
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009
451

PAPER

Hierarchical Composition of Self-Stabilizing Protocols Preserving
the Fault-Containment Property

Yukiko YAMAUCHI†a), Student Member, Sayaka KAMEI††, Fukuhito OOSHITA†,
Yoshiaki KATAYAMA†††, Members, Hirotsugu KAKUGAWA†, Nonmember,

and Toshimitsu MASUZAWA†, Member

SUMMARY A desired property of large distributed systems is self
adaptability against the faults that occur more frequently as the size of the
distributed system grows. Self-stabilizing protocols provide autonomous
recovery from finite number of transient faults. Fault-containing self-
stabilizing protocols promise not only self-stabilization but also contain-
ment of faults (quick recovery and small effect) against small number of
faults. However, existing composition techniques for self-stabilizing pro-
tocols (e.g. fair composition) cannot preserve the fault-containment prop-
erty when composing fault-containing self-stabilizing protocols. In this pa-
per, we present Recovery Waiting Fault-containing Composition (RWFC)
framework that provides a composition of multiple fault-containing self-
stabilizing protocols while preserving the fault-containment property of the
source protocols.
key words: fault-containment, self-stabilization, composition

1. Introduction

Large scale networks that consist of a large number of pro-
cesses communicating with each other have been developed
in recent years. In large scale networks such as the In-
ternet, it is desirable that the system recovers from small
scale faults without the effect of faults spreading over the
entire network. In dynamic networks such as sensor net-
works and inter-vehicle networks, it is expected that the
system recovers quickly after a fault so that it can adapt to
the dynamic changes. A distributed system consists of pro-
cesses that communicate with each other by communication
links. It is necessary to take measures against faults when
we design distributed protocols because faults often occur
in these networks (e.g. memory crash at processes, topol-
ogy change) and the effect of faults may affect the entire
network. There exist many fault-tolerant distributed proto-
cols that provide autonomous recovery from faults or pre-
vent the effect of faults from spreading over the network. A
self-stabilizing protocol [8] converges to a legitimate config-
uration from any arbitrary initial configuration. This prop-

Manuscript received June 30, 2008.
Manuscript revised November 6, 2008.
†The authors are with the Graduate School of Information Sci-

ence and Technology, Osaka University, Toyonaka-shi, 560–8531
Japan.
††The author is with the Department of Information Engi-

neering, Graduate School of Engineering, Hiroshima University,
Higashihiroshima-shi, 739–8527 Japan.
†††The author is with the Graduate School of Computer Sci-

ence and Engineering, Nagoya Institute of Technology, Nagoya-
shi, 466–8555 Japan.

a) E-mail: y-yamaut@ist.osaka-u.ac.jp
DOI: 10.1587/transinf.E92.D.451

erty provides autonomous adaptability against any number
of transient faults. In practice, the adaptability to small scale
faults is important because catastrophic faults rarely occur.
However, self-stabilization does not promise efficient recov-
ery from small scale faults and sometimes the effect of a
fault spreads over the entire network.

Researchers have tried to add adaptive fault-tolerance
by conditioning the fault scenario, e.g. the severity of a fault.
The severity of a fault is measured by the number of the pro-
cesses corrupted by the fault. When the states of f processes
are corrupted in a legitimate configuration, we call the ob-
tained configuration an f -faulty configuration.

An f -fault-containing self-stabilizing protocol promises
self-stabilization and fault-containment [15]–[17], [21]: from
any f ′-faulty configuration (f ′ ≤ f), it reaches a legitimate
configuration in the time and in the space depending on f
or less. (We call it f -fault-containing protocol.) Many fault-
containing protocols bound the time to recover and the num-
ber of processes affected by the fault with polynomial in f
or some constant.

Executing two different self-stabilizing protocols in
parallel is known as fair composition [9], [10]. Fair com-
position provides hierarchical composition of two (or more)
protocols such that a protocol (called the upper protocol)
utilizes as its input the output of the other (called the
lower protocol), and guarantees self-stabilization of the ob-
tained protocol. However, a fair composition does not pre-
serve the fault-containment property when composing fault-
containing protocols.

In this paper, we present a simple framework for com-
position of fault-containing protocols that preserves the
fault-containment property of source protocols. This com-
position framework is important both theoretically and prac-
tically. Our strategy is to control the execution of source
protocols so that the upper protocol waits until the lower
protocol recovers. Our framework suggests the possibility
of a uniform framework for composition of fault-containing
protocols and a novel design technique for fault-containing
protocols. However the proposed framework currently puts
several assumptions on source protocols. So, we examine
the sufficient conditions for the proposed framework.
Related work. Self-stabilization was first introduced by
Dijkstra [8]. Since then, many self-stabilizing protocols
have been designed for many problems e.g. spanning tree
construction [6], [10], leader election [24] and token circu-
lation [20].

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

452
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

Various types of adaptive self-stabilization have been
studied to improve the recovery of self-stabilizing proto-
cols from faults: fault-containment [15], [16], time-adaptive
stabilization [23], superstabilization [12], local stabiliza-
tion [1], and time-to-fault adaptive stabilization [14]. The
main issue is the time complexity for recovery. Their aim
is to guarantee the recovery time bounded by the number
of corrupted processes in an initial configuration. Fault-
containing protocols were presented by Ghosh et al. [15],
[16]. Many fault-containing protocols can be obtained
by adding the property of fault-containment to existing
self-stabilizing protocols. Ghosh et al. introduced fault-
containment using priority scheduler in [18]. Priority sched-
uler provides a weak priority rule that makes the recov-
ery actions of faulty processes precede the actions of cor-
rect processes. There exist such fault-containing protocols
obtained by composing multiple layers of protocols where
each protocol is not fault-containing by itself [2], [3].

