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PAPER

A Chosen-IV Key Recovery Attack on Py and Pypy

Takanori ISOBE†∗a), Toshihiro OHIGASHI†∗∗, Hidenori KUWAKADO††, and Masakatu MORII††, Members

SUMMARY In this paper, we propose an effective key recovery attack
on stream ciphers Py and Pypy with chosen IVs. Our method uses an
internal-state correlation based on the vulnerability that the randomization
of the internal state in the KSA is inadequate, and it improves two previous
attacks proposed by Wu and Preneel (a WP-1 attack and a WP-2 attack).
For a 128-bit key and a 128-bit IV, the WP-1 attack can recover a key with
223 chosen IVs and time complexity 272. First, we improve the WP-1 attack
by using the internal-state correlation (called a P-1 attack). For a 128-bit
key and a 128-bit IV, the P-1 attack can recover a key with 223 chosen IVs
and time complexity 248, which is 1/224 of that of the WP-1 attack. The
WP-2 attack is another improvement on the WP-1 attack, and it has been
known as the best previous attack against Py and Pypy. For a 128-bit key
and a 128-bit IV, the WP-2 attack can recover a key with 223 chosen IVs
and time complexity 224. Second, we improve the WP-2 attack by using
the internal-state correlation as well as the P-1 attack (called a P-2 attack).
For a 128-bit key and a 128-bit IV, the P-2 attack can recover a key with 223

chosen IVs and time complexity 224, which is the same capability as that
of the WP-2 attack. However, when the IV size is from 64 bits to 120 bits,
the P-2 attack is more effective than the WP-2 attack. Thus, the P-2 attack
is the known best attack against Py and Pypy.
key words: cryptanalysis, stream cipher, Py, Pypy, eSTREAM, key recovery
attack

1. Introduction

Symmetric-key cryptography, which uses the same key for
encryption and decryption, provides security (e.g. confiden-
tiality and integrity) to data or network. Stream cipher is
a class of symmetric-key cryptography, and it is suitable
for high-speed applications (e.g. applications for large-scale
data processing). A typical stream cipher encrypts a plain-
text by XORing it with a pseudo-random sequence (called
a keystream) that is generated from a secret key and an ini-
tialization vector (IV). The core of the stream cipher is to
generate the keystream from the secret key and the IV.

Py [1] is a software-oriented stream cipher, and it
was designed by Biham and Seberry in April 2005. Py
was submitted to the ECRYPT stream cipher project (eS-
TREAM) [2], which is a project to identify a portfolio of
promising new stream ciphers and takes multi-year effort
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from 2004 to 2008. The speed of Py is more than 2.5 times
faster than that of RC4 [3] on a Pentium III processor. RC4
is a widely-used software-oriented stream cipher. Py uses a
variable-length key and a variable-length key IV. The key
size varies from 1 byte to 256 bytes. The IV size varies from
1 byte to 64 bytes. The recommended parameters for secu-
rity are that the key size is up to 32 bytes and the IV size is up
to 16 bytes. The Py algorithm consists of a key scheduling
algorithm (KSA) and a pseudorandom number generation
algorithm (PRGA).

Security of a stream cipher is analyzed under the as-
sumption that a part of a keystream is given. Since Biham,
who is one of designers of Py, is known as a researcher who
did significant works, Py attracted the attention of many
cryptanalysts. As the cryptanalysis of Py, a distinguish-
ing attack, which distinguishes a keystream from a random
stream, was proposed by Paul, Preneel, and Sekar in Decem-
ber 2005 [4]. Their attack was improved by Crowley in Jan-
uary 2006 [5]. In order to resist these distinguishing attacks,
a new version of Py, called Pypy, was proposed by Biham
and Seberry in March 2006 [6]. Wu and Preneel pointed out
a weakness of the IV setup algorithms of Py and Pypy in Au-
gust 2006 [7]. The IV setup algorithms of Py and Pypy are
identical. The weakness is that two keystreams generated
from the chosen IVs can be identical with a high probability.
They used the weakness to construct a key recovery attack
in September 2006 [8] (called a WP-1 attack). In the WP-1
attack, if the IV size is more than 9 bytes, (IV sizeb−9) bytes
of the key can be recovered with (IV sizeb − 4) × 219 chosen
IVs, where IV sizeb stand for the size of the IV in bytes. For
a 128-bit key and a 128-bit IV, which are recommended pa-
rameters for security [1], 7 bytes of the key can be recovered
with 223 chosen IVs. Thus, for a 128-bit IV, the WP-1 at-
tack can recover a 128-bit key with 223 chosen IVs and time
complexity 272. Another key recovery attack against Py and
Pypy was proposed by Wu and Preneel in February 2007 [9]
and May 2007 [10] (called a WP-2 attack). The fundamen-
tal idea of the WP-2 attack is same as the WP-1 attack. For
a 128-bit key and a 128-bit IV, 13 bytes of the key can be
recovered with 223 chosen IVs. Thus, for 128-bit IV, the
WP-2 attack can recover a 128-bit key with 223 chosen IVs
and time complexity 224.

