
2422
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

PAPER

Codec-on-Demand Based on User-Level Virtualization

Youhui ZHANG†a), Member and Weimin ZHENG†, Nonmember

SUMMARY At work, at home, and in some public places, a desktop PC
is usually available nowadays. Therefore, it is important for users to be able
to play various videos on different PCs smoothly, but the diversity of codec
types complicates the situation. Although some mainstream media play-
ers can try to download the needed codec automatically, this may fail for
average users because installing the codec usually requires administrator
privileges to complete, while the user may not be the owner of the PC. We
believe an ideal solution should work without users’ intervention, and need
no special privileges. This paper proposes such a user-friendly, program-
transparent solution for Windows-based media players. It runs the media
player in a user-mode virtualization environment, and then downloads the
needed codec on-the-fly. Because of API (Application Programming In-
terface) interception, some resource-accessing API calls from the player
will be redirected to the downloaded codec resources. Then from the view-
point of the player, the necessary codec exists locally and it can handle
the video smoothly, although neither system registry nor system folders
was modified during this process. Besides convenience, the principle of
least privilege is maintained and the host system is left clean. This pa-
per completely analyzes the technical issues and presents such a prototype
which can work with DirectShow-compatible players. Performance tests
show that the overhead is negligible. Moreover, our solution conforms to
the Software-As-A-Service (SaaS) mode, which is very promising in the
Internet era.
key words: codec, user-level virtualization, on demand

1. Introduction

The number of videos that can be accessed through the In-
ternet keeps on growing rapidly. As well, a desktop PC or
kiosk is usually available at work, at home, and in some
public places. However, how to play the ubiquitous videos
conveniently on any PC is an open problem. That is, most
users may have an annoying experience: after waiting a long
time for a video to download, the user is informed that the
video cannot be played because there is no suitable codec
on the host.

Some mainstream video players have solutions for this
situation. For example, Windows Media Player (WMP)
can automatically download a suitable codec to play a new
video, and RealPlayer has the same function. However, be-
cause of the diversity of codec types, they cannot solve this
problem completely and the “cannot play” issue still arises
frequently. Therefore, there are some open-source play-
ers famous for their capabilities to deal with many different
codecs.

Manuscript received October 16, 2008.
Manuscript revised April 8, 2009.
†The authors are with the Department of Computer Science

and Technology, Tsinghua University, Beijing, 100084, China.
a) E-mail: zyh02@tsinghua.edu.cn

DOI: 10.1587/transinf.E92.D.2422

We performed a test to show the decoding capability
of the mainstream media players. More than eighty video
files were selected randomly from the Internet to be played
by five players, WMP 10.0∗, RealPlayer 11, QuickTime 7.0,
MPlayer v1.0rc2 [1] and VLC 0.9 [2] on a freshly-installed
Windows XP SP2 host. Each player tried to show all
videos before it was uninstalled and the next player was in-
stalled and tested successively. Successful decoding meant
that both the video and audio streams could be decoded
smoothly. The results were interesting:

• MPlayer behaved perfectly as it could decode all
videos; the exception was that the audio streams of two
files could not be handled. The runner-up was VLC:
about 94% of the files could be decoded.
• WMP behaved not badly: more than 85% of the files

were decoded smoothly; for RealPlayer, the success-
ful ratio was about 77%; QuickTime performed poorly:
the ratio was only 30%. All players were configured as
“downloading codec automatically”.

It appears that the two open source players (MPlayer
and VLC) performed much better that their commercial
counterparts. However, neither of them has the function to
download a needed codec automatically when an unknown
video is met, which means that their extensibility is limited
and they are not very user-friendly.

For a skilled user, locating and installing a suitable
codec or player is easy. However, for an ordinary user, it
is difficult to understand the technical codec-related terms,
let alone find and install it.

Moreover, in some computing environments, the user
may be not the owner of the host and then she has to run
players on a locked-down PC without the administrator priv-
ilege, which means she cannot install any new software.