Composition of self-stabilizing protocols is expected
to ease the design of new protocols and to extend usabil-
ity of existing protocols. The fair composition of self-
stabilizing protocols was introduced by Dolev et al. [9], [10].
Beauquier et al. introduced a cross-over composition in [4]
which uses the lower protocol as a filter to the execution of
the upper protocol and improves the adaptability to sched-
uler. Dolev et al. proposed parallel composition in [13], that
enables parallel search and accelerates the stabilization by
executing multiple self-stabilizing protocols in parallel. The
synthesize technique is also used in [14]. However a com-
position of fault-containing protocols has not been proposed
and we first present such a composition.
Contribution. In this paper, we present a framework for
composition of fault-containing protocols that guarantees
the obtained protocol is also fault-containing. We call this
composition fault-containing composition. Our strategy is
to stop the upper protocol until the lower protocol recov-
ers so that the upper protocol executes on the correct output
of the lower protocol. This framework can be applied to
a large subclass of fault-containing protocols but the con-
straint seems to be reasonable.

2. Preliminary

2.1 Network and Processes

A system is a network which is represented by an undi-
rected graph G = (V, E) where the vertex set V is a set
of processes and the edge set E is a set of bidirectional
communication links. Each process has a unique iden-
tity. Process p is a neighbor of process q iff there exists
a communication link (p, q) ∈ E. A set of neighbors of
p is denoted by Np. Let N0

p = {p}, and for each i ≥ 1,

Ni
p =
⋃

q∈Ni−1
p

Nq \ {p} ∪ ⋃0≤ j≤i−1 N j
p. The set of processes

denoted by Ni
p is called i-neighbor of p. The distance be-

tween p and q (p � q) is denoted by dist(p, q) = j iff
q � N j−1

p ∧ q ∈ N j
p. The i-neighbor of p denotes the set of

processes such that their distances from p are smaller than
or equal to i but except p.

Each process p maintains local variables and the values
of all local variables at p define the local state of p. Local
variables are classified into three classes: input, output, and
inner. The input variables indicate the input to the system
and they are not changed by processes. The output variables
are the output of the system for external observers. The in-
ner variables are other internal working variables.

We adopt locally shared memory model† as a commu-
nication model: each process p can read the values of the
local variables at q ∈ Np ∪ {p}. Each process changes the
value of its local variables by executing a protocol. A proto-
col at each process p consists of a finite number of guarded
actions in the form of 〈guard〉 → 〈action〉. A 〈guard〉 is
a boolean expression involving the local variables of p and
Np and an 〈action〉 is a statement that changes the values of
p’s local variables (except input variables). A process with
a guard evaluated true is called enabled. In a computation
step, a distributed daemon selects a nonempty subset of en-
abled processes and these processes execute the correspond-
ing actions. The evaluation of guards and the execution of
the corresponding action at a process is atomic: these com-
putations are done without any interruption. A configuration
of a system is represented by a tuple of local states of all
processes. An execution is a maximal sequence of configu-
rations E = σ0, σ1, σ2, · · · that satisfies (i) σi+1 is obtained
by applying one computation step to σi or (ii) σi is the final
configuration. Maximality means that the sequence is either
infinite, or it is finite and no process is enabled in the final
configuration.

Distributed daemon allows asynchronous executions.
In an asynchronous execution, the time is measured by com-
putation steps or rounds. Let E = σ0, σ1, σ2, · · · be an asyn-
chronous execution. The first round σ0, σ1, σ2, · · · , σi is the
minimum prefix of E such that for each process p ∈ V if p
is enabled in σ0, either p’s guard becomes disabled or p ex-
ecutes at least one step in σ0, σ1, σ2, · · ·σi. The second and
latter rounds are defined recursively by applying the defini-
tion of the first round to the remaining suffix of the execution
E′ = σi+1, σi+2, · · · .

A problem (task) T is defined by a legitimate predi-
cate on configurations. A configuration c is legitimate iff c
satisfies the legitimate predicate. A non-reactive problem
is a problem such that no process changes the values of its
output variables after the system reaches a legitimate con-
figuration, e.g. spanning tree construction, leader election.
A reactive problem is a problem such that processes change

†There exist message passing model and link register model. In
message passing model, processes communicate with each other
by sending and receiving messages. Link register model models
each link as a register and each message is written to and read from
the register. However, the idea presented in this paper does not
depend on the communication model. Many researchers have tried
to transform a protocol designed for the locally shared memory
model into a protocol on other communication models [10], [11],
[27].

YAMAUCHI et al.: HIERARCHICAL COMPOSITION PRESERVING THE FAULT-CONTAINMENT PROPERTY
453

the values of their output variables after the system reaches
a legitimate configuration, e.g. token circulation. In this pa-
per we consider non-reactive problems. We say a distributed
protocol P(T) has solved T in a configuration iff the config-
uration satisfies the legitimate predicate L(P(T)). The input
(output) of P(T) is represented by the conjunction of input
(output, respectively) variables at each process. We omit
T if T is clear. The input variables to the protocol are not
changed during the execution of the protocol.

For non-reactive problems, self-stabilizing protocols
are defined as follows.

Definition 1: Non-reactive self-stabilization
A distributed protocol P is self-stabilizing iff it satisfies the
following two properties:
Stabilization: starting from any arbitrary initial configura-
tion, it reaches a legitimate configuration.
Closure: once it reaches a legitimate configuration, it re-
mains in legitimate configurations thereafter.

A transient fault corrupts some processes by chang-
ing the values of their local variables arbitrarily. A self-
stabilizing protocol autonomously recovers from any initial
configuration corrupted by any number of faults.

A configuration is f -faulty† iff the minimum number of
processes such that we have to change their local states (ex-
cept input variables) to make the configuration legitimate is
f . So, an f -faulty configuration is the configuration just af-
ter a fault corrupts f processes. We say process p is faulty iff
we have to change p’s local state to make the configuration
legitimate and otherwise correct.