In this paper, we first improve the WP-1 attack [8]
(called a P-1 attack). The P-1 attack can recover more 3-byte
key information than the WP-1 attack by using the internal-
state correlation. The P-1 attack has new two effective pro-
cesses as compared to those of Wu and Preneel. These two
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processes are called an expansion process and a comparison
process, respectively. In the P-1 attack, if the IV size is more
than 7 bytes, (IV sizeb−6) bytes of the key can be recovered
with (IV sizeb − 4) × 219 chosen IVs. For a 128-bit key and
a 128-bit IV, 10 bytes of the key can be recovered with 223

chosen IVs. Thus, for a 128-bit IV, the P-1 attack can re-
cover a 128-bit key with 223 chosen IVs and time complex-
ity 248, which is 1/224 of that of the WP-1 attack. Second,
we improve the WP-2 attack [9] by using the internal-state
correlation as well as the P-1 attack (called a P-2 attack).
For a 128-bit IV, the P-2 attack can recover a 128-bit key
with 223 chosen IVs and complexity 224, which is the same
capability as that of the WP-2 attack. However, when the
IV size is from 8 bytes to 15 bytes, the P-2 attack is more
effective than the WP-2 attack. The P-2 attack is the known
best attack against Py and Pypy.

We published the idea of the P-1 attack in Decem-
ber 2006 [11] (in eSTREAM) and February 2007 [12] (in
SASC 2007). Later, the WP-2 attack was proposed by Wu
and Preneel in February 2007 [9] (in SASC 2007) and May
2007 [10] (in Eurocrypt 2007). In this paper, we show the
P-2 attack which is an improvement on the WP-2 attack for
the first time.

We explain why we focus on Py and Pypy. We have
the following opinion from our experience of stream-cipher
analysis: if the internal-state size is much larger than the
key size, the KSA needs much computational cost in order
to map the key information to the internal state randomly. In
other words, if the KSA of a stream cipher is designed to be
faster in general to achieve good key agility and the random-
ization of the large internal state is not sufficient, then bytes
of the internal-state tend to correlate each other. We think
that attacks based on the internal-state correlation are ef-
fective against such stream ciphers, where the internal-state
correlation indicates that a part of the internal state includes
information on the other internal state. Recall Py and Pypy.
Since the internal-state size of Py and Pypy is 1300 bytes
and the key size is at most 32 bytes, the internal-state size
is much larger than the key size. Indeed, the internal-state
size of Py and Pypy is much larger than that of other stream
ciphers. Moreover, we think that the computational cost for
randomizing the internal state in the KSA of Py and Pypy
is not sufficiently-large, although the KSA has good key
agility. Hence, we considered that Py and Pypy were es-
pecially vulnerable to an attack based on the above opinion.

This paper is organized as follows. Section 2 describes
the Key and IV Setup of Py and Pypy. Section 3 describes
the WP-1 attack. Section 4 shows the P-1 attack. Section 5
explains the WP-2 attack and shows the P-2 attack. Sec-
tion 6 concludes this paper.

2. Description of Py and Pypy

Py and Pypy are stream ciphers that use a variable-length
key and an IV. The key size varies from 1 byte to 256 bytes.
The IV size varies from 1 byte to 64 bytes. The recom-
mended parameters for security are that the key size is up

Fig. 1 Key setup.

to 32 bytes and the IV size is up to 16 bytes. Internal states
of Py and Pypy contain two arrays –P and Y– and a 4-byte
variable s. P is an array of 256 bytes that contains a per-
mutation of all the values 0, . . . , 255, and Y is an array of
260 4-byte words indexed as −3, . . . , 256. The Py and Pypy
algorithms consist of the KSA and PRGA. In the KSA,
the key and IV are expanded into internal states of Py and
Pypy. In the PRGA, a keystream is generated from internal
states of Py and Pypy. Py and Pypy have the same KSAs
and different PRGAs. In the each step of the PRGA, Py
generates an 8-byte keystream, while Pypy generates only a
4 byte keystream to resist the distinguishing attacks [4], [5].
The KSA consists of a Key setup, an IV setup1, and an IV
setup2. The Key setup initializes Y with the key. The IV
setup1 initializes P, s, and EIV with Y and the IV , where
EIV is an array with the same size as IV . The IV setup2 up-
dates Y , P, and s with EIV . We now provide a description
of the Key setup and the IV setup1 and omit the description
of the IV setup2 and the PRGA, since our attacks use only
the Key setup and the IV setup1.

Our descriptions of the Key setup and the IV Setup
have some differences from the original ones to explain our
attack effictually.

2.1 Key Setup

In the Key setup, Y is initialized with the key. Figure 1
shows the structure of the Key setup. The main process in
the Key setup is divided into three processes listed as fol-
lows:

Y[i]1 = (Y[i]0 + key[(i + 4) mod Keysizeb])

mod 232, (1)
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Fig. 2 IV setup1.

Y[i]2, j = Y[i]1,( j−1) mod 4 ( j = 0, 1, 2, 3), (2)

Y[i + 1]0, j =

{
Y[i]2,0 ⊕ sbox[Y[i]2,1] ( j = 0)
Y[i]2, j ( j = 1, 2, 3),

(3)

where Y[i]0,Y[i]1, and Y[i]2 are the outputs of each process,
key[i] is the value of the (i+1)-th byte of the key, Keysizeb is
the size of the key in bytes, Y[i]l, j is the value of the ( j + 1)-
th byte of Y[i]l, sbox[·] is a substitution box that accepts a
1-byte input and yields a 1-byte output.

