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Action Recognition Using Visual-Neuron Feature

SUMMARY  This letter proposes a neurobiological approach for action
recognition. In this approach, actions are represented by a visual-neuron
feature (VNF) based on a quantitative model of object representation in the
primate visual cortex. A supervised classification technique is then used
to classify the actions. The proposed VNF is invariant to affine translation
and scaling of moving objects while maintaining action specificity. More-
over, it is robust to the deformation of actors. Experiments on publicly
available action datasets demonstrate the proposed approach outperforms
conventional action recognition models based on computer-vision features.
key words: neurobiological approach for action recognition (NAAR),
visual-neuron template (VNT), visual-neuron feature (VNF), visual cortex

1. Introduction

Action recognition (AR) is one of the most active research
areas in computer vision due to its potential applications
such as video surveillance, content based video retrieval and
sports events analysis. Most of AR research has focused on
studying the computer vision-based features of moving ob-
jects such as the contour, interesting points, local or global
spatio-temporal volume. In these works, the affine transla-
tion, scaling and moving direction of actors can impact the
performance of the systems. Humans and primates outper-
form the best computer vision systems for AR, so building
a system that emulates AR in the primate visual cortex has
always been an attractive idea.

The mechanism of AR in the primate visual cortex has
progressed over the past decades[1]. AR in visual cortex
is organized in two streams: a ventral stream dealing with
shape information and a dorsal stream dominating motion
information. Neurophysiologic experiments have shown
that, in monkey and human brains, these two streams orig-
inate in the primary visual cortex (V1) and separate along
two populations of cells: cells responding to spatial orien-
tations project to extrastriate visual areas V2, V4 and in-
ferotemporal (IT) cortex of the ventral stream; and cells re-
sponding to direction of motions project to area MT (V5)
and MST in the dorsal stream. Eventually, the two streams
twist and interact at higher levels [2].

Motivated by the quantitative experiments on AR in the
primate visual cortex, Giese et al. [3] speculate neurons in
MT and MST respond to optical flow patterns of target ob-
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jects. They model the processing mechanism of these two
streams separately for simplification. However, the model
has only been applied to simple artificial stimuli. Jhuang
et al. [4] extend the model in [3] and presume that neurons
in intermediate visual areas of the dorsal stream such as
MT,MST respond to spatio-temporal features of target ob-
jects. This model shows a better performance than typical
computer vision-based algorithms for AR. However, its ex-
perimental results have high standard error of mean value
(up t0 9.9%), thus the performance of the method is not con-
sistent.

In this letter, we propose a neurobiological approach
for AR (NAAR). The approach is closely related to the feed-
forward template matching architecture for static object rep-
resentation in the primate visual cortex [5]. The NAAR is
performed in two procedures: an action described in the
form of the average motion energy is firstly represented by
a visual-neuron feature (VNF); the VNF is then classified
to a template action category based on a supervised classi-
fication technique. The main contribution of the proposed
AR approach is twofold: (1) the VNF of actions is invari-
ant to affine translation and scaling while maintaining ac-
tion specificity; (2) it is robust to the deformation of actors.
Experiments on publicly available action datasets show that
our approach outperforms conventional AR models based
on computer-vision feature. The rest of the paper is orga-
nized as follows. Section 2 introduces the proposed NAAR.
Experimental results will be analyzed in Sect. 3. Conclusive
remarks are addressed at the end of this paper.

2. The Proposed NAAR
2.1 Average Motion Energy

Actions are essentially spatio-temporal variations of silhou-
ettes which encode spatial information of postures and dy-
namic information of actions. To characterize an action, we
represent the associated sequence of action silhouettes as the
informative “average motion energy (AME)” image which
implicitly captures the global motion properties of actions
and has been successfully used in gait-based human iden-
tification [6]. Given a sequence of binary silhouette frames
B(x,y, ) containing postures, the AME is defined by Eq. (1).
x and y are the coordinates of pixels in the frames, and 7 is
the duration of a complete action.