An f -fault-containing protocol autonomously reaches
a legitimate configuration from any f ′-faulty configuration
(f ′ ≤ f) in a polynomial time in f , and the number of pro-
cesses affected is bounded by a polynomial in f , e.g. f , f 2

(not |V |). We say a processes is contaminated iff the process
changes its variables during the recovery from an f ′-faulty
configuration (f ′ ≤ f).

Definition 2: f -fault-containment
A self-stabilizing protocol is f -fault-containing iff it reaches
a legitimate configuration from any f ′-faulty configuration
(f ′ ≤ f) with the number of contaminated processes and
the number of rounds to reach a legitimate configuration
bounded by some polynomial in f (not |V |).
We simply denote an f -fault-containing self-stabilizing pro-
tocol as f -fault containing protocol.

The performance of an f -fault-containing protocol is
measured by stabilization time, recovery time, and contam-
ination number.

Stabilization time : the maximum (worst) number of
rounds to reach a legitimate configuration from an ar-
bitrary initial configuration.

Recovery time : the maximum (worst) number of rounds
to reach a legitimate configuration from any arbitrary
f ′-faulty configuration (f ′ ≤ f).

Contamination number : the maximum (worst) number

of contaminated processes from any arbitrary f ′-faulty
configuration (f ′ ≤ f).

A hierarchical composition of two protocols P1 and P2

is denoted by (P1 ∗ P2) where the variables of P1 and those
of P2 are disjoint except that the input to P2 is the output of
P1. We define the output variables of (P1 ∗ P2) is the output
variables of P2. A legitimate configuration of (P1 ∗ P2) is
defined by L((P1 ∗ P2)) where L((P1 ∗ P2)) ≡ L(P1)∧ L(P2).
In a legitimate configuration of the composite protocol, each
source protocol should be in a legitimate configuration.

Definition 3: Fault-containing composition
Let P1 be an f1-fault-containing protocol and P2 be an f2-
fault-containing protocol. A hierarchical composition (P1 ∗
P2) is a fault-containing composition of P1 and P2 iff (P1 ∗
P2) is an f1,2-fault-containing protocol for some f1,2 such
that 0 < f1,2 ≤ min{ f1, f2}.

In a hierarchical composition, the input to P2 can be
corrupted by a fault when the fault corrupts the output vari-
ables of P1. For the corruption of input to P1, we make the
following assumption.

Assumption 1: Corruption by faults
For a hierarchical composition (P1 ∗ P2), the input to P1 is
not corrupted by any fault.

A fault can change the states of processes but cannot change
their input variables. The input to P1 can be seen as system
parameters, e.g. topology, ID of each process.

In this paper, we put some assumptions on the source
protocols of fault-containing compositions. We consider a
subclass of fault-containing protocols Π such that each f -
fault-containing protocol P ∈ Π satisfies Assumption 2, 3,
4, and 5. Many existing fault-containing protocols satisfy
Assumption 2, 3, 4, and 5 [15], [17], [18], [21].

Assumption 2: Unique legitimate configuration
The legitimate configuration of P is uniquely defined by the
input variables.

Consider a fault-containing composition (P1 ∗ P2). Starting
from an f ′-faulty configuration (f ′ ≤ min{ f1, f2}), if the out-
put of P1 is different from what it was before the fault, then
the input to P2 changes and the output of P2 may change
drastically to adopt it. Then, P2 cannot guarantee fault-
containment though the original fault is small enough for
P2 to guarantee fault-containment. Assumption 2 promises
the possibility of fault-containment of not only P2 but also
the entire protocol (P1 ∗ P2). Because the input to P1 is
not changed by any fault (Assumption 1), this assumption
guarantees that P1 recovers to the unique legitimate config-
uration and ensures the possibility of fault-containment of
P2 in the composite protocol.

†In general, the legitimate configuration obtained by changing
the local states of f processes is not always unique. However, in
this paper we assume the corresponding legitimate configuration is
unique because we assume later that the legitimate configuration
of the protocol is uniquely defined by the input and the input is not
corrupted by faults.

454
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

Table 1 Notations for the source protocols and the composite protocol.

protocol number of maximum faults recovery time contamination number inconsistency range
P1 f1 t1 c1 k1

P2 f2 t2 c2 k2

(P1 ∗ P2) f1,2 = min{ f1, f2} t1,2 c1,2 k1,2

Assumption 3: Legitimate predicate
The legitimate predicate L(P) for P is represented in the
form L(P) ≡ ∀p ∈ V : consp(P). The predicate consp(P)
involves the local variables at p and its neighbors, and it is
defined over the values of output, inner, and input variables.

We say process p is inconsistent iff consp(P) is false, oth-
erwise consistent. Because we work on non-reactive prob-
lems, process p is enabled if the predicate consp(P) is eval-
uated false.

Assumption 4: Inconsistency detection
In an f ′-faulty configuration (f ′ ≤ f), if faulty process p is a
neighbor of correct process(es), at least one correct process
q ∈ Np or p itself evaluates consq(P) (or consp(P)) false.

Many fault-containing protocols satisfies Assumption 4: for
a faulty process p and a neighboring correct process q, the
predicate consp(P) (consq(P), respectively) involves the lo-
cal variables at q (p, respectively). Because p is faulty, there
can be some inconsistency between the local state of p and
that of q.

Note that if p and all its neighbors are faulty,
consp(P) = true may hold at p. This is because consp(P)
involves the local variables at p and its neighbors and the
values of these corrupted variables happen to seem consis-
tent. In this case, p cannot determine whether it is faulty or
not.