First, s is obtained from the key during the preprocess-
ing. Second, the values of Y[i]0 (−3 ≤ i ≤ 256) are decided
from s and Eqs. (1)–(3), and the values are outputted to the
IV setup as Y[i] (−3 ≤ i ≤ 256). In this paper, we omit the
description of the preprocessing stage.

2.2 IV Setup1

In the IV setup1, P, s, and EIV are initialized with the IV
and Y . Figure 2 shows the structure of the IV setup1. P can
be expressed as

v = IV[0] ⊕ Y[0]0,2, (4)

d = (IV[1 mod IV sizeb] ⊕ Y[1]0,2)|1, (5)

P[i] = sbox[v + i · d], i ∈ {0, 1, . . . , 255}, (6)

where v and d are 1-byte variables, IV[i] is the value of the
(i + 1)-th byte of the IV, and IV sizeb is the size of the IV in
bytes.

The main process in the IV setup1 is divided into four
processes, which are expressed as

s[i]1 = (s[i]0 + Y[i − 2] + IV[i + 1])

mod 232, (7)

s[i]2, j = s[i]1,( j−1) mod 4 ( j = 0, 1, 2, 3), (8)

EIV[i + 1] = P[s[i]2,1], (9)

s[i + 1]0, j =

{
s[i]2,0 ⊕ P[s[i]2,1] ( j = 0)
s[i]2, j ( j = 1, 2, 3),

(10)

where s[i]0, s[i]1, and s[i]2 are the outputs of each process.
The values of EIV[i] (0 ≤ i ≤ IV sizeb − 1) can be

determined from the abovementioned equations. s[−1]0 is
given by

s[−1]0 = ((v <<24) ⊕ (d <<16) ⊕ (P[254] <<8)

⊕ (P[255])) ⊕ (Y[−3] + Y[256]). (11)

EIV[i] (0 ≤ i ≤ IV sizeb − 1) are initialized by using
Eqs. (7)–(10). Next, EIV[i] (0 ≤ i ≤ IV sizeb − 1) are up-
dated by using

s′[i]1 = (s′[i]0 + Y[255 − i] + IV[i + 1])

mod 232, (12)

s′[i]2, j = s′[i]1,( j−1) mod 4 ( j = 0, 1, 2, 3), (13)

EIV ′[i + 1] = EIV[i + 1] + P[s′[i]2,1], (14)

s′[i + 1]0, j =

{
s′[i]2,0 ⊕ P[s′[i]2,1] ( j = 0)
s′[i]2, j ( j = 1, 2, 3),

(15)

where s′ and EIV ′ indicate the updated values of s and EIV
respectively. s′[−1] is given as s[IV sizeb − 1]0.

3. WP-1 Attack

We describe the WP-1 attack [8] to understand the P-1 at-
tack in Sect. 4 and the WP-2 attack [9], [10] in Sect. 5.1. The
WP-1 attack is based on the weakness of the IV setup algo-
rithm of Py and Pypy. The weakness is that two keystreams
generated from the chosen IVs can be identical with a high
probability [7].

3.1 Identical Keystreams

From Eqs. (4)–(6), only 15 bits of the IV (IV[0] and IV[1])
are used to initialize the array P. For an IV pair, if the
15 bits are identical, then the resulting arrays P are the same.
From [7], if IV1 and IV2 have only a two-byte difference and
satisfy the following four conditions, then this type of an IV
pair results in identical keystreams with a probability 2−23.2.

Condition 1: IV1[i] ⊕ IV2[i] = 1 (1 ≤ i),

Condition 2: IV1[i + 1] � IV2[i + 1] (1 ≤ i),

Condition 3: The least significant bit of IV1[i] is 1 (1 ≤
i),

Condition 4: IV1[ j] = IV2[ j] (0 ≤ j < i, i + 1 < j ≤
IV sizeb − 1),

where i is a fixed value.
For the abovementioned IV pair, if two keystreams are

identical, then the two s[i + 1]0 are the same. This implies

(P[B(s[i − 1]0,0 + IV1[i] + Y[−3 + i]0,0)]
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⊕B(s[i − 1]0,3 + Y[−3 + i]0,3 + ξi1)) + 256 + IV1[i + 1]

= (P[B(s[i − 1]0,0 + IV2[i] + Y[−3 + i]0,0))]

⊕ B(s[i − 1]0,3 + Y[−3 + i]0,3 + ξi2)) + IV2[i + 1],

(16)

where B(x) is a function that provides the least significant
byte of x, and ξi1 and ξi2 are the carry bits introduced by
IV[i] and Y[−3 + i]. The probability obtaining ξi1 = ξi2 is
very close to 1, since IV[i] has a negligible effect on ξi1 and
ξi2.

