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LETTER

Schedulability Analysis on Generalized Quantum-Based Fixed
Priority Scheduling∗

Moonju PARK†a), Member

SUMMARY This letter analyzes quantum-based scheduling of real-
time tasks when each task is allowed to have a different quantum size. It is
shown that generalized quantum-based scheduling dominates preemption
threshold scheduling in the sense that if tasks are schedulable by preemp-
tion threshold scheduling then the tasks must be schedulable by generalized
quantum-based scheduling, but the converse does not hold. To determine
the schedulability of tasks in quantum-based scheduling, a method to cal-
culate the worst case response time is also presented.
key words: real-time scheduling, quantum-based scheduling, fixed priority

1. Introduction

Real-time system is defined as a system whose correctness
of result is a function of time the result is delivered. Each
task has “deadline” before which the task must complete
execution. There are two kinds of scheme in scheduling
real-time tasks. Fixed priority schedulers assign a priority to
each task once and for all. In dynamic priority scheduling,
the priorities of tasks are assigned at runtime. Although the
Earliest Deadline First, which is a dynamic priority schedul-
ing algorithm, is optimal for preemptive and non-preemptive
real-time scheduling on a uniprocessor [1], fixed priority
scheduling has been more widely used in real-time systems
because it is very easy to implement [2].

In general, preemptive schedulers give better schedu-
lability than non-preemptive schedulers. However, it has
been shown that in the context of fixed priority schedul-
ing, preemptive schedulers are not always superior to non-
preemptive schedulers in [3], [4].

Preemption threshold scheduling [4] is a dual prior-
ity scheduling scheme that improves schedulability of fixed
priority tasks. Introduction of a preemption threshold al-
lows a task to disable preemption according to its preemp-
tion threshold, which may make the task schedulable, even
though the task was not schedulable either by preemptive
or non-preemptive schedulers. Further studies of preemp-
tion threshold scheduling can be found in [5], [6], and the
application of the preemption threshold to dynamic priority
scheduling is discussed in [7].

Another approach to enhance the schedulability in
fixed priority scheduling is quantum-based scheduling.
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Gopalakrishnan and Parulkar studied both threshold pre-
emption and quantum-based scheduling (called delayed pre-
emption in their work), and reported empirical results that
show quantum-based scheduling can increase processor uti-
lization with RM priority assignment [8]. In [9], Anderson
et al. defined quantum-based scheduling as follows: “Under
quantum-based scheduling, processor time is allocated to
tasks in discrete time units called quanta. When a processor
is allocated to some task, that task is guaranteed to execute
without preemption for q time units, where q is the length of
the quantum, or until it terminates, whichever comes first.”
Quantum-based scheduling was applied to dynamic priority
scheduling for efficient object sharing [9], flow protection in
communication [10], and reduction of the scheduling over-
head [11].

In this letter, quantum-based scheduling is studied in
a more general form: each task is allowed to have its own
quantum size that may be different from others. We define
“generalized quantum-based scheduling” as quantum-based
scheduling that allows different quantum sizes for differ-
ent tasks. Adoption of generalized quantum-based schedul-
ing to dynamic priority scheduling was analyzed in [11].
This letter analyzes generalized quantum-based scheduling
for fixed priority scheduling. We show that generalized
quantum-based scheduling dominates preemption threshold
scheduling in the sense that a task set that is not schedula-
ble by preemption threshold scheduling may be schedulable
with quantum-based fixed priority scheduling, but all task
sets that are schedulable by preemption threshold schedul-
ing must be schedulable with generalized quantum-based
scheduling.

The rest of this letter is organized as follows. Sec-
tion 2 explains the task model in this letter. In Sect. 3, the
worst case response time of a task in generalized quantum-
based scheduling is calculated. Section 4 shows generalized
quantum-based scheduling dominates preemption threshold
scheduling. Finally, Sect. 5 concludes this work.

2. System Model

A task is denoted by τi, and each τi is a three-tuple
(Ti,Di,Ci) where Ti is the period, Di is the relative dead-
line, and Ci is the worst case execution time. It is easy to
see that Di ≥ Ci > 0. Time is represented by an integer.
Therefore time is discrete and clock ticks are indexed by
integers, as in [1]. This requires that if the first instance
of τi is invoked at time tx, the following instances are in-
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voked periodically at tx + kTi, where k = 1, 2, 3, . . ., and τi

must be allocated Ci units of processor time in the interval
[tx + (k − 1)Ti, tx + (k − 1)Ti + Di]. Each τi is assigned a
priority πi. Without loss of generality, we can assume that
πi is higher than π j if i < j. When πi is higher than π j, it is
denoted as πi ≺ π j.