The inconsistency range of P is the maximum (worst)
distance from any faulty process to the process q that evalu-
ates consq(P) false because of the faulty process during the
recovery from an f ′-faulty configuration (f ′ ≤ f).

Assumption 5: Inconsistency range
Let k be the inconsistency range of P. Starting from any
f ′-faulty configuration (f ′ ≤ f), for each faulty process p,
in every configuration there exists at least one process q ∈
Nk

p ∪ {p} such that consq(P) is evaluated false until the local
variables at p takes the values that they take in the legitimate
configuration.

The upper bound of the inconsistency range of a protocol
is obtained by its contamination number or recovery time
that are always larger than or equals to the inconsistency
range. We can obtain a more accurate value of the inconsis-
tency range by analyzing the behavior of the protocol. In
many 1-fault-containing protocols [15], [17], [18], [21], in-
consistency range is 1: in theses protocols, in a 1-faulty con-
figuration the faulty process or its neighbors may suspect it
is faulty and exchange the local information with neighbors.
If a correct process finds the faulty process, the process waits
until the faulty process changes its variables.

3. Fault-Containing Composition

Let P1 be an f1-fault-containing protocol and P2 be an f2-
fault-containing protocol. Our goal is to produce f1,2-fault-
containing protocol (P1 ∗ P2) for f1,2 = min{ f1, f2}. In the
rest of the paper, we use the notations shown in Table 1.

Fair composition of fault-containing protocols cannot
preserve the fault-containment property. This is because the
parallel execution of the source protocols allows the upper
protocol P2 to execute on an incorrect output of the lower
protocol P1. When a fault corrupts the output variables of
P1 at f processes (f ≤ f1,2), during the recovery of P1, P2

can be executed in parallel to adapt to the changes in the out-
put variables of P1. During the recovery of P1, at most c1

processes change their output of P1 and the changes in the
input to P2 appear as corruptions by fault(s) in P2. If c1 is
greater than f2, P2 cannot guarantee fault-containment. Ad-
ditionally, even if c1 is not greater than f2, if these processes
change their output in P1 repeatedly, the repeated change
of the output of P1 is considered as multiple changes in in-
put for P2, hence it is considered as multiple faults for P2

in the context of fault-containment. In this case, P2 cannot
guarantee fault-containment because it is necessary to pro-
vide fault-containment that no more fault occurs during the
recovery from an f -faulty configuration (See Definition 2).

We can avoid these problems by executing P2 after P1

reaches the legitimate configuration. We call this approach
Recovery Waiting Fault-containing Composition (RWFC).
Our strategy is to stop the execution of P2 until P1 recov-
ers. Thus, starting from an f -faulty configuration (f ≤ f1,2),
when P1 reaches its unique legitimate configuration†, there
are at most f faulty processes in P2. Then P2 can recover
with its fault-containment property and the whole composite
protocol succeeds in containing the effect of faults.

We can allow faulty processes to execute P2 before P1

reaches the legitimate configuration because in an f -faulty
configuration, even if faulty processes executes P2 before
P1 recovers, the number of faulty processes in P2 is still no
larger than f (≤ f1,2). What is important is that no cor-
rect process executes P2 before P1 recovers. If some correct
process executes P2 before the recovery of P1, the number
of faulty processes in P2 may exceed f2.

A corruption at process p in P1 can change the evalua-
tion of guards of P1 and P2 only at p and its neighbors. This
is because the guards of each process involve the local vari-
ables at the process itself and its neighbors. So, it is possible
that conss(P2) is evaluated false at some process s ∈ Np. If

†A fault cannot change the input variables of P1 (Assumption
1) and P1 reaches the unique legitimate configuration (Assumption
2).

YAMAUCHI et al.: HIERARCHICAL COMPOSITION PRESERVING THE FAULT-CONTAINMENT PROPERTY
455

Fig. 1 Inconsistency range around a faulty process.

s executes P2, the effect of the corruption at p spreads in P2.
To prevent this, it is necessary that each process in Np does
not execute P2 until the variables at p takes the values that
they take in the legitimate configuration. By forcing all pro-
cesses in Np to stop the execution of P2 during the recovery
of P1, we can prevent the effect of the fault from spreading
in P2. From Assumption 5, there exists at least one process
r in Nk1

p for p and in Nk1+1
s for s such that consr(P1) is eval-

uated false during the recovery of P1 (See Fig. 1). We force
P2 to stop by using this property.

We force each process p to check the inconsistency of
each q ∈ Nk1+1

p . For simplicity, we first assume that each
process can evaluate consq(P1) for each q ∈ Nk1+1

p with the
inconsistency detector. The inconsistency detector guaran-
tees that starting from any f -faulty configuration (f ≤ f1,2),
it provides

∧
q∈Nk1+1

p
consq(P1) to p in O(|Nk1+1

p |) rounds. We

just define the specification and the interface of the incon-
sistency detector in Sect. 3.1, because our focus is not on
the implementation of the inconsistency detector but on the
fault-containing composition. We show an implementation
of the inconsistency detector in Sect. 4.

3.1 Specification of the Inconsistency Detector

The inconsistency detector provides the evaluation of
∧

q∈Nk1+1
p

consq(P1) to each process p ∈ V . Each process

p has two variables, reqp and resp: when p requests the in-
consistency detector to evaluate

∧
q∈Nk1+1

p
consq(P1), p sets

reqp = 1, otherwise 0. The inconsistency detector stores the
result in resp that takes a value in {true, false,⊥} and p re-
ceives the result by reading resp. (Note that p cannot change
the value of resp.)

Assumption 6: Specification of the inconsistency detec-
tor
(i) In a legitimate configuration, reqp = 0 ∧ resp = ⊥ holds
at each process p ∈ V .
(ii) If process p ∈ V changes reqp from 0 to 1 when
resp = ⊥, resp takes true or false in α rounds with changing
the state of only the processes in Nβp:

• if
∧

q∈Nk1+1
p

consq(P1) = false holds when the inconsis-

tency detector changes resp from ⊥, resp takes false.