3.2 Recovery of a Part of Y from the Identical IV Pairs

From Eq. (16) such that s[i − 1]0,0 = s[i − 1]0,3, we can
recover values of B(s[i − 1]0,0 + Y[−3 + i]0,0) and B(s[i −
1]0,3+Y[−3+ i]0,3+ ξi). Equation (16) such that s[i−1]0,0 =

s[i−1]0,3 can be generated if the first i bytes of all the IVs are
the same. From [8], if there are seven Eqs. (16), the values of
B(s[i−1]0,0+Y[−3+ i]0,0) and B(s[i−1]0,3+Y[−3+ i]0,3+ξi)
can be recovered.

After recovering the values of B(s[i−1]0,0+Y[−3+i]0,0)
and B(s[i − 1]0,3 + Y[−3 + i]0,3 + ξi) for i ≥ 1, s[i]0,0 can be
recovered as follows:

s[i]0,0 = P[B(s[i − 1]0,0 + IV[i]θ + Y[−3 + i]0,0)]

⊕ B(s[i − 1]0,3 + Y[−3 + i]0,3 + ξi), (17)

where IV[i]θ is a fixed IV. In the WP-1 attack, we use ar-
bitrary fixed IVθ. When differences are introduced in IV[i]
and IV[i+ 1], all the first i bytes of each IV are chosen to be
identical to those of IVθ.

We introduce the IV difference at the (i+ 1)-th and (i+
2)-th bytes. The first i + 1 bytes of each IV are identical to
those of IVθ. Then, we recover the value of B(s[i]0,0+Y[−2+
i]0,0). From the value of B(s[i]0,0 + Y[−2 + i]0,0) and s[i]0,0,
we determine the value of Y[−2 + i]0,0. Figure 3 shows the
method for recovering a part of Y from s.

3.3 Generating the Equations

Here, we demonstrate a method for obtaining several equa-
tions such that s[i − 1]0,0 = s[i − 1]0,3.

To ensure that the same values of s[i − 1]0,0 and
s[i − 1]0,3 appear in these equations, we need to fix the
values of IV[ j] (0 ≤ j < i). Let the least significant
bit of IV[i] and IV[i + 1] choose all the 512 values and
IV[ j] (0 ≤ j < i) choose IVθ[ j] (0 ≤ j < i). Let
IV[ j] (i + 2 ≤ j ≤ IV size − 1) choose the optional fixed
values. Then we obtain 216(≈ 255 × 255) desired IV pairs.
These 512 IVs are termed as the desired IV group. From [7],
this type of IV pair results in identical keystreams with a
probability 2−23.2. We obtain 2−7.2(= 2−23.2 × 216) identi-
cal keystream pairs from one desired IV group. We mod-
ify the value of the 7 most significant bits of IV[i] and
3 bits of IV[i + 2]; we can then obtain 210(= 27 × 23) de-
sired IV groups. From these desired IV groups, we obtain
7 (= 210 × 2−7.2) Eqs. (16). There are 219(= 27 × 23 × 29) IVs

Fig. 3 Recovery of a part of Y from s.

used in the attack. With (IV sizeb − 4) × 219 IVs, we can re-
cover B(s[i−1]0,0+Y[−3+i]0,0), B(s[i−1]0,3+Y[−3+i]0,3+ξi),
and s[i]0,0 (2 ≤ i ≤ IV sizeb − 3) for IVθ. Thus, we can re-
cover the value of Y[−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3).

3.4 Key Recovery

We now show how to recover the key from Y[−3+ i]0,0 (3 ≤
i ≤ IV sizeb − 3). From Eqs. (1)–(3), the relation between
the key and Y is given by

(B(Y[−3 + i]0,0 + key[i + 1] + ξ′i )
⊕sbox[B(Y[−3 + i + 3]0,0 + key[i + 4])]

= Y[−3 + i + 4]0,0, (18)

where ξ′i is the carry bit introduced by key[i + 2] and
key[i+ 3]; it is computed by using ξ′i ≈ (key[i+ 2]+ Y[−3+
i + 1]0,0) 
 8. The value of ξ′i is 0 with a probability ap-
proximately 0.5.

When Y[−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) are known,
Eq. (18) becomes an expression that relates key[i + 1] and
key[i+4] for (3 ≤ i ≤ IV sizeb−7). Once we correctly guess
the values of key[4], key[5], and key[6], we can determine
the other key bytes key[ j] (6 < j ≤ IV sizeb − 3). Thus, the
values of key[ j] (4 ≤ j ≤ IV sizeb − 3) can be restricted to
224 values. This indicates that (IV size − 9) bytes of the key
constitutes the leaked information.

From the description given above, in the WP-1 at-
tack, (IV sizeb − 9) bytes of the key can be recovered with
(IV sizeb − 4) × 219 chosen IVs. Thus, time complexity for
recovering a key is 28×(Keysizeb−(IV sizeb−9)). For a 128-bit key
and a 128-bit IV, time complexity for recovering a key is 272

(= 28×(16−(16−9))).



