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Moments Added Statistical Shape Model for Boundary Extraction

Haechul CHOI†, Ho Chul SHIN††, Si-Woong LEE†††, Nonmembers, and Yun-Ho KO††††a), Member

SUMMARY In this paper, we propose a method for extracting an object
boundary from a low-quality image such as an infrared one. To take full ad-
vantage of a training set, the overall shape is modeled by incorporating sta-
tistical characteristics of moments into the point distribution model (PDM).
Furthermore, a differential equation for the moment of overall shape is de-
rived for shape refinement, which leads to accurate and rapid deformation
of a boundary template toward real object boundary. The simulation results
show that the proposed method has better performance than conventional
boundary extraction methods.
key words: boundary extraction, statistical shape model, moment

1. Introduction

Object boundary is an important feature in various areas
including medical electronics, computer vision and object-
based video coding. However, internal edges of an object,
background edges, and occlusions by other objects make it
quite difficult to extract a target object boundary from a low-
quality image that has heavy noise and low contrast. That is
why most researches that aim to find the boundary have fo-
cused on the shape model-based approach, where the bound-
ary is extracted with the aid of shape information derived
from a training set [1]. Among these methods, the PDM [2],
[3] is a powerful method for describing the shape of an ob-
ject using statistical characteristics on locations of labeled
boundary points (so-called landmarks). It effectively repre-
sents a rigid shape as linear combinations of the principal
components of a covariance matrix for mean shape. How-
ever, point-based approaches including PDM have a cor-
respondence problem between associated landmarks since
boundary should be sampled into a constant number of la-
beled points. This problem degrades the performance of
boundary extraction.

As a solution to this correspondence problem, region-
based feature, i.e., moments for overall shape, is adopted in
this paper. The moment of shape has useful properties of
rotation, scale, and translation-invariance and can be com-
puted without sampling boundary. In [4], characteristics
of moments on boundary regions were used to detect all
of boundaries in a given image. However, it had difficulty
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in discerning the target object boundary from the detected
boundary regions, since it did not employ any prior infor-
mation regarding the particular target object. The moment
has been rarely used in the prior knowledge based bound-
ary extraction methods, because reconstruction of shape is
not possible when a finite number of moments are given. To
employ the moments in boundary extraction, the proposed
boundary extraction process consists of the following two
steps. Points that are expected to be located on boundary
are found in the first step where prior knowledge derived
from statistical shape model (SSM) is used, and then the ex-
tracted boundary is refined by means of statistical moment
model (SMM) for solving the correspondence problem of
SSM.

2. Shape Modeling

The SSM represents each object boundary in a training set
as labeled points, for which critical points with high cur-
vature are firstly extracted and then equally spaced points
are interpolated between the critical points. Each of M
aligned training shapes is described as a position vector Li =

[xi(1), yi(1), xi(2), yi(2), . . . , xi(N), yi(N)]T (i = 1, . . . ,M),
where N is the number of total labeled points. According to
the principal component analysis, any shape L in the train-
ing set can be approximated using the mean shape L and the
first t eigenvectors Q = (q1|q2| . . . |qt) of the covariance ma-
trix about the mean: L = L+Qb, where b = (b1, b2, . . . , bt)T

is a weighting vector that indicates the amount of variation
with respect to each of the eigenvectors.

The SMM represents overall shape of an object more
precisely without information loss caused by sampling and
the correspondence problem. The moment with the order p
and q is defined as

mp,q =

�

object region

xpyqdxdy (1)

Let the sum of the maximum p and the maximum q be
equal to N′, and the moment vector of the i-th training shape
be Mi = [m0,0(i),m1,0(i),m0,1(i), . . . ,mN′,0(i), . . . ,m0,N′ (i)]T ,
then the mean and the covariance of moments are defined as

mp,q =
1
M

M∑
i=1

mp,q(i), Cm =
1
M

M∑
i=1

(Mi−M)(Mi−M)T

(2)
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In the same way as in SSM, the moments of an in-
dividual shape are modeled as linear combinations of the
principal components Qm of covariance matrix Cm: M =

M + Qma, where a = (a1, a2, . . . , at)T is a weighting vector
like b.