We believe an ideal solution should have the following
features:

• User-friendliness. That is, the user need not know any-
thing about codec location, installation, and so on. No
administrator privilege is needed.
• Program transparency. Current media players should

not need to be rewritten to have the new feature.
∗The latest version is WMP 11. However, it does not

affect the credibility of our test because the new features of
WMP 11 are focused on the flexibility in managing functions
as mentioned at http://www.microsoft.com/windows/windows-
vista/features/media -player-11.aspx. It still needs administrator
privilege to install an on-demand codec.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



ZHANG and ZHENG: CODEC-ON-DEMAND BASED ON USER-LEVEL VIRTUALIZATION
2423

• High adaptability. At least for the mainstream media
players on most desktop PCs, it should “just work”.

The most difficult problem is to provide these features
in a compatible way, so that the existing players and codecs
can be reused. This paper presents such a solution. It
enables the player software to run in a user-mode virtual-
ization environment that intercepts some resource (registry,
files/directories, environment variables, etc.) accessing API
calls from the player to learn whether a suitable codec ex-
ists on the local host or not. If needed, the codec is down-
loaded from the Internet into the same virtualization envi-
ronment. Subsequently the resource-accessing API calls are
intercepted and some of them will be redirected to the down-
loaded resource.

Therefore, from the viewpoint of the media player, the
necessary codec is available and it can handle the video
smoothly. The key point is that, during the whole process,
neither system registry nor system folder is modified. Thus,
the principle of least privilege [3] is maintained; in addition,
the host system is left clean, which minimizes the possibility
of conflicts between software.

On the other side, our solution expresses some of the
principles of SaaS; that is, the software can run on demand
across the Internet without installation and without any spe-
cial privilege; users’ intervention has been decreased to the
minimum.

SaaS is believed as a promising delivery and us-
age mode for software, which was usually used by some
enterprise-level software and now it has moved closer to
common users. The automatic download mechanism of
WMP and RealPlayer can be regarded as a step to the
software-as-a-service mode. But because they are based
on the traditional DirectShow framework, their solution is
not complete—the administrator privileges are still needed.
Our solution bridges the gap between the SaaS mode and
the legacy software (including codecs)—using the user-level
virtualization technology, we have implemented such a so-
lution on the Windows OS, which can work successfully
with WMP, RealPlayer, some third-party players, and ex-
isting codecs; no source codes of them are modified.

This paper focuses on the offline mode of video play-
back. Another mode, online, is becoming more and more
popular. Some discussion of these two modes will be pre-
sented in Sect. 2.

The main contributions of this paper include:

• It proposes a user-friendly codec-on-demand mecha-
nism using user-level virtualization technologies.
• Within the existing Windows video-playback frame-

work, it provides a compatible solution that can apply
to DirectShow-based players transparently.
• Based on some mainstream media players and a pop-

ular free codec package (FFDSHOW [4]), a functional
prototype has been implemented and tested. The re-
sults show that this solution performs well in decoding,
and its overhead is negligible.

2. Related Work

2.1 On-Demand

On-demand is a feature which responds to the user’s desire
for instant gratification and immediate use. It is regarded as
a friendly and economical service by IT users. Some types
of on-demand service include:

• Video-on-demand is a type of video or movie service
which allows the viewer to access the media immedi-
ately upon subscription, such as streaming Internet or
pay-per-view television offerings.
• On-demand computing most frequently refers to a type

of computing service where the actual software is pre-
sented to the user, once a subscription to the service is
successfully processed.
• On-demand software is typically delivered by an appli-

cation service provider. This type of service offering is
also frequently referred to as Software as a Service.

As mentioned in Sect. 1, although video-on-demand
is a convenient service, users often encounter the “can-
not play” problem because of the lack of a suitable codec.
Therefore it appears that combining video-on-demand with
software-on-demand would be a smooth solution, which
means that a suitable codec could be automatically down-
loaded on demand with the video. This paper focuses on
that idea.

Of course, online video-playback is also a popular
mode. The most famous example is YouTube using Adobe
Flash technology [5] to provide the video streams. Adobe
Flash adopts a proprietary file format and its recent release
supports H264 and AAC codecs. Users can watch videos in
this mode on diverse hosts because the Adobe Flash Player
and web browser plug-in are widely available. However,
in this mode, existing videos have to be converted into the
given format before delivery. Furthermore, it is unimag-
inable that the online mode will totally replace the offline
mode.