36
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.1 JANUARY 2009

4. P-1 Attack

We improve the WP-1 attack with the internal-state correla-
tion. The WP-1 attack and the P-1 attack are different in the
process after recovering a part of a Y . The P-1 attack com-
prises new two effective processes using the internal-state
correlation. These two processes are called an expansion
process and a comparison process, respectively. In the ex-
pansion process, Y[−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) are
expanded into the candidate values of Y[−3 + i]0 (3 ≤ i ≤
IV sizeb−3). In the comparison process, the values of Y[−3+
i]0 (3 ≤ i ≤ IV sizeb − 3) are determined by comparing the
candidate values of Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3) with
s[i] (2 ≤ i ≤ IV sizeb−6) recovered from Eqs. (16) and (17).
From these processes, the P-1 attack can use the values of
Y[−3+i]0 (3 ≤ i ≤ IV sizeb−3) for recovering the key while
the WP-1 attack use only Y[−3+ i]0,0 (3 ≤ i ≤ IV sizeb−3).
By using the values of Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3),
key[ j] (4 ≤ j ≤ IV sizeb − 3) can be recovered. Thus, the
P-1 attack can recover more 3-byte key information than the
WP-1 attack.

4.1 Expansion Process

Theorem 1: If Y[i]0 and Y[i − 1]0,0 are known, then
key[(i + 3) mod Keysizeb], Y[i − 1]0,1, Y[i − 1]0,2, and
Y[i − 1]0,3 can be determined from

Y[i − 1]2, j =

{
Y[i]0,0 ⊕ sbox[Y[i]0,1] ( j = 0)
Y[i]0, j ( j = 1, 2, 3),

(19)

Y[i − 1]1, j = Y[i − 1]2,( j+1) mod 4 ( j = 0, 1, 2, 3), (20)

key[(i + 3) mod Keysizeb]

= B(Y[i − 1]1,0 − Y[i − 1]0,0), (21)

Y[i − 1]0 = (Y[i − 1]1 − key[(i + 3) mod Keysizeb])

mod 232. (22)

Proof. Eqs. (19)–(22) are derived from Eqs. (1)–(3). First,
Y[i − 1]1 is determined from Y[i]0, Eq. (19), and Eq. (20).
Second, key[(i+3) mod Keysizeb] is determined from Y[i−
1]0,0, Y[i−1]1,0, and Eq. (21). Finally, Y[i−1]0 is determined
from Y[i − 1]1, key[(i + 3) mod Keysizeb], and Eq. (22).
Hence, Y[i − 1]0,1, Y[i − 1]0,2, and Y[i − 1]0,3 can be de-
termined.

�
The expansion process is executed after recovering a

part of Y from the identical IV pair in the WP-1 attack. In
the expansion process, we obtain the candidate values of
Y[−3+ i]0,1,Y[−3+ i]0,2, Y[−3+ i]0,3 (3 ≤ i ≤ IV sizeb− 3),
and key[ j] (4 ≤ j ≤ IV sizeb− 3) from Y[−3+ i]0,0 (3 ≤ i ≤
IV sizeb − 3) by going the Key setup algorithm backward.
The algorithm of the expansion process is given below. Fig-
ure 4 shows the expansion process.

Algorithm 1:

Input: Y[−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3).

Fig. 4 Expansion process.

Output: The candidate values of Y[−3 + i]0,1,Y[−3 + i]0,2,
Y[−3+ i]0,3 (3 ≤ i ≤ IV sizeb−3), and key[ j] (4 ≤ j ≤
IV sizeb − 3).

Step 1: If Y[IV sizeb − 6]0,1, Y[IV sizeb − 6]0,2, and
Y[IV sizeb − 6]0,3 have been set to all 224 values, ter-
minate this algorithm. Otherwise, set those values that
have not been set yet to Y[IV sizeb−6]0,1, Y[IV sizeb−
6]0,2, and Y[IV sizeb − 6]0,3.

Step 2: Substitute 0 into num.
Step 3: Determine key[((IV sizeb − 6) − num + 3) mod

Keysizeb], Y[(IV sizeb− 6)− num− 1]0,1, Y[(IV sizeb−
6) − num − 1]0,2, and Y[(IV sizeb − 6) − num − 1]0,3

from Eqs. (19)–(22), Y[(IV sizeb − 6) − num]0, and
Y[(IV sizeb − 6) − num − 1]0,0 (Theorem 1).

Step 4: Add 1 to num.
Step 5: If num = IV sizeb − 6, go to Step 1. Otherwise, go

to Step 3.

From the above algorithm, if Y[−3 + i]0,0 (3 ≤ i ≤
IV sizeb − 3) are known, once we correctly guess the values
of Y[IV sizeb−6]0,1, Y[IV sizeb−6]0,2, and Y[IV sizeb−6]0,3,
we can determine the values of key[ j] (4 ≤ j ≤ IV sizeb−3)
and Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3). This implies that the
values of key[ j] (4 ≤ j ≤ IV sizeb − 3) and Y[−3 + i]0 (3 ≤
i ≤ IV sizeb − 3) can be restricted to only 224 values.