A= %;B(x,y,t) (1)
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2.2 Visual-Neuron Feature for Static Objects

The extraction of visual-neuron feature (VNF) for static ob-
ject is proposed by Serre et al. [5]. It comprises a 4-layer
feedforward architecture (S1-C1-S2-C2). This architecture
models the representation of static objects along the ventral
stream in the primate visual cortex. S1 units only respond
to simple bar-like stimuli. They are obtained by applying
input image to a battery of Gabor filters with 8 bands (each
contains 2 filter scales) and 4 orientations, see Eq.(2), and

Eq. (3):

X2 +y2y? 2
G(x,y) = exp (—%)Cos (TFX) ,s.1. )
X =xcos@+ysinf,Y = —xsinf + ycos 6. 3)

All filter parameters are adjusted so that the S1 unit matches
the response property of visual neurons in V1 area. For an
input image, there are 16 * 4 = 64 maps generated by S1
units. C1 units are more tolerant to shift and size of objects
than the S1 units. In C1 units, a sliding window is applied to
the input image obtained at S1 layer of all bands and orienta-
tions. In each band, C1 units select the maximal value from
the two windows locating at the same position of the two
S1 maps to represent the window area. Therefore, there are
8 x4 = 32 maps generated in this stage. S2 units are where
template matching occurs. Before the matching stage, M
small patches of various sizes in all the 4 orientations are
extracted from random positions of C1 images of template
objects. In this letter, the collection of the M patches is de-
fined as the visual-neuron template (VNT). The S2 behaves
as a Gaussian-like Radial Basis Function (RBF), where each
of the patches functions as the center of the RBF. That is, for
a small window within a C1 image of a particular scale, the
response R of the corresponding S2 unit is given by:

R = exp (= lIC1yin = PIF). “)

where C1,,;, denotes a small window locating at every po-
sition of the C1 image in all the 4 orientations and P repre-
sents a patch extracted from template images at C1 layer. At
runtime, S2 maps are computed for each of the eight scale
bands. Therefore, the number of S2 maps equals to M * 8.
Finally, at the C2 layer, the translation- and scale-invariant
C2 feature is obtained by taking a global maximum across
all bands and positions over the entire S2 images. There-
fore, units at this layer have the largest receptive fields and
respond to complex stimuli such as cars, faces and pedes-
trians [7]. The C2 feature is the VNF of an object. The
dimension of the VNF equals to M and is independent of
the size of the input image that contains static objects.

2.3 Action Recognition Using VNF

The NAAR is implemented using a 6-layer feedforward
model. The key to the success of the method is that the
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Fig.1 The 6-layer NAAR model for action recognition. The first step
indicates the process of obtaining the VNTs database. The second step
indicates the extraction of mean VNFs for TAGs; the third step shows the
extraction of VNF for a testing action and the classification of it.

Fig.2  Corner point images (denoted by the rectangles) for the action
“run”. The number of corner points is assigned by users. For the 95%120
image, about 50 corner points can be sufficient. From left to right: the AME
image of “run”, the corner point images of the corresponding C1 images at
band 1 in the orientation 0°,45°,90° and 135°.

AME images of actions are represented by simulating the
process of object representation in the primate visual cortex.
In the NAAR, the VNF extraction process is modified by in-
troducing corner point information of AME images. The ac-
tion classification is then completed by adding a “template
action matching (TAM)” layer and a “maximal likelihood
decision (MLD)” layer. Figure 1 shows the flow chart of the
NAAR.

In the first step, suppose there are N types of actions in
a dataset, then we define N template action groups (TAGs),
each consisting of m congener actions. One TAG is used
to extract one VNT, thus N VNTs are obtained. The VNT
extraction process is implemented along the S1 and C1 lay-
ers. We modify this process proposed in [5] by replacing the
extraction of patches from random positions of template im-
ages at the C1 layer with the selective extraction of patches
from corner points of these C1 images. The Harris Corner
Detector is used to detect the corner points. Figure 2 shows
the corner points of the C1 images for the action “run”.
Corner points can effectively eliminate the redundant infor-
mation induced by homogeneous region, therefore the new
VNT is efficient to characterize an action.