A concrete task has a specified release time, or the time
of the first invocation. The difficulty of scheduling tasks can
be affected by the release time [1]. When an instance of τi

is invoked at time t and finishes at time t′, t′ − t is the “re-
sponse time” of the instance. The worst case response time
(WCRT) of τi is defined as the maximum possible response
time among all instances of τi. We will denote the WCRT
of τi as WCRTi. A task τi is schedulable by a scheduling al-
gorithm S if and only if WCRTi ≤ Di when τi is scheduled
by S . A concrete task set is schedulable by S if and only
if any concrete task is schedulable by S . A periodic task
set is defined as schedulable by S if and only if all concrete
task sets that can be generated from the periodic task set are
schedulable by S . We consider only periodic task sets in this
letter.

For a given task τi, we define hp(τi) as a subset of a
task set, which consists of tasks with priority higher than or
equal to τi (except τi). On the other hand, lp(τi) is the set of
tasks with lower priority than τi. By definition, lp(τn) = φ
when the number of tasks is n. Tasks are all independent
and cannot be suspended by themselves.

A quantum is a task variable, which is a unit of non-
preemptive execution. The quantum of a task τi is denoted
as qi. When a task τi is scheduled, τi can execute during
qi without being preempted by other tasks, unless it finishes
its execution before the quantum expires. Thus, τi is non-
preemptive for qi time units. If the task finishes before the
quantum expires, another task is selected to execute. If τi

does not finish after execution of qi units, it can be pre-
empted by any ready task in hp(τi). If the quantum size
qi = 1, quantum-based scheduling of τi is equivalent to pre-
emptive scheduling. On the other hand, if qi = Ci, schedul-
ing of τi is equivalent to non-preemptive scheduling. We
define “feasible quantum” of τi as a quantum size which
makes WCRTi ≤ Di in current scheduling settings.

In preemption threshold scheduling, each task is as-
signed another value called preemption threshold. The pre-
emption threshold of a task τi is denoted as γi. γi must be
a priority value in the range of [π1, πi]. When a task τi is
released, it competes for the processor at priority πi. After
τi starts its execution, another task τ j can preempt τi if and
only if π j ≺ γi. If γi = πi, scheduling of τi is equivalent to
preemptive scheduling. If γi = π1, it is equivalent to non-
preemptive scheduling. If τi is schedulable with γi in cur-
rent scheduling settings, γi is called a feasible preemption
threshold.

3. Worst Case Response Time of Quantum-Based
Scheduling

In this section, we present a method to calculate the WCRT

of a task in generalized quantum-based scheduling. By com-
paring the WCRT of a task with its deadline, we can deter-
mine whether a task is schedulable or not in current schedul-
ing settings. It is shown in [3] that the concept of level-i
busy period is useful for calculation of the WCRT in non-
preemptive scheduling. Level-i busy period is defined as a
processor busy period in which only instances of tasks in
hp(τi) and τi execute [12].

Lemma 1: The WCRT of a task τi in non-preemptive fixed
priority scheduling is found in a level-i busy period obtained
by simultaneously releasing τi with all tasks in hp(τi) at time
0 and the task which has the longest execution time in lp(τi)
at time −1.

Lemma 1 tells us the longest level-i busy period in non-
preemptive scheduling is given by:

Li = max
τ j∈lp(τi)

{C j − 1} +
∑

τ j∈hp(τi)∪{τi}

⌈
Li

T j

⌉
C j (1)

as shown in [3]. The calculation of the WCRT in generalized
quantum-based scheduling is also based on the following
analysis of non-preemptive scheduling in [3].

Theorem 1: For non-preemptive tasks with arbitrary fixed
priorities, the worst case response time of any task τi is given
by

WCRTi = max
k=0,...,Ki

{wi,k +Ci − kTi}
where

wi,k = kCi +
∑
τ j∈hp(τi)

(
1 +

⌊
wi,k

T j

⌋)
C j + Bi (2)

where Ki = 
Li/Ti�, Bi = maxτm∈lp(τi){Cm} − 1, and Li is
given in Eq. (1).

In Theorem 1, kCi stands for the duration of the k in-
stances of τi released before kTi. The second term stands
for the maximum workload of tasks in hp(τi) in the interval
[0,wi,k], and Bi is the maximum delay caused by tasks in
lp(τi). Once it has gained the processor at time wi,k, the
(k + 1)-th instance of τi completes its execution by time
wi,k +Ci. Its response time is therefore wi,k +Ci − kTi.

Based on Theorem 1, the following theorem shows the
WCRT of a task in generalized quantum-based scheduling
can be calculated with the same time complexity. Note that
(Ci − 1) mod qi + 1 and

⌊
Ci−1

qi

⌋
qi are used to avoid the case

Ci mod qi = 0.