4.2 Comparison Process

Theorem 2: If s[i]0,0, s[i]0,1, s[i + 1]0,0, s[i + 1]0,1, s[i +
2]0,0, s[i + 2]0,1,Y[i − 2],Y[i − 1],Y[i], IV[i + 1], IV[i + 2],
and IV[i + 3] are known, s[i + 2]1,3 can be determined from
Eqs. (7), (8), and (10) as follows:
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s[i]1 mod 216 = (s[i]0 mod 216 + Y[i − 2] mod 216

+ IV[i + 1]) mod 216, (23)

s[i + 1]1 mod 224 = (s[i + 1]0 mod 224

+ Y[i − 1] mod 224

+ IV[i + 2]) mod 224. (24)

Proof. Eqs. (23) and (24) are derived from Eq. (7). First,
s[i+1]0,2 is determined from s[i]0,0, s[i]0,1, Y[i−2], IV[i+1],
Eq. (8), Eq. (10), and Eq. (23). Second, s[i + 2]0,2 and s[i +
2]0,3 are determined from s[i + 1]0,0, s[i + 1]0,1, s[i + 1]0,2,
Y[i − 1], IV[i + 2], Eq. (8), Eq. (10), and Eq. (24). Finally,
s[i + 2]1 is determined from s[i + 2]0, Y[i], IV[i + 3], and
Eq. (7). Hence, s[i + 2]1,3 can be determined.

�
The comparison process is executed after the expan-

sion process. In the comparison process, we determine the
correct values of Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3) from 224

candidate values and recover the values of key[ j] (4 ≤ j ≤
IV sizeb − 3).

For IVθ, B(s[i − 1]0,0 + Y[−3 + i]0,0), B(s[i − 1]0,3 +

Y[−3 + i]0,3 + ξi), and s[i]0,0 (2 ≤ i ≤ IV sizeb − 3) are
known. Hence, s[i − 1]1,0, s[i − 1]1,3, s[i]0,0, and s[i]0,1 (2 ≤
i ≤ IV sizeb − 3) can be determined from Eqs. (7), (8), and
(10). From Theorem 2, s[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6)
can be recovered from s[i]0,1, s[i]0,0 (2 ≤ i ≤ IV sizeb −
3), Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3), and IVθ. Thus, by
comparing s[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6) recovered from
Eqs. (16) and (17) with s∗[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6),
we can determine the correct values of Y[−3 + i]0 (3 ≤ i ≤
IV sizeb−3), where s∗[i] indicates the value determined from
the candidate values of Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3).

The algorithm of the comparison process is given be-
low. Figure 5 shows the comparison process.

Algorithm 2:

Input: s[i − 1]1,0, s[i − 1]1,3, s[i]0,1, s[i]0,0 (2 ≤ i ≤
IV sizeb − 3), the candidate values of Y[−3 + i]0 (3 ≤
i ≤ IV sizeb − 3), and IVθ.

Output: Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3).
Step 1: Set one candidate value of Y[−3 + i]0 (3 ≤ i ≤

IV sizeb − 3) to Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3).
Step 2: From Theorem 2, determine s∗[i + 2]1,3 (2 ≤ i ≤

IV sizeb − 6) from the candidate values of Y[−3 +
i]0 (3 ≤ i ≤ IV sizeb − 3), s[i]0,1, s[i]0,0 (2 ≤ i ≤
IV sizeb − 3), and IVθ.

Step 3: Compare s∗[i + 2]1,3(2 ≤ i ≤ IV sizeb − 6) with
s[i+2]1,3 (2 ≤ i ≤ IV sizeb−6) recovered from Eq. (16).
If s∗[i+2]1,3 = s[i+2]1,3 (4 ≤ i ≤ IV sizeb−3), output
the candidate values of Y[−3+i]0 (3 ≤ i ≤ IV sizeb−3)
as the correct values. Otherwise, go to Step 1.

We discuss s∗[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6) and
s[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6) recovered from Eq. (16)
in Step 3. If the values set in Step 1 are correct, then
s∗[i + 2]1,3 = s[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6). Theoreti-
cally, since the probability that s∗[4]1,3 = s[4]1,3 is 1/256,
on comparing s∗[4]1,3 with s[4]1,3, we can determine 216

Fig. 5 Comparison process.

candidate values from 224 candidate values. Supposing that
the probabilities of s∗[4]1,3 = s[4]1,3, s∗[5]1,3 = s[5]1,3, and
s∗[6]1,3 = s[6]1,3 are independent, we can determine 28 can-
didate values by comparing s∗[4]1,3 with s[4]1,3 and s∗[5]1,3

with s[5]1,3. We can determine one candidate value by com-
paring s∗[4]1,3 with s[4]1,3, s∗[5]1,3 with s[5]1,3, and s∗[6]1,3

with s[6]1,3.
From the simulation for 104 keys, we were able to de-

termine 65536.019 ≈ 216 candidate values by comparing
s∗[4]1,3 with s[4]1,3, and 255.084 ≈ 28 candidate values by
comparing s∗[4]1,3 with s[4]1,3 and s∗[5]1,3 with s[5]1,3, and
1.384 candidate values by comparing s∗[4]1,3 with s[4]1,3,
s∗[5]1,3 with s[5]1,3, and s∗[6]1,3 with s[6]1,3. If the number
of comparisons is more than three, only one value can be
identified.

From the algorithm given above, we determine the val-
ues of Y[−3 + i]0 (3 ≤ i ≤ IV size − 3) and key[ j](4 ≤ j ≤
IV size− 3). If IV size ≥ 10, these values can be restricted to
one value from more than two comparisons. If IV size = 9,
these values can be restricted to 28 values from two compar-
isons. If IV size = 8, these values can be restricted to 216

values from one comparison.

