) and θIπ (x) has the form c[u,T ]; otherwise
σ(x) = θIπ (x). Then we have Iπ(lθ)

∗−→
Ce
π(l)σ,

Proof. We prove ∀t ∈ Subπ(l).Iπ(tθ)
∗−→

Ce
π(t)σ by induction

on t. Let t ≡ a[t1, . . . , tn].

• In case of a ∈ Σ: We suppose that t′i ≡ π(ti) and t′′i ≡
Iπ(tiθ) if i ∈ π(a); otherwise t′i ≡ t′′i ≡ ⊥. Then we have
Iπ(tθ) ≡ Iπ(a[t1θ, . . . , tnθ]) (≡ ∪ −→

Ce
) a[t′′1 , . . . , t

′′
n ] ∗−→

Ce

a[t′1σ, . . . , t
′
nσ] ≡ π(t)σ.

• In case that a ∈ V and σ(a) does not have the form
c[u,T ]: We suppose that θ(a) ≡ a′[u1, . . . , uk], and
t′i ≡ π(ti) and t′′i ≡ Iπ(tiθ) if either a′ ∈ V or
a′ ∈ Σ and i + k ∈ π(a′); otherwise t′i ≡ t′′i ≡ ⊥.
Then we have Iπ(tθ) ≡ Iπ(θ(a)[t1θ, . . . , tnθ]) (≡ ∪ −→

Ce
)

σ(a)[t′′1 , . . . , t
′′
n ] ∗−→

Ce
σ(a)[t′1σ, . . . , t

′
nσ] ≡ π(t)σ.

• In case that a ∈ V and σ(a) has the form c[u,T ]:
From the definition of σ, θIπ (a) has the form c[u,T ]
and a ∈ Var(r). Since θIπ (a) has the form c[u,T ], we
have θ(a) ∈ Δ.
Assume that n > 0. Since t ∈ Subπ(l) and a ∈ V,
we have t ∈ Subint

V,π(l). From Lemma 5.4 (3), we have
θ(a) � Δ, which leads to a contradiction. Hence we
have n = 0, that is, t ≡ a[ ]. Therefore we have Iπ(tθ) ≡
Iπ(aθ) ≡ aθIπ ≡ tσ. �

Lemma 5.7 Let l → r ∈ C ∪ U(C, π)ex and θ be a substi-
tution such that rθ is terminating. Then we have Iπ(rθ) ≡
π(r)θIπ .

Proof. We prove ∀t ∈ Subπ(r).Iπ(tθ) ≡ π(t)θIπ by induction
on t. Let t ≡ a[t1, . . . , tn].

• In case of a ∈ Σ, we suppose that t′i ≡ π(ti) and
t′′i ≡ Iπ(tiθ) if i ∈ π(a); otherwise t′i ≡ t′′i ≡ ⊥. From
Lemma 5.4 (1), we have Iπ(tθ) ≡ Iπ(a[t1θ, . . . , tnθ]) ≡
a[t′′1 , . . . , t

′′
n ] ≡ a[t′1θ

Iπ , . . . , t′nθ
Iπ ] ≡ π(t)θIπ .

• In case of a ∈ V and tθ � Δ, we suppose that θ(a) ≡
a′[u1, . . . , uk], and t′i ≡ π(ti) and t′′i ≡ Iπ(tiθ) if either
a′ ∈ V or a′ ∈ Σ and i + k ∈ π(a′); otherwise t′i ≡ t′′i ≡
⊥.
Assume that aθ ∈ Δ. Then there exists l′ → r′ ∈
R \ U(C, π) such that root(aθ) = root(l′) and τ(l′) �S
τ(aθ). Since root(tθ) = root(aθ) = root(l′) and τ(l′) �S
τ(aθ) �S τ(tθ), we have tθ ∈ Δ, which leads to a con-
tradiction. Thus, we have aθ � Δ. Hence we have
Iπ(tθ) ≡ Iπ(θ(a)[t1θ, . . . , tnθ]) ≡ θIπ (a)[t′′1 , . . . , t

′′
n ] ≡

θIπ (a)[t′1θ
Iπ , . . . , t′nθ

Iπ ] ≡ π(t)θIπ .
• In case of a ∈ V and tθ ∈ Δ, we have t ≡ a[ ] from

Lemma 5.4 (2). Hence Iπ(tθ) ≡ Iπ(aθ) ≡ aθIπ ≡ tθIπ . �

Lemma 5.8 If s −→
R

t and s is terminating then
Iπ(s) ∗−−−−−−−→

π(U(C,π))∪Ce
Iπ(t).