2.2 Multimedia Playback

For desktop PCs, two mainstream media players, Windows
Media Player and RealPlayer, dominate the market and both
support downloading codecs automatically. For example,
WMP can be set to “downloading codec automatically” by
selecting a predefined menu option. However, this setting
requires the user to be an administrator or a member of the
administrators group, as is mentioned in [6]. Furthermore,
the diversity of codecs often prevents the auto-download
mechanism from finding a suitable codec. A similar prob-
lem applies to RealPlayer as well.

Therefore, there are many third-party media players
and codec packages; some of them are famous for their
abilities to deal with diverse codecs. For instance, MPlayer



2424
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

can run on many systems and play most media files. How-
ever, it does not support the auto-download mechanism. An-
other instance is FFDSHOW, which is an open-source codec
for decoding/encoding many video and audio formats. For
a skilled user, locating a suitable codec or player and in-
stalling it is not a difficult job. However, for most ordinary
users, it is difficult.

Online mode is promising. From the technical view-
point, the playback mechanisms of both modes are similar.
When a video is to be watched, the container program (for
the offline mode, it is a multimedia player, while for online
it is often a browser) always has to first look for a suitable
codec. For the online mode, as mentioned in Sect. 2.1, be-
cause the codec formats adopted by the content providers are
usually limited, it appears that this mode can decode videos
smoothly in most cases.

2.3 User-Level Virtualization

Unlike hardware-level virtual machine technologies (like
Xen [7] and VMWare [8]), user-level technologies have a
virtualization layer between the operating system and appli-
cation programs. Every virtualization environment shares
the same execution environment as the host machine, and
only keeps any divergences from the host in the VM’s lo-
cal state. Therefore, such an environment can have small
resource requirements and thus introduce very limited over-
head.

User-level virtualization can make some interesting
things happen, including running a Windows application
without installation, as mentioned in [9]. There are some ex-
isting similar user-level implementations, such as Progres-
sive Deployment System (PDS) [10] and Desktop2Go [11].

PDS is a virtual execution environment and infrastruc-
ture designed specifically for deploying software on demand
while enabling management from a central location. PDS
intercepts a selected subset of system calls on the target ma-
chine to provide a partial virtualization at the operating sys-
tem level. This enables the software’s install-time environ-
ment to be reproduced virtually.

Desktop2Go is a similar solution. In addition to the
user-level virtualization, p2p transportation is employed to
help the user access his personalized desktop applications,
configurations, and data on-the-fly.

2.4 Virtualization on Vista

Windows Vista provides a virtualization mechanism [12] for
folders and the registry, called Folder/Registry Virtualiza-
tion. For example, Registry Virtualization can redirect op-
erations from the global registry store to a per-user location.
As mentioned in reference [12], this is an interim applica-
tion compatibility technology, and Microsoft intends to re-
move this form of virtualization from future versions of the
Windows operating system. It looks like Vista does not pro-
vide such APIs for developers. A more important issue is
that under Vista (with this feature enabled) Windows Me-

dia Player still needs the administrator privilege to make the
downloaded codec work [13], as does RealPlayer.

Based on these descriptions, this paper proposes
an application-independent solution for Windows that
adopts user-level virtualization to implement codec-on-
demand that integrates the codec with players to work
without explicit installation. It can work on the
NT/2000/2003/XP/Vista platforms.

3. Design Philosophy

For Windows systems, the Microsoft DirectShow [14] ap-
plication programming interface is a widely-used media-
processing architecture. Using DirectShow, applications can
perform video and audio playback. DirectShow divides
video playback into a sequence of steps known as filters.
Each filter has input and/or output hooks to connect the filter
to others in order to implement different complex functions.
There are three main types of filter:

• Source filters: These provide the source streams of
data.
• Transform filters: These transform data that is pro-

vided from another filter’s output, e.g., decompressing
a video frame.
• Renderer filters: These render the data.

During the video playback process, the player searches
the Windows Registry for registered filters and connects the
filters together to provide file parsing, video/audio decom-
pressing and rendering, and playing the target video. More
details can be found in [14].

Another out-of-date but still used streaming media
technology is Video for Windows (VFW) [15]. It was re-
placed by the July 1996 release of its COM-based successor
ActiveMovie, which became part of DirectShow in 1997.