Guarded actions for process p
S 1: G(P1) → A(P1)
S 2: G(P2) ∧ reqp = 0 ∧ resp = ⊥ → reqp = 1
S 3: G(P2) ∧ reqp = 1 ∧ resp = false → reqp = 0
S 4: G(P2) ∧ reqp = 1 ∧ resp = true

→ A(P2); reqp = 0

Fig. 2 RWFC for (P1 ∗ P2).

• if
∧

q∈Nk1+1
p

consq(P1) = true holds when the inconsis-

tency detector changes resp from ⊥, resp takes true or
false. Even when resp = false holds, the inconsistency
detector returns resp = true in a constant number of
requests.

(iii) α and β are bounded by some polynomial in k1.
(iv) When reqp = 0 ∧ resp � ⊥ holds at process p ∈ V , the
inconsistency detector sets resp = ⊥ in O(1) rounds.

After p requests the evaluation to the inconsistency detector,
if reqp = 1∧resp = true holds, process p can determine that
consq(P1) = true holds at each q ∈ Nk1+1

p .

3.2 Framework for Fault-Containing Composition

RWFC framework checks the consistency of P1 by using the
inconsistency detector whenever the upper protocol needs to
be executed.

Figure 2 shows RWFC for (P1 ∗ P2) at process p that
provides f1,2-fault-containing protocol. For each i ∈ {1, 2},
G(Pi) is the disjunction of all guards of protocol Pi at p,
and A(Pi) indicates the corresponding action of one of the
enabled guards of G(Pi).

Starting from an f -faulty configuration (f ≤ f1,2), pro-
cess p can execute P1 whenever it has an enabled guard of
P1 by executing S 1. However, when p has an enabled guard
of P2, p should check the inconsistency of P1 among Nk1+1

p .
Process p requests the evaluation to the inconsistency detec-
tor by executing S 2 and checks the result with S 3 and S 4.
If there is no process q ∈ Nk1+1

p that finds inconsistency in
P1, then p executes P2 by executing S 4. Otherwise, p waits
the recovery of P1 by executing S 3.

3.3 Correctness Proof

First, we show the stabilization of RWFC. Starting from an
arbitrary initial configuration, each process can execute P1

whenever it has an enabled guard of P1. Thus, it is obvious
that eventually P1 reaches the legitimate configuration and
the output of P1 (the input to P2) eventually becomes un-
changed. After that, if process p requests the inconsistency
detector to evaluate

∧
q∈Nk1+1

p
consq(P1), p always receives

resp = true. Thus, the execution of (P1 ∗ P2) is that of P2.
So, it is obvious that (P1 ∗ P2) eventually reaches the legiti-
mate configuration. The following lemma holds clearly.

Lemma 1: Starting from an arbitrary initial configuration,

456
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

RWFC for (P1 ∗ P2) eventually reaches the legitimate con-
figuration.

Secondly, we show the fault-containment of RWFC.
Starting from an f -faulty configuration (f ≤ f1,2), P1

reaches the legitimate configuration in its recovery time and
with its contamination number (Lemma 2). Until P1 reaches
the legitimate configuration, each correct process that is a
neighbor of a faulty process cannot execute P2 (Lemma 2).
However, a faulty process may execute P2 before P1 reaches
the legitimate configuration, e.g. if reqp = 1 ∧ resp = true
holds at a faulty process p in an f -faulty configuration
(f ≤ f1,2), then p can execute P2. Though p executes P2

before P1 recovers, the number of faulty processes in the re-
sulting configuration of P2 is still no larger than f2. Thus,
after P1 reaches the legitimate configuration, P2 can reach
the legitimate configuration with its fault-containment prop-
erty.

The composite protocol (P1 ∗ P2) via RWFC preserves
the fault-containment property of the source protocols (The-
orem 1). The performance of the obtained protocol depends
on those of P1, P2, and the inconsistency detector.

Starting from an f -faulty configuration (f ≤ f1,2),
P1 first reaches the legitimate configuration with its fault-
containment property.

Lemma 2: Starting from any f -faulty configuration (f ≤
f1,2), P1 reaches the legitimate configuration with its recov-
ery time and contamination number. During the recovery of
P1, each correct process that is a neighbor of a faulty process
cannot execute P2.

Proof. Starting from an f -faulty configuration (f ≤ f1,2), P1

reaches the legitimate configuration with its recovery time
and contamination number because S 1 is P1 itself.

In an f -faulty configuration, reqq = 0∧ resq = ⊥ holds
at each correct process q. If a correct process q is a neigh-
bor of a faulty process and q has an enabled guard in P2, q
changes reqq from 0 to 1 by executing S 2 and the inconsis-
tency detector returns the evaluation of

∧
r∈Nk1+1

q
consr(P1).

From Assumption 5, if P1 is not in the legitimate configura-
tion, q receives resq = false. So, correct processes neighbor-
ing some faulty process(es) do not execute P2 with incorrect
output from P1.

Lemma 3: After P1 reaches the legitimate configuration,
P2 reaches the legitimate configuration with the recovery
time of t2α and the contamination number of c2Δ

β, where
Δ is the maximum degree in G.

Proof. From Lemma 2, there exist at most f (≤ f1,2) faulty
processes in P2 when P1 reaches the legitimate configura-
tion. Thus, P2 reaches the legitimate configuration with its
fault-containment property: for the variables of P2, the re-
covery time and the contamination number is still t2 and c2.