Proof. From Proposition 2.1, there exist a rule l→ r ∈ Rex,
a leaf-context C[ ] and substitution θ such that s ≡ C[lθ] and
t ≡ C[rθ]. We prove the claim by induction on C[ ]. Because
C[ ] is a leaf-context, it suffices to show the following cases.

• Suppose that C[ ] ≡ � and s � Δ. Then l → r ∈
U(C, π)ex. We define the substitution σ as similar
to Lemma 5.6. From Lemma 5.6 and 5.7, we have
Iπ(lθ)

∗−→
Ce
π(l)σ −−−−−→

π(U(C,π))
π(r)σ ≡ π(r)θIπ ≡ Iπ(rθ).

• Suppose that C[ ] ≡ a[. . . , ui−1,C′[ ], ui+1, . . .], s � Δ,
a ∈ Σ and i � π(a). Then t � Δ and hence Iπ(C[lθ]) ≡
a[. . . ,⊥, . . .] ≡ Iπ(C[rθ]).
• Suppose that C[ ] ≡ a[. . . , ui−1,C′[ ], ui+1, . . .], s � Δ,

and either a ∈ V or a ∈ Σ and i ∈ π(a). Then t � Δ,
and hence Iπ(C[lθ]) ≡ a[. . . , Iπ(C′[lθ]), . . .]

∗−−−−−−−→
π(U(C,π))∪Ce

a[. . . , Iπ(C′[rθ]), . . .] ≡ Iπ(C[rθ]).
• Suppose that s ∈ Δ. Then Iπ(C[lθ]) −→

Ce
Red({Iπ(v) |

C[lθ] −→
R

v}) +−→
Ce

Iπ(C[rθ]). �

Theorem 5.9 Let R be a finitely branching SFP-STRS, C be
a static recursion component, and π be an argument filtering
function such that C∪U(C, π) is left-firmness. If there exists
a reduction order (resp. semi-reduction order) > satisfying
the ⊥-condition and the following conditions, then C is non-
looping.

(i) Ce ⊆ > (resp. Cex
e ⊆ >),

(ii)U(C, π) ⊆ �π (resp.U(C, π)ex ⊆ �π), and
(iii) C ⊆ �π and C ∩ >π � ∅.

Proof. We show only the case that > is a reduction order.
Assume that pairs in C generate an infinite chain u�0 →

v�0, u
�
1 → v�1, u

�
2 → v�2, · · · in which every u� → v� ∈ C occurs

infinitely many times, and let θ0, θ1, . . . be substitutions such
that v�i θi

∗−→
R

u�i+1θi+1 and uiθi, viθi ∈ T args
SN (R) for each i.

Let i be an arbitrary number. From Lemma 5.7, we
have π(v�i )θ

Iπ
i ≡ Iπ(v

�
i θi). From Lemma 5.8, we have

Iπ(v
�
i θi)

∗−−−−−−−→
π(U(C,π))∪Ce

I(u�i+1θi+1). From Lemma 5.6, we have

Iπ(u
�
i+1θi+1) ∗−→

Ce
π(u�i+1)σi+1, where the substitution σi+1 is
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generated from θIπ
i+1 as similar to Lemma 5.6. From the con-

struction of σi+1, we have π(v�i+1)σi+1 ≡ π(v�i+1)θIπ
i+1. Hence

we have π(v�i )θ
Iπ
i ≡ Iπ(v

�
i θi) � I(u�i+1θi+1) � π(u�i+1)σi+1 �

π(v�i+1)σi+1 ≡ π(v�i+1)θIπ
i+1 for any i. Moreover, from C∩>π �

∅, we have π(v�j)θ
Iπ
j > π(v

�
j+1)θIπ

j+1 for infinitely many j. This
contradicts the well-foundedness of >. �

Example 5.10 Consider the finitely branching and left-
firmness SFP-STRS Rsum n. As previously mentioned, any
static recursion component except for the following compo-
nent satisfies the subterm criterion:

{sum n�[v, s[x], consL[xs, xss]]

→ sum n�[add[v, sum[xs]], s[x], drop[x, xss]]}

We suppose that C is this static recursion component as in
Example 5.3. Suppose that π(sum n�) = [3] and π(drop) =
[2]. Then the set U(C, π) consists of only three rules for
drop described in Example 5.3. Hence it suffices to show
that the following constraint can be solved:

sum n�[v, s[x], consL[xs, xss]]

> sum n�[add[v, sum[xs]], s[x], drop[x, xss]]

drop[0, yss] � yss

drop[x, nilL] � nilL

drop[s[x], consL[y, yss]] � drop[x, yss]

cα[x, y] � x for any α ∈ S
cα[x, y] � y for any α ∈ S

Let � be the precedence consL � drop. Then (�πrpo, >
π
rpo)

can solve the constraint above. Hence the non-loopingness
of C follows from Theorem 5.9. Therefore the termination
of STRS Rsum n follows from Corollary 3.17.

6. Concluding Remarks

In this paper, we presented powerful methods for proving
termination of STRSs. We summarize these methods by in-
corporating Theorem 5.9 into Theorem 3.22.

Corollary 6.1 Let R be an SFP-STRS such that there exists
no infinite path in the static dependency graph. For any C ∈
SRC(R),

• C satisfies one of the properties of (1), (2), or (3) in
Theorem 3.22, or
• R is finitely branching, and there exist a reduction or-

der (resp. semi-reduction order) > and an argument fil-
tering function π such that > satisfies the ⊥-condition,
C∪U(C, π) is left-firmness, and properties (i), (ii), and
(iii) in Theorem 5.9 hold.

Then R is terminating.

A difficulty of studying static dependency pair meth-
ods arises, because strong computability is not closed un-
der the subterm relation. Hence, to strengthen static depen-
dency pair methods, guaranteeing the strong computability
of subterms as far as possible is necessary. In this paper, we
introduced the notion of safe function-passing, which ex-
pands the application range of static dependency pair meth-
ods, more than the notion of plain function-passing [22]. To
extend the applicable scope to static dependency pair meth-
ods other than safe function-passing, using the notion of pat-
tern computable closure [4] might be interesting. This is a
topic for future study.

The argument filtering method improved in this paper
never destroys the well-typedness, although the argument
filtering method in [18] may destroy the well-typedness of
terms. Our improvement eliminates a strong restriction (see
the discussion below Proposition 4.7). Moreover, although
the method in [18] can only combine with reduction orders
on a superset of simply-typed terms [19], the method in this
paper can combine with any reduction orders on simply-
typed terms. Since reduction orders for simply-typed set-
tings are usually designed on simply-typed terms, our im-
provement yields very substantial benefits.

The notion of usable rules reduces the constraints for
proving non-loopingness. In this paper, we strengthen the
notion by incorporating argument filtering into usable rules.
Usable rules with argument filtering decrease the constraints
more effectively than usable rules without argument filter-
ing [26]. Using usable rules with argument filtering, re-
duction pairs must be designed by the argument filtering
method, which requires a left-firmness restriction. Usable
rules without argument filtering can use any reduction pair.
Although all existing reduction pairs in STRSs have been
designed by the argument filtering method, if other methods
design reduction pairs without the left-firmness restriction,
then usable rules without argument filtering may revive.

In first-order TRSs, many termination provers have re-
cently has developed [23]. These systems efficiently solve
constraints by using an SAT solver. Developing a termi-
nation prover for STRSs based on our results will also be
future work. We also hope to see the results of this research
applied to inductive reasoning [20] and the Knuth-Bendix
procedure [21] on STRSs.
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