As mentioned in Sect. 1, the player is running in a user-
level virtualization environment and some API calls from
the player that access resources (registry, files/directories,
environment variables, etc.) will be intercepted by this en-
vironment. Thus the following issues should be resolved to
realize this technology:

• How to intercept APIs.
• How to learn which codec is needed for a given movie.
• How to judge whether the needed codec is available

locally or not.
• How to locate the needed codec across the Internet.
• How to use the codec without explicit installation or

modifications of the system registry and system fold-
ers (which means it can work without the administrator
privilege).

For simplicity, the following discussion will focus on
on-demand transform filters but the principle can also be
used for source filters.

3.1 How to Intercept APIs

API interception means intercepting calls from the target ap-



ZHANG and ZHENG: CODEC-ON-DEMAND BASED ON USER-LEVEL VIRTUALIZATION
2425

plication to the underlying running system and reinterpret-
ing the calls. It is usually used to instrument and extend
existing OS and application functionality without access to
the source code.

Detours [16], a library developed by Microsoft Re-
search Institute, is used to intercept those APIs accessing
the system registry and files/folders. In detail, interception
code is applied dynamically at runtime—Detours replaces
the first few instructions of the target API with an uncondi-
tional jump to the user-provided detour function. This de-
tour function can either replace the target or extend its se-
mantics by invoking the target API as a subroutine.

Detours are inserted at execution time. The code of the
target function is modified in memory, not on disk, thus fa-
cilitating interception of binary functions at a very fine gran-
ularity. Unlike the system hook mechanism, the procedures
in a DLL can be detoured in one execution of an application,
while the original procedures are not detoured in another ex-
ecution running at the same time.

Based on Detours, we have built Wrapper APIs that in-
ject a wrapper DLL into the target player’s virtual address
space, as described in [16]. For example, when an appli-
cation uses an interpreted WIN32 API to access a file, the
wrapper API will be called first.

3.2 How to Learn Which Codec Is Needed

Because all file-access APIs are intercepted, when the media
player opens and reads a movie file using the CreateFile and
ReadFile APIs, the intercepting code can beforehand parse
the file format and locate the corresponding field of the com-
pression codec. For example, one field (fccHandler) of the
strh structure of the widely-used AVI file header indicates
the codec to be used.

In detail, it is a sequence of four bytes (FourCC) used
to uniquely identify data formats. For example, XVID
stands for the MPEG-4 XVID codec; DIV3 stands for DivX
MPEG-4 and 3IV2 is used for “3ivx Delta 4.0.” Complete
information can be obtained from [17].

3.3 How to Judge Whether the Needed Codec Is Available
Locally

DirectShow is based on the Component Object Model
(COM) and any DirectShow-compatible codec should be a
COM object. Therefore, all codecs are managed as ordinary
COMs, which means that they are registered in the system
registry and each is referenced by a unique CLSID (CLaSs
IDentifier).

In detail, a COM object of ActiveMovie Filter
Class Manager (its CLSID is 083863F1-70DE-11d0-BD40-
00A0C911CE86) is provided by Windows, which manages
all registered DirectShow codecs. In the system registry,
codecs’ information are gathered under their subkeys, in-
cluding all codecs’ CLSIDs.

Moreover, DirectShow provides an interface to enu-
merate media types supported by any transform filter and

each media type is described by a unique GUID (Glob-
ally Unique IDentifier). Therefore, we have to map a
media FourCC to the related GUID. Fortunately, Mi-
crosoft reserved a range of 232 GUIDs for representing
FourCCs: these GUIDs are all of the form XXXXXXXX-
0000-0010-8000-00AA00389B71 where XXXXXXXX is
just the FourCC code. For example, the GUID for YUY2†
is 32595559-0000-0010-8000-00AA00389B71.

Thus, to judge whether the needed codec is available
locally or not, the first step is to enumerate all codecs’
CLSIDs and create their instances. For each instance, all
media types supported are also enumerated, and can be com-
pared with the given FourCC.

For VFW codecs, the look-up method is straight-
forward: the COM mechanism is also used to locate
the suitable codec. One COM object (its CLSID is
33D9A760-90C8-11D0-BD43-00A0C911CE86) gathers all
VFW codecs’ information under its registry key, including
a value named FccHandler, which has the same meaning as
the corresponding field of the strh structure mentioned in the
previous section.

3.4 How to Locate the Needed Codec Across the Internet

Here we just prove its feasibility from a technical viewpoint.
Fundamentally, the content producer or publisher could

give hints—which can be embedded in some reserved fields
of media files—on how to find the suitable codec.