However, each process p should check the consistency
of P1 with the inconsistency detector whenever p has an en-
abled guard of P2. From Assumption 6, this forces each
q ∈ Nβp to change their states and imposes α rounds for p

to obtain the result. Thus, in RWFC, it takes t2α rounds for
P2 to reach the legitimate configuration with the number of
c2Δ

β processes changing their local states.
From Assumption 6, α and β are bounded by some

polynomial in k1.

Theorem 1: RWFC provides an f1,2-fault-containing pro-
tocol (P1 ∗ P2) for f1,2 = min{ f1, f2}. The recovery time is
(t1 + t2α) and the contamination number is max{c1, c2Δ

β}.
Proof. From Lemma 2 and 3, RWFC executes P1 and P2

in the coordinated order and each protocol executes its own
recovery actions. So the maximum number of faults that
the obtained protocol guarantees fault-containment is f1,2 =
min{ f1, f2}. From Lemma 3, the recovery time is (t1 + t2α)
and the contamination number is max{c1, c2Δ

β}.

4. The Inconsistency Detector

In this section, we show an implementation of the inconsis-
tency detector.

The inconsistency detector should provide the commu-
nication between process p and each q ∈ Nk1+1

p to evaluate
∧

q∈Nk1+1
p

consq(P1) whenever p changes reqp from 0 to 1. In

the locally shared memory model, process p can read only
the local variables at its direct neighbors. Thus, it is neces-
sary to broadcast the request to each process q ∈ Nk1+1

p and
each q ∈ Nk1+1

p should return the evaluation of consq(P1) to
p.

Recall that the legitimate predicate L(P1) ≡ ∀p ∈
V : consp(P1) is a stable predicate on configurations in
P1. Thus, starting from a target faulty configuration, once
L(P1) = true holds, L(P1) remains true thereafter. However,
the fault-containment property guarantees that only the pro-
cesses in the inconsistency range of each faulty process p
change their states during the recovery. So, starting from
a target faulty configuration, once consq(P1) holds for each
q ∈ Nk1+1

p for a faulty process p, consq(P1) remains true at
all q ∈ Nk1+1

p thereafter. Consequently, the inconsistency de-
tector should answer whether there is a configuration where
∧

q∈Nk1+1
p

consq(P1) holds between the time when p requests

by changing reqp from 0 to 1 and the time the inconsistency
detector answers to p by changing resp from ⊥ to a value in
{true, false}.

One simple solution for evaluating a stable predicate
is to use PIF (Propagation of Information with Feedback)
protocols that take a snapshot of global configurations by
broadcasting a request to all processes and gathering feed-
backs from all processes.

However, we do not need any global detection but the
local detection among Nk1+1

p for process p. One way to in-
volve Nk1+1

p into some task is to use the breadth first tree of
height (k1 + 1) rooted at p. Whenever process p changes
reqp to 1, p constructs the breadth first tree and by using a
PIF protocol on the breadth first tree, p broadcasts the re-
quest to each q ∈ Nk1+1

p and q feedbacks the evaluation of
consq(P1) to p. We can use the breadth first tree construc-

YAMAUCHI et al.: HIERARCHICAL COMPOSITION PRESERVING THE FAULT-CONTAINMENT PROPERTY
457

tion protocol in [19] by setting the height of the tree k1 + 1.
However, this simple implementation cannot provide

the correct evaluation of
∧

q∈Nk1+1
p

consq(P1) to p. Because

each process executes P1 during the request and feedback of
a PIF protocol, the evaluation of consq(P1) at q ∈ Nk1+1

p may
change during the feedback: e.g. after q sends consq(P1) =
true as a feedback, if the evaluation of consq(P1) changes
from true to false (it may be caused by some state change of
the processes in Nq), p cannot obtain the correct evaluation
of
∧

q∈Nk1+1
p

consq(P1).

Generally, to evaluate a stable predicate among pro-
cesses, PIF is used twice. The first PIF propagates the re-
quest to each process and each process starts to observe the
stable predicate. The second PIF gathers the result of obser-
vation at each process via the feedback of PIF. In this way,
one can evaluate a stable predicate on configurations.

Cournier et al. proposed a snap-stabilizing PIF protocol
for arbitrary networks [7]. Their protocol PIF guarantees
that each process returns the feedback after all processes in
V received the request. Thus, by using PIF, we can collect
the observation of the stable predicate with a single PIF ex-
ecution.

We allow each process p to execute PIF independently
in parallel so that each process q ∈ Nk1+1

p can evaluate
∧

r∈Nk1+1
q

consr(P1) when q changes reqq from 0 to 1. This

is done, for example, by attaching the ID of q to the broad-
cast and feedback. This imposes additional memory of size
of O(|Nk1+1

p | log n) at p to manage different trees while this
does not impose additional time complexity.

We modify PIF as follows:
(i) process p constructs the breadth first tree of height (k1+1)
rooted at p when it changes reqp from 0 to 1.
(ii) process q starts to observe consq(P1) when it receives
the request of the PIF protocol. If consq(P1) = true holds
during the observation, q records it.
(iii) q returns the result of the observation to p with the feed-
back of PIF.

The snap-stabilization property of PIF guarantees that
starting from an arbitrary initial configuration, whenever the
root process begins the broadcast, every process receives the
broadcast and the root process receives feedback from every
process in O(N) rounds. Thus, in our implementation, the
broadcast and feedback take O(Nk1+1

p) rounds. The breadth-
first tree is constructed in O(k1 + 1) rounds. Thus, p re-
ceives the feedback from all processes in Nk1+1

p in O(|Nk1+1
p |)

rounds. Consequently, the value of α in Assumption 6 is
a polynomial in k1. Because only the processes in Nk1+1

p

change their states, the value of β in Assumption 6 is k1 + 1.
So, the condition (iii) of Assumption 6 is satisfied.