Theorem 2: The worst case response time of a task τi with
quantum size qi is given by

WCRTi = max
k=0,...,Ki

{wi,k + ((Ci − 1) mod qi) + 1 − kTi}
where

wi,k = kCi +
∑
τ j∈hp(τi)

(
1 +

⌊
wi,k

T j

⌋)
C j +

⌊
Ci − 1

qi

⌋
qi + Bi

where Ki = 
Li/Ti� and Bi = maxτm∈lp(τi){qm} − 1.
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Proof: The maximum delay due to a lower priority task τ j

cannot exceed q j − 1 in quantum-based scheduling. Thus, it
is clear that Bi = maxτm∈lp(τi){qm} − 1.

Let us consider a task set constructed by substituting τi

with subtasks {τi j = (Ti,Di,Ci j)} where Ci j = min{qi,Ci −∑ j−1
k=1 Ci j} and j = 1, . . . , �Ci/qi. Let �Ci/qi = Qi and set

all of τi j to have the same priority as τi. Let τix be the last
task which finishes its job when all of τi j are simultaneously
released. Then, WCRTi is the worst case response time of a
task τix.

Without any loss of generality, we can assume that
τix = τiQi . By definition, τiQi has the worst case execu-
tion time of ((Ci − 1) mod q) + 1, and we have Ci − ((Ci −
1) mod qi + 1) =

⌊
Ci−1

qi

⌋
qi. By Theorem 1,

wiQi,k = kCi +
∑

τ jm∈hp(τik)

(
1 +

⌊
wi

T j

⌋)
C jm + Bi

= kCi +
∑
τ j∈hp(τi)

(
1 +

⌊
wiQi,k

T j

⌋)
C j

+

Qi−1∑
k=1

(
1 +

⌊
wiQi,k

Ti

⌋)
Cik + Bi

= kCi +
∑
τ j∈hp(τi)

(
1+

⌊
wiQi,k

T j

⌋)
C j +

⌊
Ci−1

qi

⌋
qi + Bi.

Thus the worst case response time is

WCRTiQi = max
k=0,...,Ki

{wiQi,k +CiQi − kTi}. (3)

Since WCRTi = WCRTiQi and wi,k = wiQi,k,

WCRTi = WCRTiQi

= max
k=0,...,Ki

{wiQi,k +CiQi − kTi}
= max

k=0,...,Ki

{wi,k + ((Ci − 1) mod q) + 1 − kTi}.

Therefore, the theorem is proved.

4. Comparison with Preemption Threshold Scheduling

In this section, schedulability of generalized quantum-based
scheduling is compared with preemption threshold schedul-
ing. We show that if a task is schedulable by preemption
threshold scheduling, then it must be schedulable by gener-
alized quantum-based scheduling. To this end, we first show
that the blocking time (maximum delay caused by lower pri-
ority tasks) of each task in preemption threshold scheduling
is larger than or equal to that in generalized quantum-based
scheduling. Let us denote Bq

i and Bt
i as the blocking time

experienced by τi in quantum-based scheduling and that in
preemption threshold scheduling respectively. Also, we de-
note WCRT q

i and WCRT t
i as the WCRT of τi in quantum-

based scheduling and that in preemption threshold schedul-
ing respectively.

Lemma 2: For any set of feasible preemption threshold

{γi}, we can find a set of feasible quantum {qi} resulting in
smaller or equal blocking time for each task than preemption
threshold scheduling.

Proof: We show the lemma by induction. Suppose that there
are n tasks in decreasing order of priority (πi ≺ π j if i < j).
Note that τn has Bq

n = Bt
n = 0.

(1) Basis step: for a feasible preemption threshold γn,
there is a feasible quantum qn such that Bq

n−1 ≤ Bt
n−1.

If γn = πn, WCRT t
n is equal to WCRT q

n with qn = 1.
Thus if γn = πn, we can see that Bq

n−1 = Bt
n−1 = 0. If

γn ≺ πn, since qn ≤ Cn, then Bq
n−1 ≤ Bt

n−1. Therefore there
must be a feasible quantum qn such that Bq

n−1 ≤ Bt
n−1.

(2) Inductive step: for feasible preemption thresholds
γi, . . . , γn and feasible quantum qi, . . . , qn, if Bq

j ≤ Bt
j for

i − 1 ≤ j ≤ n, then there is a feasible quantum qi−1 such that
Bq

i−2 ≤ Bt
i−2 for a feasible preemption threshold γi−1.