Another practical solution, which is used in this de-
sign, is to employ one of the many third-party network
resources to locate a suitable codec. For instance, FFD-
SHOW is an open source package of DirectShow codecs
for decoding/encoding many video and audio formats. Its
web site declares that FFDSHOW can decode 3ivx, DivX,
FFDS, FFV1, H264, Indeo 3, Theora, TSCC, XviD, and so
on. Thus, through gathering information from such web re-
sources, most needed codecs can be found. An unknown but
distinctive media player, GOM player [18], is an example.
Its web site collects many codec installation files, so that the
user can be guided by GOM to access the proper codec when
the “cannot play” problem occurs. However, user interven-
tion and administrator privileges are still needed during this
process.

One helpful contribution would be to construct a web
forum so that any skilled user could voluntarily upload use-
ful information on the relationship between video FourCC
values and suitable codecs. Such grassroots behaviors have
been proved successful many times in the Internet’s growing
history.

However, this is a tactic rather than a technical issue
and how to construct such a web site is beyond the scope of
this paper.

The last “how to” is the key point of our design, and is
described completely in the next section.

†A Packed YUV Format.



2426
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

4. Codec on Demand

The issue is how to use a codec without installation and
leave no modifications in the system registry and folders.

Most Windows applications need to be installed before
they can run normally. Even “green” applications that can
work without installation often save their customizations
into the system registry and/or into configuration files lo-
cated in some system folders. Therefore, for a user with
only guest privileges, it is usually impossible to install any
new software (including a codec).

In our view, an application contains two parts: Part 1
contains all of the files, folders, registry keys, and environ-
ment variables created by its installation process; Part 2 is
its customizations produced at runtime.

To realize the design, we have to enable Part 1 to be
downloadable and make the application run in a virtualiza-
tion environment where it can access Part 2 in an isolation
mode. We employ user-level virtualization to obtain these
functions.

This work consists of two tasks, the installation snap-
shot and the runtime system design.

4.1 Installation Snapshot

To make Part 1 downloadable, we have to capture the
modifications made by the installation process of a codec.
There are two main sites of modifications: the registry and
files/folders. Some existing tools can be used to catch them.
The one we adopt is InstallWatch [19]. It is a system mon-
itoring tool that tracks changes to the computer’s hard disk,
registry, and .ini files when a new application is being in-
stalled.

In our implementation, a target codec is installed on a
clean Windows system. During this process, InstallWatch is
used to log the files created or modified by this installation,
as well as the registry items and their contents. Then, the
files/folders created or updated are copied to a special folder,
called the private folder. Similarly, the contents of the modi-
fied registry keys are collected to be stored in a separate file,
the private registry file.

Both the private folder and the private registry file are
packaged into a compressed file, which is placed on our web
site and can be downloaded on demand. After downloading
it will be unpacked into a writable folder (like the system
temp directory) and the directory hierarchy is kept intact.

4.2 Runtime System

The second issue is how to make the downloaded resource
accessible by the player’s executable file. API Interception
is also employed to do this.

When the player is injected, the interception code deals
with resource access requests first: if one of the registry keys
of Part 1 is to be accessed, the injected code can return the
corresponding value from the private registry file; otherwise

the original API will be called to visit the system registry.
The same flow is also used for visits to files and folders.

In detail, the captured installation snapshot can be di-
vided into six categories:

• Added registry set. It contains the entries created by
the installation.
• Modified registry set. It contains the entries whose val-

ues or sub-keys have been modified or deleted.
• Deleted registry set. Those entries deleted by the in-

stallation are included, so that the entries in this set will
not be accessed at runtime.
• Added file set. This is similar to the added registry

set, including new files and new folders created by the
installation.
• Deleted file set. This is similar to the deleted registry

set.
• Modified folder set. For any file or folder in the

added/deleted file set, its parent folder will be included
in this set.