To satisfy the condition (iv) of Assumption 6, the in-
consistency detector should check reqp and resp, and when-
ever reqp = 0 ∧ resp � ⊥ holds at p, it should change resp

to ⊥.

5. Conclusion

We present RWFC framework that provides hierarchical
composition of two fault-containing protocols with preserv-
ing the fault-containment property of source protocols. Our
strategy is to stop the execution of the upper protocol until
the lower protocol recovers. We can compose more than two
fault-containing protocols with RWFC by applying RWFC
repeatedly to the source protocols. Though the strategy is
very simple, it provides significant improvement on com-
posing fault-containing protocols. Furthermore, this frame-
work helps designing new fault-containing protocols: we
can easily built new fault-containing protocols on top of ex-
isting fault-containing protocols.

We defined and implemented the inconsistency detec-
tor that enables each process to communicate with the pro-
cesses in its inconsistency range of the lower protocol. Our
implementation is based on an existing snap-stabilizing PIF
protocol that is executed among the processes in the incon-
sistency range of the lower protocol. The performance of
the obtained protocol depends on the inconsistency detector.
Though the PIF protocol imposes additional communication
overhead and execution time, the effect is contained around
faulty processes in the inconsistency range of the lower pro-
tocol. The inconsistency range of the lower protocol is small
because the lower protocol is fault-containing. Thus, the
overhead imposed by the PIF protocol is small and do not
spread over the entire network.

To accelerate the composite protocol by RWFC, we can
use the legitimacy of output variables of the lower protocol
(called output legitimacy) instead of overall legitimacy. This
is because the upper protocol just uses the output variables
of the lower protocol as its input. However, to adopt output
legitimacy, it is necessary that when the system starts from a
target faulty configuration, once the lower protocol reaches
the output legitimate configuration, it remains in the output
legitimate configuration(s) thereafter. Note that not all the
fault-containing protocols provide this property for output
legitimacy.
Future work. RWFC puts several assumptions on the
source protocols, e.g. the unique legitimate configuration,
inconsistency detection. It is necessary to relax these as-
sumptions to extend the application of fault-containing com-
position. So it is necessary to consider a framework for
fault-containing protocols such that the recovery scenario is
more complicated. There may be other keys to check the
configuration of the lower protocol to control the execution
of the upper protocol.

Acknowledgment

This work is supported in part by Global COE (Centers of
Excellence) Program of MEXT, Grant-in-Aid for Scientific
Research ((B) 19300017, (B) 17300020, (B) 20300012, and
(C) 19500027)) of JSPS, Grand-in-Aid for Young Scientists
((B) 18700059 and (B) 19700075) of JSPS, Grant-in-Aid

458
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.3 MARCH 2009

for JSPS Fellows (20-1621), and Kayamori Foundation of
Informational Science Advancement.

References

[1] Y. Afek and S. Dolev, “Local stabilizer,” Proc. 5th Israeli Sympo-
sium on Theory of Computing and Systems, pp.74–84, Ramat-Gan,
Israel, June 1997.

[2] A. Arora and H. Zhang, “LSRP: Local stabilization in shortest path
routing,” Proc. International Conference of Dependable Systems and
Networks, pp.139–148, San Francisco, USA, June 2003.

[3] Y. Azar, S. Kutten, and B. Patt-Shamir, “Distributed error confine-
ment,” Proc. 22nd Annual ACM Symposium on Principles of Dis-
tributed Computing, pp.33–42, Boston, USA, July 2003.

[4] J. Beauquier, M. Gradinariu, and C. Johnen, “Cross-over compo-
sition - Enforcement of fairness under unfair adversary,” Proc. 5th
Workshop on Self-Stabilizing Systems, pp.19–34, Lisbon, Portugal,
Oct. 2001.

[5] S.C. Bruell, S. Ghosh, M.H. Karaata, and S.V. Pemmaraju, “Self-
stabilizing algorithms for finding centers and medians of trees,”
SIAM J. Comput., vol.29, pp.600–614, 1999.

[6] N.S. Chen, H.P. Yu, and S.T. Huang, “A self-stabilizing algorithm
for constructing a spanning tree,” Inf. Process. Lett., vol.39, pp.147–
151, 1991.

[7] A. Cournier, A.K. Datta, F. Petit, and V. Villain, “Snap-stabilizing
PIF algorithm in arbitrary networks,” Proc. 22nd International Com-
ference on Distributed Computing Systems, p.199, Vienna, Austria,
July 2002.

[8] E.W. Dijkstra, “Self-stabilizing system in spite of distributed con-
trol,” Commun. ACM, vol.17, no.11, pp.643–644, 1974.

[9] S. Dolev, A. Israeli, and S. Moran, “Self-stabilization of dynamic
systems,” Proc. MCC Workshop on Self-Stabilizing Systems, MCC
Technical Report no.STP-379-89, 1989.

[10] S. Dolev, A. Israeli, and S. Moran, “Self-stabilization of dynamic
systems assuming only read/write atomicity,” Distributed Comput-
ing, vol.7, pp.3–16, 1993.

[11] S. Dolev, A. Israeli, and S. Moran, “Resource bounds for self-
stabilizing message driven protocols,” Proc. 10th Annual ACM
Symposium on Principles of Distributed Computing, pp.281–293,
Montreal, Canada, Aug. 1991.

[12] S. Dolev and T. Herman, “Superstabilizing protocols for dynamic
distributed systems,” Proc. 2nd Workshop on Self-Stabilizing Sys-
tems, pp.3.1–3.15, Las Vegas, USA, 1995.

[13] S. Dolev and T. Herman, “Parallel composition of stabilizing algo-
rithms,” Proc. 4th Workshop on Self-Stabilizing Systems, pp.25–32,
Austin, USA, June 1999.