3. Boundary Extraction Process

Bayesian objective function is a cost function used for de-
forming a boundary template toward the real object bound-
ary. Let p = (s, θ,Tx,Ty, b1, b2, . . . , bt) denote a deformation
parameter, where s, θ and (Tx,Ty) are scale, rotation and
translation parameters, respectively. Then, the n-th point on
boundary (n = 1, 2, . . . ,N) is represented by

x(p, n) =

s cos θ

⎛⎜⎜⎜⎜⎜⎝xn+

t∑
k=1

Q2n−1,kbk

⎞⎟⎟⎟⎟⎟⎠−s sin θ

⎛⎜⎜⎜⎜⎜⎝yn+

t∑
k=1

Q2n,kbk

⎞⎟⎟⎟⎟⎟⎠+Tx,

y(p, n) =

s sin θ

⎛⎜⎜⎜⎜⎜⎝xn+

t∑
k=1

Q2n−1,kbk

⎞⎟⎟⎟⎟⎟⎠+s cos θ

⎛⎜⎜⎜⎜⎜⎝yn+

t∑
k=1

Q2n,kbk

⎞⎟⎟⎟⎟⎟⎠ + Ty

(3)

where Q2n,k(Q2n+1,k) is the 2n-th (2n + 1-th) row and the k-
th column element of Q. Given the edge map E(x, y) of an
image, the objective function for a given deformation pa-
rameter p is formulated as Bayesian rule [1].

M(p)=
t+4∑
j=1

⎛⎜⎜⎜⎜⎜⎝− (p j−mj)2

2σ2
j

⎞⎟⎟⎟⎟⎟⎠+ 1
σ2

N∑
n=1

E(x(p, n), y(p, n)), (4)

where mj and σ2
j is the mean and the variance of the j-th

element of p, respectively. These values are calculated from
the training set alignment. Also σ2 is the variance of the
white zero mean Gaussian noise associated with the image
noise model [1]. In (4), the first term is a priori modeled by
SSM and the second term is likelihood.

The Boundary extracted using the SSM is depicted as
a straightforwardly connected line along points represented
by an optimal solution p′ of the objective function. It should
be noted that the obtained boundary inherits the correspon-
dence problem, so the shape refinement is needed to address
this problem. The moments of the boundary are first calcu-
lated and they are projected to the SMM. Then an approx-
imated moments reflecting prior knowledge on moments of
training set are obtained. Here, the difference between orig-
inal moments and projected moments implies how much the
boundary differs from the training set. If the SSM has a se-
rious correspondence problem, the difference appears to be
large. The shape refinement will then be needed to deform
a boundary iteratively in a way of minimizing projection
error. Here, the shape refinement is turned into the mini-
mization problem of normalized mean square error between
the moments of a boundary and its projected moments. If
the instantaneous rate of the change in the moments caused
by moving of a point (x(p, n), y(p, n)) is estimated, this can

help in finding a solution of the minimization problem. We
derived a moment differential equation as follows. In 2D
image plane, the boundary is simplified with vertices and
straight lines connecting these vertices. Let sub-moment
α for a line Cn connecting (xn, yn) to the neighbor vertex
(xn+1, yn+1) be defined as

α
p,q
n =

∫
Cn

xpyqdx, (5)

where Cn can be represented as y = anx + bn and the
slope and the constant term are specified with (xn, yn) and
(xn+1, yn+1). So sub-moment α can be represented as

α
p,q
n =

∫ xn+1

xn

xp (anx + bn)q dx

=

q∑
k=0

qCkak
nbq−k

n

(
xk+p+1

n+1 − xk+p+1
n

)
k + p + 1

, (6)

According to Green’s theorem, region integral can be repre-
sented as contour integral. Thus (1) can be rewritten as

mp,q=− 1
q+1

∮

boundary

xpyq+1dx=− 1
q + 1

N∑
n=1

α
p,q+1
n . (7)

The differential equation of moment mp,q about xn has
a relation with sub-moment α like

∂

∂xn
(mp,q) = − 1

q + 1

⎛⎜⎜⎜⎜⎜⎝∂α
p,q+1
n−1

∂xn
+
∂α

p,q+1
n

∂xn

⎞⎟⎟⎟⎟⎟⎠ . (8)