Take registry accesses as an example—when the reg-
istry key of ActiveMovie Filter Class Manager is opened
and enumerated by the player using RegOpenKeyEx and Re-
gEnumKeyEx† APIs (which are usually used for the codec
query), the following steps will be executed sequentially:

• Because this registry key is in the modified set (as
codecs should add sub-keys there), both the private reg-
istry and the system registry should be queried and the
results will be merged before return. Therefore from
the viewpoint of the media player, the needed codec
does exist on the host.
• Then it will try to open the corresponding CLSID key

of the codec to locate the codec file (usually a .DLL or
.ax file). This item is definitely in the added set so that
it will be queried just in the private space.
• Finally, the codec file will be loaded. The actual codec

file location often differs from that described in the reg-
istry value, because the environment of the snapshot is
usually different from the actual running host. Then,
access redirection will be achieved by our interception
code for File APIs.

It is necessary to note that the codec file itself will
access its registry items for configurations. Because it is
loaded in the target player’s virtual address space, these ac-
cesses are intercepted by the inserted code and thus it can
work without any explicit installation.

More principles of the access process can be found in
[11]. In summary, the philosophy is that any modification is
always saved in the private space while any query will return
the combination of results from both registries. In addition,
if there is any duplication, the private value has higher pri-
ority. For APIs that access the file system, a similar philos-
ophy is adopted because folders can be regarded as registry

†RegOpenKeyEx is used to open an existing registry key and
RegEnumKeyEx enumerates all sub-keys of the open key.



ZHANG and ZHENG: CODEC-ON-DEMAND BASED ON USER-LEVEL VIRTUALIZATION
2427

Fig. 1 The virtualization environment.

keys and files can be regarded as values.
This means that the configurations and files of a codec

can be isolated from the host environment. In addition, any
modification happening at runtime will be stored in the pri-
vate registry file or the private folder, instead of the system’s
default position. Therefore no trace will be left in the sys-
tem registry and folders. The environment is illustrated in
Fig. 1.

5. Implementation and Tests

According to the above design, we have implemented such
a solution on the Windows platform.

The frontend of our prototype contains an executable
file and two DLL files that can be stored on the user’s
portable storage device or can be downloaded from our web
site; no installation is needed (this means the executable can
be used with the Guest privilege). Besides the interception
functions, the main component of the frontend is a private
registry, which is a complete registry system that provides
access APIs just as the Windows OS does. It works like a
small subset of WINE [20], an open source implementation
of the Windows API on top of UNIX.

The executable is used to launch the target media
player and then inject a wrapper DLL into the target’s virtual
address space.

The backend is a web server where installation snap-
shots of codecs are stored. Thus, a codec can be down-
loaded if the frontend demands it. The code used in our
test is FFDSHOW, which is a free codec package containing
many DirectShow decoding filters for decompressing DivX,
XviD, H.264, FLV1, WMV, MPEG-1 and MPEG-2, MPEG-
4 movies, as well as numerous other video and audio for-
mats.

The snapshot size of FFDSHOW (version 1.0.5.2036;
build time is 06/07/2008) is about 8.36 MB and its zip ver-
sion is less than 3.5 MB. So, the downloading time is very
short, especially compared with that of a large video. The
size of its private registry is about 46 KB; it contains two
types of keys:

• ffdshow-related: some items about the configurations
of ffdshow itself;
• CLSID-related: CLSIDs of FFDSHOW codec objects,

managed by the ActiveMovie Filter Class Manager
COM object.

The work flow of the whole playback process of our
solution is illustrated in Fig. 2.

5.1 Function Test

In the test, the frontend should access the web server for the
FFDSHOW snapshot across the Internet. Hence the place-
ment of the server(s) is decisive for the access performance.
Here we assume some edge server(s) can be found to pro-
vide the download service, so that the web server is located
in the CERNET† as well as the frontend. This is a common
case now: the Content Delivery Network has been widely
used for software downloading, and as claimed by Akamai,
the world leading CDN provider, most visit requirements
can be fulfilled by some edge server(s) just a single hop
away.

On the frontend side, a freshly-installed Windows XP
system was used as the test environment. Three media play-
ers, Windows Media Player (version 10), RealPlayer (ver-
sion 11) and Media Play Classic (version 6.4.9), were used
for playback. Media Player Classic is open source software
primarily based on the DirectShow architecture, and it can
automatically use DirectShow transform filters. Therefore,
it was selected as the representative of open-source players
since neither VLC nor MPlayer supports DirectShow.

In addition, ten AVI files (compressed by XVID, DIVX
5/6, 3ivx D4, Chinese AVS, TechSmith Camtasia, and FFDS
codecs) have been tested. All tests were performed with
guest privileges.