If γi−1 = πi−1, then Bt
i−2 = Bt

i−1 because τi−1 cannot
block τi−2. On the other hand, if qi−1 = 1, we get Bq

i−2 =

Bq
i−1. Thus, when γi−1 = πi−1, Bq

i−2 ≤ Bt
i−2 since Bq

i−1 ≤
Bt

i−1. If γi−1 ≺ πi−1, Bt
i−2 = max{Ci−1, Bt

i−1}. Because Bq
i−2 =

max{qi−1, B
q
i−1} and qi−1 ≤ Ci−1, we have Bq

i−2 ≤ Bt
i−2 in this

case. Therefore there must be a feasible quantum qi−1 such
that Bq

i−2 ≤ Bt
i−2.

Based on Lemma 2 and the fact that WCRT t
i is small-

est when γi = π1, the following theorem shows generalized
quantum-based scheduling can successfully schedule task
sets that are schedulable by preemption threshold schedul-
ing.

Theorem 3: If a task set is schedulable by preemption
threshold scheduling, then it is schedulable by quantum-
based scheduling.

Proof: The proof is by induction. Suppose that there are n
tasks in decreasing order of priority. We first show that if τn

is schedulable by preemption threshold scheduling, then τn

has a feasible quantum.
Let us assume that τn is schedulable with a preemption

threshold assigned, but has no feasible quantum. Note that
τn has Bn = 0. In this case, WCRT q

n > Dn even if qn = Cn.
It leads to a contradiction because when qn = Cn, WCRT q

n is
the same as WCRT t

n with γn = π1. Therefore if τn is schedu-
lable with a preemption threshold, it must have a feasible
quantum.

(1) Basis step: if τn and τn−1 are schedulable by pre-
emption threshold scheduling, then τn−1 must have a feasi-
ble quantum.

Let us assume that τn−1 has no feasible quantum but it
is schedulable with a preemption threshold. By Lemma 2,
we can find qn which gives Bq

n−1 ≤ Bt
n−1. Furthermore,

qn is a feasible quantum as shown above. By assump-
tion, WCRT q

n−1 > Di even though qn−1 = Cn−1. But since
Bq

n−1 ≤ Bt
n−1, WCRT q

n−1 ≤ WCRT t
n−1 even if γn−1 = π1. It

leads to a contradiction. Thus, if τn−1 is schedulable in pre-
emption threshold scheduling then it must have a feasible
quantum.

(2) Inductive step: if each task τi, . . . , τn is schedulable
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Table 1 Worst case response time of tasks.

Task Ti Di Ci WCRT WCRT WCRT WCRT
Preemptive Non-preemptive Threshold with quantum=20

τ1 70 50 25 25 59 44 44
τ2 80 80 20 45 79 79 64
τ3 200 100 35 125 80 105 80

by preemption threshold scheduling, then if τi−1 has a fea-
sible preemption threshold, τi−1 must have a feasible quan-
tum.

By Lemma 2, we can find feasible quantum qi−1, . . . , qn

such that Bq
j ≤ Bt

j for j = i − 1, . . . , n. Thus when γi−1 = π1

and qi−1 = Ci−1, WCRT q
i−1 ≤ WCRT t

i−1. So if τi−1 has no
feasible quantum, it must be WCRT t

i−1 > Di even though
γi−1 = π1, which contradicts the assumption. Thus if τi−1 is
schedulable with a preemption threshold assigned, τi−1 must
have a feasible quantum.

Now we show that there is a task set which is not
schedulable by preemption threshold scheduling but schedu-
lable by quantum-based scheduling. Suppose that there
are three tasks τ1 = (70, 50, 25), τ2 = (80, 80, 20), and
τ3 = (200, 100, 35). This task set is not schedulable by
preemption threshold scheduling as shown in Table 1. The
WCRT of τ3 is 125 (> 100) when γ3 = π3 (WCRT Preemp-
tive in the table) and 105 (> 100) when γ3 = π2 (WCRT
Threshold in the table). Finally, if we let γ3 = π1 (WCRT
Non-preemptive in the table), the WCRT of τ1 is 59 (> 50).
Thus this task set is not schedulable by preemption thresh-
old scheduling.

By choosing an appropriate quantum size, however, we
can make the tasks schedulable. Among many possible val-
ues of the quantum size, as an example, we can choose 20
for all tasks as their quantum size, which makes the task set
schedulable. As shown in Table 1, tasks become schedula-
ble with qi = 20.

5. Conclusion

In this letter, quantum-based fixed priority scheduling is
analyzed when each task may have a different quantum
size. An efficient method to calculate the worst case re-
sponse time of tasks is presented. Also, it is shown that
quantum-based fixed priority scheduling dominates preemp-
tion threshold scheduling in the sense that all tasks schedu-
lable by preemption threshold scheduling must be schedula-
ble by quantum-based scheduling, and we can find a task set
that is not schedulable by preemption threshold scheduling,
but schedulable by quantum-based scheduling.
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