Let Xp
n is (xp

n − xp
n−1)/(xn − xn−1), then ∂αp,q+1

n−1 /∂xn and

∂α
p,q+1
n /∂xn are expanded using (6) like

∂

∂xn
α

p,q+1
n−1 =

q+1∑
k=0

q+1Ck

k + p + 1

{
−kak

n−1bq−k+1
n−1 Xk+p+1

n

+ (q−k+1)ak+1
n−1bq−k

n−1 xn−1Xk+p+1
n +(k+p+1)ak

n−1bq−k+1
n−1 xk+p

n

}
,

(9)

∂

∂xn
α

p,q+1
n =

q+1∑
k=0

q+1Ck

k + p + 1

{
kak

nbq−k+1
n Xk+p+1

n+1

+ (k−q−1)ak+1
n bq−k

n xn+1Xk+p+1
n+1 −(k+p+1)ak

nbq−k+1
n xk+p

n+1

}
.

(10)

If xn−1 is equal to xn, (9) is equal to zero. Also, if xn is
equal to xn+1, (10) is equal to zero. Using (9) and (10), the
differential values of moment mp,q can be calculated.

4. Experimental Results

The proposed method is demonstrated using the steepest de-
cent methods for finding the optimum solutions of the max-
imum a posteriori M(p) and the minimum moment projec-
tion error. Firstly, to analyze especially how well a shape is
refined, an original shape like Fig. 1 (a) is coarsely sampled
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into equally spaced points like Fig. 1 (b). If critical points
with high curvature are selected as landmarks, the bound-
ary can be more nicely described. However, since the num-
ber of high curvature points can vary according to the view-
point and/or pose of an object, e.g., Fig. 2 (b), we simply
described a boundary with constant number of points to get
the covariance matrix. Figure 1 (c) shows the boundary rep-
resented by SSM. As shown in Fig. 1 (b) and (c), the shape
around corner regions is smoothed due to sampling and the
correspondence problem. The SSM uses this kind of sam-
pled points as a training set, so that it may lose a detail of

Fig. 1 Shape refinement using moments, (a) original shape, (b) sampled
points, (c) shape represented by using SSM, (d) result of the refinement,
and (e) shape refinement behavior.

Fig. 2 Shape modeling and boundary extraction results, (a) the effect of
varying each of the first two shape parameters, (b) critical points, (c) and
(d) PDM results, (e) and (f) the proposed method results.

the shape, which will directly affect its boundary extraction
performance as below experiments. On the other hand, the
training set of SMM is not the sampled shape but the orig-
inal shape. Figure 1 (d) and (e) show the results in which
the sampled shape is evolved iteratively toward minimizing
differences of moments from the original shape. This evo-
lution is guided by Eq. (9). This experiment proves that a
shape represented by SSM can be refined well by means of
moments. In Fig. 1 (e), the error means distance between a
local template point resulted from shape refinement and the
closest point on original boundary.

For low-contrast real images, the experimental results
are shown in Fig. 2. Figure 2 (a) shows the effect of vary-
ing weighting values related to the first two principle com-
ponents of the shape model, which indicates how large de-
formation of the boundary can be tolerated in boundary ex-
traction. Figure 2 (b) shows that the numbers of the crit-
ical points generated automatically with the aid of curva-
ture, as well as their positions, differ from one another,
which brings the correspondence problem to the shape mod-
eling. The correspondence problem may allow local tem-
plate points to be deformed inordinately, which leads to sen-
sitivity on neighboring edges and noise as shown in Fig. 2 (c)
and (d). In Fig. 2 (c) to (f), it can be observed that the pro-
posed method works well, whereas the boundary extracted
by PDM is easily attached to the neighboring edges. This
can be attributed to the additional shape refinement that is
achieved by using region-based feature.

5. Conclusion

An enhanced boundary extraction scheme that can be ap-
plied to low-quality images such as infrared ones was pro-
posed in this paper. When the training set is given, the
proposed method can describe shape more accurately with
statistical characteristic for moments as well as position of
sampled boundary points. Moreover, it can moderate the af-
fects of sampling and the correspondence problem resulting
from the conventional methods based on point-based fea-
ture.
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