[14] S. Dolev and T. Herman, “Parallel composition for time-to-fault
adaptive stabilization,” Distributed Computing, vol.20, pp.29–38,
2007.

[15] S. Ghosh and A. Gupta, “An exercise in fault-containment: Self-
stabilizing leader election,” Inf. Process. Lett., vol.59, pp.281–288,
1996.

[16] S. Ghosh, A. Gupta, T. Herman, and S.V. Pemmaraju, “Fault-
containing self-stabilizing algorithms,” Proc. 15th Annual ACM
Symposium on Principles of Distributed Computing, pp.45–54,
Philadelphia, USA, May 1996.

[17] S. Ghosh, A. Gupta, and S.V. Pemmaraju, “Fault-containing net-
work protocols,” Proc. 12th ACM Symposium on Applied Comput-
ing, pp.431–437, San Jose, USA, Feb. 1997.

[18] S. Ghosh and X. He, “Fault-containing self-stabilization using pri-
ority scheduling,” Inf. Process. Lett., vol.73, pp.145–151, 2000.

[19] S.T. Huang and N.S. Chen, “A self-stabilizing algorithm for con-
structing breadth-first trees,” Inf. Process. Lett., vol.41, pp.109–117,
1992.

[20] S.T. Huang and N.S. Chen, “Self-stabilizing depth-first token circu-
lation on networks,” Distributed Computing, vol.7, no.1, pp.61–66,

1993.
[21] Y. Katayama and T. Masuzawa, “A fault-containing self-stabilizing

protocol for constructing a minimum spanning tree,” IEICE Trans.
Inf. & Syst. (Japanese Edition), vol.J84-D-I, no.9, pp.1307–1317,
Sept. 2001.

[22] K. Kotani, Y. Katayama, T. Masuzawa, and N. Tokura, “A self-
stabilizing algorithm for constructing a minimum weight spanning
tree,” IEICE Technical Report, COMP 92-5, 1992.

[23] S. Kutten and B. Patt-Shamir, “Time-adaptive self stabilization,”
Proc. 16th Annual ACM Symposium on Principles of Distributed
Computing, pp.149–158, Santa Barbara, USA, Aug. 1997.

[24] X. Lin and S. Ghosh, “Maxima finding in a ring,” Proc. 28th Annual
Allerton Conference on Computers, Communication and Control,
pp.662–671, 1991.

[25] G. Tel, Introduction to dustributed algorithms, 2nd ed., Cambridge
Univ. Press, Cambridge, U.K., 2000.

[26] Y. Yamauchi, S. Kamei, F. Ooshita, Y. Katayama, H. Kakugawa,
and T. Masuzawa, “Composition of fault-containing protocols based
on recovery waiting fault-containing composition framework,” Proc.
8th International Symposium on Stabilization, Safety, and Security
of Distributed Systems, pp.516–532, Dallas, USA, Nov. 2006.

[27] K. Yoshida, H. Kakugawa, and T. Masuzawa, “Observation on light
weight implementation of self-stabilizing node clustering algorithms
in sensor networks,” Proc. International Association of Science and
Technology for Development International Conference on Sensor
Networks, pp.1–8, Creta, Greece, Sept. 2008.

Yukiko Yamauchi received the M.E. degree
in computer science from Osaka University in
2006. She is now a student of Graduate School
of Information Science and Technology, Osaka
University and a research fellow of JSPS. Her
research interests include distributed algorithms.
She is a student member of IPSJ.

Sayaka Kamei received the B.E., M.E.
and D.E. degrees in electronics engineering in
2001, 2003 and 2006 respectively from Hiro-
shima University. She is currently an assis-
tant professor of Dept. of Information Engineer-
ing, Graduate School of Engineering, Hiroshima
University. Her research interests include dis-
tributed algorithms. She is a member of IEEE
Computer Society.

Fukuhito Ooshita received the M.E. and
D.I. degrees in computer science from Osaka
University in 2002 and 2006. Since 2003, he
has been an Assistant Professor in the Gradu-
ate School of Information Science and Technol-
ogy at Osaka University. His research interests
include distributed algorithms and parallel algo-
rithms. He is a member of ACM, IEEE, and the
Information Processing Society of Japan.

YAMAUCHI et al.: HIERARCHICAL COMPOSITION PRESERVING THE FAULT-CONTAINMENT PROPERTY
459

Yoshiaki Katayama received his B.E.,
M.E., and D.E. in computer science from Osaka
University. He has been working at Informa-
tion Technology Center, Nara Institute of Sci-
ence and Technology (NAIST) from 1994 to
2003. He is now an associate professor of Grad-
uate School of Engineering, Nagoya Institute
of Technology. His research interests include
distributed algorithms, network applications and
ubiquitous computing. He is a member of IPSJ,
ACM and IEEE Computer Society.

Hirotsugu Kakugawa received the B.E.
degree in engineering in 1990 from Yamaguchi
University, and the M.E. and D.E. degrees in
information engineering in 1992, 1995 respec-
tively from Hiroshima University. He is cur-
rently an associate professor of Osaka Univer-
sity. He is a member of the IEEE Computer So-
ciety and the Information Processing Society of
Japan.

Toshimitsu Masuzawa received the B.E.,
M.E. and D.E. degrees in computer science from
Osaka University in 1982, 1984 and 1987. He
had worked at Osaka University during 1987–
1994, and was an associate professor of Grad-
uate School of Information Science, Nara Insti-
tute of Science and Technology (NAIST) during
1994–2000. He is now a professor of Gradu-
ate School of Information Science and Technol-
ogy, Osaka University. He was also a visiting
associate professor of Department of Computer

Science, Cornell University between 1993–1994. His research interests in-
clude distributed algorithms, parallel algorithms and graph theory. He is a
member of ACM, IEEE, and IPSJ.