4.3 Evaluation

In the P-1 attack, (IV sizeb−6) bytes of the key can be recov-
ered with (IV sizeb − 4) × 219 chosen IVs. Thus, time com-
plexity for recovering the key is the sum of that of recover-
ing (IV sizeb−6) bytes of the key with (IV sizeb−4)×219 cho-
sen IVs and that of exhaustive remaining key search. Since
time complexity of the exhaustive remaining key search is
very larger than that of recovering (IV sizeb− 6) bytes of the
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Table 1 Time complexity for recovering a 128-bit (16-byte) key.

IV sizeb 8 9 10 11 12 13 14 15 16
The WP-1 attack [8] 2128 2128 2120 2112 2104 296 288 280 272

The P-1 attack 2120 2112 296 288 280 272 264 256 248

The WP-2 attack [9], [10] 2128 2128 2112 296 280 264 248 232 224

The P-2 attack 2112 296 264 248 232 224 224 224 224

key with (IV sizeb − 4) × 219 chosen IVs, time complexity
for recovering a key is approximated to that of exhaustive
remaining key search which is 28×(Keysizeb−(IV sizeb−6)).

Time complexity of the WP-1 attack [8] and that of the
P-1 attack for a 128-bit key are shown in Table 1. Time com-
plexity of the WP-1 attack can be calculated from Sect. 3.4
in this paper. For a 128-bit key and a 128-bit IV, which
are recommended parameters for security [1], the P-1 attack
can recover the key with 223 chosen IV and time complexity
248 (= 28×(16−(16−6))). In addition, when IV sizeb = 8 and 9,
the WP-1 attack is ineffective; in this case, the P-1 attack
can recover the key with lower time complexity than the ex-
haustive key search.

5. Improvement on the WP-2 Attack

In this section, we first explain the WP-2 attack [9], [10]
which is the improvement of the WP-1 attack. Second, we
propose the P-2 attack which is the improvement on the WP-
2 attack. The P-2 attack comprises new two effective pro-
cesses using the internal-state correlation as well as the P-1
attack. By using these processes, when the IV size is from
8 bytes to 15 bytes, the P-2 attack is more effective than the
WP-2 attack.

5.1 WP-2 Attack

The WP-2 attack uses the same chosen IVs as the WP-1
attack. From [7], for these chosen IV, if two keystreams are
identical, we obtain Eq. (16) and

(P[B(s′[i − 1]0,0 + IV1[i] + Y[256 − i]0,0)]

⊕B(s′[i − 1]0,3+Y[256 − i]0,3 + ξi1))+256+IV1[i + 1]

= (P[B(s′[i − 1]0,0 + IV2[i] + Y[256 − i]0,0))]

⊕ B(s′[i − 1]0,3 + Y[256 − i]0,3 + ξi2)) + IV2[i + 1].

(25)

The WP-2 attack uses these two equations while the WP-1
attack uses only Eq. (16). By applying an attack similar to
the WP-1 attack, we can recover B(s′[i−1]0,0+Y[256−i]0,0),
B(s′[i − 1]0,3 + Y[256 − i]0,3 + ξi), and s′[i]0,0 (2 ≤ i ≤
IV sizeb − 3) as well as B(s[i − 1]0,0 + Y[−3 + i]0,0), B(s[i −
1]0,3+Y[−3+ i]0,3+ ξi), and s[i]0,0 (2 ≤ i ≤ IV sizeb−3) for
IVθ. Thus, we can recover the values of Y[−3 + i]0,0 (3 ≤
i ≤ IV sizeb − 3) and Y[256 − i]0,0 (3 ≤ i ≤ IV sizeb − 3).

When Y[−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) and
Y[256 − i]0,0 (3 ≤ i ≤ IV sizeb − 3) are known, Eq. (18) be-
comes the expression that relates to key[ j+1] and key[ j+4]
(3 ≤ j ≤ IV sizeb − 7, 262 − ivsizeb ≤ j ≤ 252). Thus,
there are 2 × (IV sizeb − 9) expressions (18) linking the key

bytes. For a 128-bit key and a 128-bit IV, 14 expressions
(18) can be obtained: 7 expressions (18) linking key[ j] and
key[ j + 3] (4 ≤ j ≤ 10), and another 7 expressions (18)
linking key[ j] and key[ j + 3 mod 16] (7 ≤ j ≤ 13). There
are 13 bytes involved in these 14 expressions (18). Since
these 14 expressions are sufficient to recover the involved
13 key bytes, time complexity for recovering a key is 224.
For IV sizeb ≤ 15, since the number of expressions (18) is
less than that of involved key bytes, time complexity for re-
covering a key is 28×(Keysizeb−2×(IV sizeb−9)). For a 128-bit key
and a 120-bit IV, time complexity for recovering a key is 232

(= 28×(16−2×(15−9))). The number of the chosen IVs used for
the attack is (IV sizeb − 4) × 219 as well as the WP-1 attack.

5.2 P-2 Attack

The P-2 attack has the expansion process and the compari-
son process after recovering a part of a Y in the WP-2 attack
as well as the P-1 attack.