1) On the test host, none of the video files could be de-
coded by any player because no suitable codec was in-
stalled.

2) When each player was launched by our frontend, all
videos could be decoded after a few seconds—the in-
serted code contacted the web server to download the
installation snapshot of FFDSHOW and unpacked it
into the current user’s temporary folder. Then the in-
formation of six sets (mentioned in Sect. 4.2) and reg-
istry contents were loaded, and all API calls accessing

†CERNET (Chinese Education & Research Network) is the
second largest network backbone in China. Its backbone band-
width has been up to multiples of 10 Gbps and regional bandwidth
up to multiples of 2.5 Gbps. Now there are about 1,500 universities
and institutions connected and more than 20 million end users.



2428
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.12 DECEMBER 2009

files and registries were handled by the inserted code
as described in Sect. 4. From the viewpoint of the me-
dia player, the necessary codec existed, while neither
system registries nor system folders were modified.

The results of playback are summarized in Table 1.
There are more than 80 types of format supported by FFD-
SHOW and it is very difficult to test them all. But all codecs
in FFDSHOW are compatible with the DirectShow archi-
tecture so that we believe our solution can deal with them
gracefully.

5.2 Performance Test

On the other hand, application run times are also key us-
ability metrics of our prototype, which includes two extra
overheads: the latency caused by the API interception and
the startup time delayed by the download process.

As mentioned in [16], the former overhead is very lim-
ited: less than 2.5 % for one intercepted system call. Com-
pared with the whole playback process, this overhead will
be much less because only a small fraction of system calls

Fig. 2 The work flow of the whole playback process.

Table 1 Playback effects.

are intercepted in our case.
Therefore, we focus on the startup latency.
In the test environment as described by Sect. 5.1, the

average access time for the requested snapshots (including
the judgment processing time, the downloading time and the
decompression time) was about 16.2 s. Compared with the
long video playback time, this latency is also trivial.

6. Discussion

6.1 Security and Privacy

The principle of least privilege, which refers to the concept
that all users should launch applications with as few privi-
leges as possible, is widely recognized as an important de-
sign consideration in enhancing the protection of data and
functionality from malicious behavior. Our solution enables
the downloaded codec to work without the administrator
privilege, and is therefore considered to improve system se-
curity.

On the other side, this solution only writes modifica-
tions to temporary folders on the host. This isolation can
keep the local OS pristine and maintain the user’s privacy.

6.2 Other Platforms

For Linux, because it is a more open platform and sev-
eral open-source software are used as the mainstream me-
dia players, to integrate such a codec-on-demand func-
tion is very straightforward. The problem is that, because
Linux lacks a general application programming interface for
media-streaming like DirectShow in Windows (Simple Di-
rectMedia Layer [21] looks like a possible candidate, but
it works on a lower level, only providing access to audio,
keyboard, mouse, joystick, and 3D hardware), application-
specific codes have to be written for different players.

6.3 Data Is the Center

Based on the traditional view regarding programs as the cen-
ter, data is completely separated from code, and programs
(including codecs) should be explicitly delivered, installed,
and configured, usually with administrator privileges. We
believe that, for an ordinary user, this mode is not good
enough because she has to be involved in the whole process
even though she just wants to see a movie.

On-demand software (also frequently referred to SaaS)
is a software distribution model in which applications are
hosted by a service provider and made available to cus-
tomers over a network on demand. It is regarded as a
promising mode and used more and more widely today.
However, legacy software cannot be used in this mode di-
rectly. Thus, our solution constructs a bridge between legacy
codecs and the on-demand usage mode, so that the user can
play back diverse videos on-demand with neither interven-
tions nor administrator privileges.

One similar latest work is Xax [22]. Xax is a browser



ZHANG and ZHENG: CODEC-ON-DEMAND BASED ON USER-LEVEL VIRTUALIZATION
2429

plug-in that enables developers to leverage existing tools, li-
braries, and entire programs to deliver feature-rich applica-
tions across the Internet. For Xax, the source code of legacy
applications and the existing tool chain have to be modified.
Therefore, this solution can leveraging the legacy code effi-
ciently, not the applications directly.