In the second step, the mean VNFs are obtained to rep-
resent TAGs. This step passes the S1, C1, S2 and C2 layers,
which is the same as the process of VNF extraction for static
objects proposed by [5]. Each TAG has an exclusive VNT
which is used to determine the VNFs for all the template ac-
tions contained in the TAG. The mean of these VNFs is then
calculated to represent their corresponding group. Conse-
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quently, the “Mean VNFs for TAGs” database contains N
mean VNFs, each representing one TAG.

The third step is for action classification, where a test-
ing action is firstly represented by N VNFs through the S1,
C1, S2 and C2 layer. Each VNF is determined by a VNT
extracted from one TAG. And then, in the TAM layer, the
similarity between the testing action and a certain TAG is
calculated based on their Mahalanobis Distance, see Eq. (5).

Mis(k) = (X(k) = Y (k)" )
Y X)) - Y(h), (k=1,...,N).

Where, the X (k) represents the VNF of the testing action de-
termined by the VNT extracted from the k”* TAG, the Y(k)
denotes the mean VNF of the k" TAG, and the Y, is the co-
variance matrix of the actions in the k" TAG. The smaller
the above distance measure is, the more similar the two ac-
tions are. Finally, in the MLD layer, a supervised classifica-
tion algorithm is performed, where the category of the TAG
that has the minimal distance to the testing action is assigned
to this action, see Eq. (6).

A = argmin{Mis (k) | k=1,....N} (6)

3. Experiment Evaluation
3.1 Action Datasets

The Weizmann and Weiz.Robust action datasets are used
in this letter. The Weizmann provides 90 video se-
quences shown by nine subjects, each performing 10
types of natural actions repeatedly. The actions are
“run”, “walk”, “skip”, “jack”, “jump-forward”, “jump-up-
down”, “gallop-sideways”, “wave-one-hand”, “wave-two-
hands” and “bend”. We split the dataset as: 6 subjects
are used as templates and the remaining 3 subjects are
used for testing. Thus, the size of each TAG is m = 6.
The experiment is repeated by twenty-five random splits.
The Weiz.Robust is designed for the robustness evaluation
on recognition systems. It contains 10 types of walk ac-
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tions: “normal walk”, “moonwalk”, “limp”, “walk with bag,
case, dog, skirt”, “knees-up”, “feet occluded by boxes”, and
“body occluded by pole”. Each type of walks is performed
by only one subject. For such a small dataset, the leave-one-
out cross-validation rule is adopted to compute an unbiased
estimate of the true recognition rate. We split the actions
dataset as: 9 randomly drawn subjects are used as templates
and the remaining 1 subject is used for testing. Thus, the
size of each TAG is m = 9. One hundred random splits are
repeated for the experiment. Figure 3 shows the example
AME images for the datasets.

3.2 The Benchmark Approaches

For benchmarking, we use the approaches proposed by
Mokhber et al. [8] and Chen et al. [9]. The [8] is designed
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Fig.3  First row: AME images for 10 types of actions in Weizmann.
Second row: AME images for 10 types of walk actions in Weiz.Robust.
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Fig.4  Action recognition results obtained by the NAAR,, with VNF of
variant dimensions. The y-axis represents the average recognition rate (%),
and the x-axis denotes the variation of dimension.

to be invariant to the affine translation and scaling of mov-
ing objects, where the spatio-temporal volume of a silhou-
ette sequence is represented by a 3D geometric moments.
Action recognition is carried out using a nearest neighbor
classifier based on Mahanalobis distance. In the [9], the
time-sequential silhouettes of an action are transformed into
a symbol sequence by referring to a posture codebook, and
then the HMM is used to classify the symbol sequence.