In the expansion process, we obtain 224 candidate val-
ues of Y[−3 + i]0,1,Y[−3 + i]0,2, Y[−3 + i]0,3 (3 ≤ i ≤
IV sizeb − 3), and key[ j] (4 ≤ j ≤ IV sizeb − 3) from
Y[−3 + i]0,0 (3 ≤ i ≤ IV sizeb − 3) by using Algo-
rithm 1. Moreover, we can obtain 224 candidate values
of Y[256 − i]0,1,Y[256 − i]0,2, Y[256 − i]0,3 (3 ≤ i ≤
IV sizeb − 3), and key[ j mod 16] (23 − IV sizeb ≤ j ≤ 16)
from Y[256 − i]0,0 (3 ≤ i ≤ IV sizeb − 3) by using
the algorithm similar to Algorithm 1. Thus, the values of
key[ j] (4 ≤ j ≤ IV sizeb − 3) and Y[−3 + i]0 (3 ≤ i ≤
IV sizeb − 3), and key[ j mod 16] (23 − IV sizeb ≤ j ≤ 16)
and Y[256 − i]0 (3 ≤ i ≤ IV sizeb − 3) can be restricted to
only 224 values respectively.

In the comparison process, we determine the values of
key[ j] (4 ≤ j ≤ IV sizeb − 3) and key[ j mod 16] (23 −
IV sizeb ≤ j ≤ 16). From the P-1 attack, we can determine
the correct values of Y[−3 + i]0 (3 ≤ i ≤ IV sizeb − 3) and
recover the values of key[ j] (4 ≤ j ≤ IV sizeb − 3). For
IVθ, B(s′[i − 1]0,0 + Y[256 − i]0,0), B(s′[i − 1]0,3 + Y[256 −
i]0,3 + ξi), and s′[i]0,0 (2 ≤ i ≤ IV sizeb − 3) are known
from the WP-2 attack. Hence, s′[i−1]1,0, s′[i−1]1,3, s′[i]0,0,
and s′[i]0,1 (2 ≤ i ≤ IV sizeb − 3) can be determined from
Eqs. (12), (13), and (15). s′[i + 2]1,3 (2 ≤ i ≤ IV sizeb − 6)
can be recovered from s′[i]0,1, s′[i]0,0 (2 ≤ i ≤ IV sizeb−3),
Y[256 − i]0 (3 ≤ i ≤ IV sizeb − 3), and IVθ. By using
the algorithm similar to Algorithm 2, we can determine the
correct values of Y[256 − i]0 (3 ≤ i ≤ IV sizeb − 3) and
recover the values of key[ j mod 16] (23 − IV sizeb ≤ j ≤
16).

From the algorithm given above, we determine the val-
ues of key[ j](4 ≤ j ≤ IV size − 3) and key[ j mod 16] (23 −
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IV sizeb ≤ j ≤ 16). If IV size ≥ 10, these values can be
restricted to one value from more than two comparisons. If
IV size = 9, these values can be restricted to 28 values from
two comparisons. If IV size = 8, these values can be re-
stricted to 216 values from one comparison.

5.3 Evaluation

In the P-2 attack, we can recover the values of key[ j](4 ≤
j ≤ IV size− 3) and key[ j mod 16] (23− IV sizeb ≤ j ≤ 16)
with (IV sizeb − 4) × 219 chosen IVs. For a 128-bit key
and a 128-bit IV, key[ j mod 16] (4 ≤ j ≤ 16) can be re-
covered with 223 chosen IVs. Since remaining key values
are key[1], key[2], and key[3], time complexity for recover-
ing a key is 224. Similarly, for a 128-bit key and an 88-bit
IV, since remaining key values are key[1], key[2], key[3],
key[9], key[10], and key[11], time complexity for recover-
ing a key is 248.

Time complexity of the P-2 attack and that of the WP-
2 attack [9], [10] for a 128-bit key are shown in Table 1.
Time complexity of the WP-2 attack can be calculated from
Sect. 5.1 in this paper. When the IV size is from 8 to
15 bytes, the P-2 attack is more effective than the WP-2 at-
tack. In addition, when IV sizeb = 8, 9, the WP-2 attack is
ineffective; in this case, the P-2 attack can recover the key
with lower time complexity than the exhaustive key search
and is more effective than the P-1 attack.

6. Conclusion

In this paper, we have proposed the P-1 attack and P-2 at-
tack which are improvements on the WP-1 attack and WP-2
attack, respectively. These proposed attacks comprise new
two effective processes using the internal-state correlation.
As a result, the P-1 attack can recover more 3-byte key in-
formation than the WP-1 attack. For a 128-bit key and a
128-bit IV, the P-1 attack can recover the key with time
complexity of 248, which is 1/224 of that of the WP-1 at-
tack. When IV sizeb is from 8 to 15 bytes, the P-2 attack
can recover the 128-bit key with less time complexity than
the WP-2 attack. In particular, when IV sizeb is from 13 to
16 byte, the P-2 attack can recover a 128-bit key with time
complexity of 224. In Py and Pypy, since a variable-length
IV is used, in some cases the IV may range in size from
8 bytes to 15 bytes. Thus, the P-2 attack is the known best
attack against Py and Pypy.

Our attacks show that the attack based on the internal-
state correlation is effective against a stream cipher such that
the internal-state size is large and the randomization of the
internal state in the KSA is not sufficient. Thus, the ideas of
our attacks are applicable to Py-like ciphers.
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