A similar “cannot play” problem exists in many other
fields. Some existing research has proposed the idea of
integrating code with data. For instance, VXA [23] is an
archival storage system that uses virtual machines to deal
with compressed data archives against changes in data com-
pression formats. It packages executable decoders into the
compressed archives along with the compressed data itself.

Inspired by this, we believe it is very interesting in the
next step to propose a general format of multimedia files that
can integrate codec with data, not only for ubiquitous play-
back, but also to be future-proof. That means to preserve
the usability of digital content so that they can be accessed
smoothly in the future even when the internal format is to-
tally out-of-date.

7. Conclusions

How to decode various movies on any compatible PC with-
out users’ intervention and without administrator privilege
is a real problem.

Our analysis shows that on one side, there are plenty
of player and codec resources across the Internet; on the
other side, because of implementation problems and/or lack
of sufficient privileges, it is inconvenient for average users
to make use of them.

Therefore, based on user-level virtualization technolo-
gies, we have implemented a mechanism to link suitable
codecs and media players on demand.

The solution only depends on Windows system APIs
and the DirectShow framework; the latter is used by most
Windows-based players. Therefore, our solution is believed
to work well with most players on Windows.

Acknowledgments

The work was supported by the High Technology Re-
search and Development Program of China under Grant No.
2006AA01Z111 and the National Natural Science Founda-
tion of China under Grant No. 60773147.

References

[1] http://www.mplayerhq.hu/
[2] http://www.videolan.org/vlc/
[3] http://en.wikipedia.org/wiki/Principle of least privilege
[4] http://sourceforge.net/projects/ffdshow-tryout
[5] http://en.wikipedia.org/wiki/Adobe Flash
[6] http://www.microsoft.com/windows/windowsmedia/player/faq/

codec.mspx
[7] XenEnterprise, http://www.xensource.com/products/xen enterprise/
[8] VMWare, http://www.vmware.cn/
[9] Y. Yu, F. Guo, S. Nanda, L.-C. Lam, and T.-C. Chiueh, “A

feather-weight virtual machine for Windows applications,” Proc.

Second ACM/USENIX Conference on Virtual Execution Environ-
ments (VEE’06), June 2006.

[10] B. Alpern, J. Auerbach, et al., “PDS: A virtual execution environ-
ment for software deployment,” Proc. First ACM/USENIX Interna-
tional Conference on Virtual Execution Environments, March 2005.

[11] Y. Zhang, X. Wang, and L. Hong, “Portable desktop applica-
tions based on P2P transportation and virtualization,” Proc. 22nd
Large Installation System Administration Conference (LISA ’08)
USENIX Association, San Diego, CA, Nov. 2008.

[12] http://msdn.microsoft.com/en-us/library/bb530198.aspx
[13] http://windowshelp.microsoft.com/Windows/en-US/Help/

3d0c5a49-8f61-45cc-8a7d-38c4695ba9291033.mspx
[14] http://msdn.microsoft.com/en-us/library/ms783323(VS.85).aspx
[15] http://msdn.microsoft.com/en-us/library/ms713492(VS.85).aspx
[16] G. Hunt and D. Brubacher, “Detours: Binary interception of Win32

functions,” Proc. Third USENIX Windows NT Symposium, July
1999.

[17] http://www.fourcc.org/
[18] http://www.gomlab.com
[19] http://tejasconsulting.com/open-testware/feature/installwatch.html
[20] http://www.winehq.org/site/docs/wineusr-guide/index
[21] http://www.libsdl.org/
[22] J.R. Douceur, J. Elson, J. Howell, and J.R. Lorch, “Leveraging

legacy code to deploy desktop applications on the Web,” Proc. 8th
USENIX Symposium on Operating Systems Design and Implemen-
tation, CA, USA, Dec. 2008.

[23] B. Ford, “VXA: A virtual architecture for durable compressed
archives,” Proc. 3rd USENIX Conference on File and Storage Tech-
nologies, Dec. 2005.

Youhui Zhang is an Associate Professor
in the Department of Computer Science at the
University of Tsinghua, China. His research
interests include portable computing, network
storage and microprocessor architecture. He re-
ceived his Ph.D. degree in Computer Science
from the same university in 2002.

Weimin Zheng is a Professor in the Depart-
ment of Computer Science at the University of
Tsinghua, China. His research interests include
high performance computing, network storage,
parallel compiler.