3.3 Experimental Results

The NAAR approach with VNT extracted from random
positions of C1 images is denoted as NAAR,4,4, and the
one with VNT extracted from corner points is denoted as
NAAR.,. The VNF of low dimension may not be sufficient
to characterize target objects. On the other hand, redundant
dimensions will increase the computational intensity of the
NAAR. Figure 4 illustrates the recognition results obtained
by the NAAR,, with the dimensions of VNF increasing from
40 to 1000. The average recognition rate does not increase
from 200 on for all the testing datasets. Therefore, we chose
the 200D VNF to evaluate the performance of NAAR.

The action confusion matrix in classification exper-
iment using the NAAR., tested on Weizmann dataset is
shown in Table 1. The y-axis represents the ground truth,
and the x-axis represents the template action groups. The
numbers on the diagonal are the average correct classifica-
tion rate. The numbers that are not on the diagonal are the
average misclassification rate. In this table, a large confu-
sion (16%) occurs between the action pair “skip” and “run”
in the last row. In our opinion, this is because the AME
image of the action “skip” is very similar to the AME im-
age of the action “run”. It is even hard for human beings to
distinguish.
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Table 1  Action confusion matrix obtained by the NAAR,, tested on

Weizmann dataset. A1-A10 are action “walk”, “jack”, “run”, “jump-

ward”, “wave-one-hand”, “jump-up-down”, “wave-two-hands”, “bend”,
“gallop-sideways” and “skip”.

Al | A2 | A3 | A4 | A5 | A6 | AT | AB | A9 | A10
Al |1.0] O 0 0 0 0 0 00 0
A2 | 0|10 O 0 0 0 0 01]0 0
A3 | 0 0 {098 O 0 |001]| O 0| 0 |0.01
A4 | 0 0 0 |10]| O 0 0 01]0 0
A5 0 0 |001| O [096| O |0.02| O | O |0.01
A6 | 0 1002 O 0 0 [098]| 0O 01]0 0
A7 |0 0 0 0 [002| O |097| 0 | O [0.01
A8 | 0 0 0 0 0 0 0 |10] 0 0
A9 | 0 0 0 0 0 0 0 0110]| O
Al10| O 0 (016|002 O 0 0 00082

Table 2  Comparison between the proposed NAAR and the benchmark

algorithms (denoted as [8] and [9]). The numbers are the average recogni-
tion rates (%). The standard error of the mean (s.e.m.) (%) is also indicated
below the rate.

[8] | [9] | NAAR., | NAAR,ana

Weizmann | 95.8 | 94.7 97.1 95.3
s.e.m +1.7| 19| =17 +3.1
Weiz.Robust | 87.3 | 86.4 | 914 89.2

s.e.m +6.1 | £6.6| +3.8 +53

Finally, we compare the performance of our approach
with benchmarks and the NAAR,,,; on Weizmann and
Weiz.Robust. Table 2 shows that the NAAR., generates
higher recognition rate and lower standard error of the mean
than the NAAR, 4, which proves that the VNT extracted
from corner points is more informative to characterize ac-
tions than their counterpart in [5]. The NAAR,, roundly out-
performs the benchmark algorithms [8] and [9], especially
on the Weiz.Robust dataset, which shows our approach is
more invariant to affine translation and scaling and is more
robust to the deformation of actors than the action recog-
nition models based on computer-vision features. The com-
parison results show that the neurobiology based feature can
represent actions more successfully than computer-vision
features, therefore the proposed NAAR can possibly be used
as a suggestive substitute for the action recognition model
using computer-vision feature.
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4. Conclusion

In this letter, the visual-neuron feature (VNF) of action rep-
resentation in the primate visual cortex is studied and used
for action recognition. The VNF is invariant to affine trans-
lation and scaling of moving objects while maintaining ac-
tion specificity. Moreover it is robust to the deformation of
actors. Experiments show that our approach outperforms
the benchmark approaches using computer-vision feature.
In the future work, we plan to extract uniform VNFs which
are independent of action datasets and apply this feature to
the recognition of continuous action sequences.
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