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Hybrid Lower-Dimensional Transformation for Similar Sequence

Matching*

SUMMARY  Lower-dimensional transformations in similar sequence
matching show different performance characteristics depending on the type
of time-series data. In this paper we propose a hybrid approach that exploits
multiple transformations at a time in a single hybrid index. This hybrid
approach has advantages of exploiting the similar effect of using multiple
transformations and reducing the index maintenance overhead. For this, we
first propose a new notion of hybrid lower-dimensional transformation that
extracts various features using different transformations. We next define the
hybrid distance to compute the distance between the hybrid transformed
points. We then formally prove that the hybrid approach performs similar
sequence matching correctly. We also present the index building and sim-
ilar sequence matching algorithms based on the hybrid transformation and
distance. Experimental results show that our hybrid approach outperforms
the single transformation-based approach.

key words: databases, data mining, similar sequence matching, time-
series data, lower-dimensional transformation

1. Introduction

Time-series data are the sequences of real numbers rep-
resenting values at specific points in time [1], [3], [5], [7],
[8]. The time-series data stored in a database are called
data sequences, and those given by users are called query
sequences. Finding data sequences similar to the given
query sequence from the database is called similar sequence
matching [3], [9]. As the distance function D(X, Y) between
two sequences X = {xp,...,Xx,—1} and ¥ = {yo,..., V-1,
many similar sequence matching models have used the L,,-

distance (= ,”/Z?;OI |x; — y;|P), including the Manhattan dis-
tance and the Euclidean distance [1]-[3], [9].

Most of the similar sequence matching solutions have
used the lower-dimensional transformation to store high-
dimensional sequences into a multidimensional index [1]—
[31,19],[11]. The lower-dimensional transformations, how-
ever, show different characteristics in indexing performance
according to the type of time-series data. This means that
there is no specific transformation showing the optimal per-
formance for all types of time-series data, but the optimal
transformation varies according to the type of time-series
data. Based on this characteristics, Keogh et al. [6] proposed
E-Index(Ensemble-Index) that used multiple indexes to ex-
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ploit multiple lower-dimensional transformations. This ap-
proach is novel, but has two problems: 1) it has to know the
characteristics of time-series data in advance, and 2) it in-
curs the index maintenance overhead due to use of multiple
indexes.

In this paper we propose a hybrid approach that ex-
ploits multiple lower-dimensional transformations at a time
in a multidimensional index. Motivation of the hybrid ap-
proach is based on the fact that the well-known transfor-
mations concentrate most of the energy into only a few
features [1], [2],[8],[10]. Thus, our hybrid approach ex-
tracts only a few features from each transformation and in-
tegrates the features for a new lower-dimensional transfor-
mation. To do this, we first propose a new notion of hybrid
lower-dimensional transformation(or simply hybrid trans-
formation). For a given sequence, the hybrid transforma-
tion extracts various features with different characteristics
by using different transformations and then integrates the
features into a lower-dimensional point. We next define the
hybrid distance to compute the distance between the hybrid
transformed points. We then formally prove the correctness
of the hybrid transformation-based similar sequence match-
ing. We also present the index building and similar sequence
matching algorithms based on the hybrid transformation and
distance. Likewise, considering multiple transformations
for all time-series we can solve the first problem of [6], and
using multiple features in a single index we can also solve
the second problem of [6]. Experimental results show that
our hybrid approach outperforms the single transformation-
based approach by taking superior characteristics of individ-
ual transformations.

2. Related Work

From now on, we use the following notations: F; is the
i-th lower-dimensional transformation; F;(S) is the trans-
formed point from a sequence S by the transformation F;
and F;(S)F;(S) is a concatenation of F;(S) and F;(S).
Most of similar sequence matching solutions have
used the lower-dimensional transformation to store high-
dimensional sequences into a multidimensional index [1],
[3]1,[5],[6],[11], since storing high-dimensional sequences
in an index causes the high dimensionality problem and re-
quires excessive index space [1], [3], [9]. Various transforms
including DFT (Discrete Fourier Transform), Wavelet, and
PAA (Piecewise Aggregate Approximation) are used as the
lower-dimensional transformation of high-dimensional se-
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quences. DFT is most widely used in many similar se-
quence matching solutions [1], [3],[9],[10]. Wavelet and
PAA are also used in [2],[5] and [6], respectively. Be-
sides these transforms, DCT (Discrete Cosine Transform)
and SVD (Singluar Value Decomposition) are introduced
as the lower-dimensional transformation [6]. Among these
transformations, however, we cannot choose an optimal one
since it varies by the type of time-series data [6].

Keogh et al. [6] proposed E-Index that used multiple
indexes for multiple transformations. E-Index consists of
multiple indexes, and each of which is used for a lower-
dimensional transformation. They first select the most ap-
propriate transformation for each part of time-series data,
and then store the part of data in the corresponding index
using the selected transformation. This approach is novel,
but has the following two problems. First, it is difficult to
select the most appropriate transformation in advance since
the type of time-series data is too diverse, and the data will
be updated and appended continuously. Second, E-Index in-
curs the index maintenance overhead since it needs to main-
tain multiple indexes internally. Therefore, in this paper we
propose a hybrid approach that considers multiple transfor-
mations in a single index at a time.

3. Hybrid Lower-Dimensional Transformation
3.1 The Concept

We devise the hybrid transformation based on the fact that
many transforms such as DFT and Wavelet concentrate most
of the energy into only a few features. That is, we define a
new lower-dimensional transformation by concatenating the
features resulted from different lower-dimensional transfor-
mations.

Definition 1: Given m lower-dimensional transformations
F\,F,,...,F,, the hybrid lower-dimensional transformed
point of a sequence S, denoted by HT(S), is defined as in
Eq. (1):

HT(S) = Fi(S)Fa(S) - Fu(S) D

Figure 1 depicts the hybrid transformation. As shown in
the figure, we first transform the given sequence S using
each transformation F;, and then construct the hybrid trans-
formed point HT(S) by concatenating the energy concen-
trated features F;(S). We devise the hybrid transformation
in order to exploit various characteristics of different trans-
formations, since each transformation has its own character-
istics [6]. Using the hybrid transformation we can get the
similar effect of using multiple transformations in an index
at a time.

To use the hybrid transformation in similar sequence
matching, however, we need a new distance measure for
the hybrid transformed sequences because the original L,-
distance will not satisfy Parseval’s theorem [1] any more for
the hybrid transformation. That is, the following Eq. (2) is
not satisfied any more for a data sequence S and a query
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Fig.1  Concept of the hybrid transformation.

sequence Q.
D(S,0)<e= DHT(S),HT(Q)) <€ 2)

The lower-dimensional transformation in similar sequence
matching should satisfy Eq. (2) [1], [3], [9]. Thus, if we want
to use the hybrid transformation in similar sequence match-
ing, we need to define a new distance measure for the hybrid
transformed points.

Definition 2: If a data sequence S and a query sequence
Q are transformed to HT(S') and HT(Q), respectively, by
the hybrid transformation w.r.t. Fy, F»,..., F,,, then the hy-
brid distance between two transformed points H7T'(S) and
HT(Q), denoted by HD(HT(S), HT(Q)), is defined as in

Eq.(3):
HD(HT(S),HT(Q)) = max {D(Fi(S), Fi(Q))} 3)

In Definition 2, we select the maximum distance as the
hybrid distance in order to use the tightest bound when
we compare the transformed points. Since the larger dis-
tance provides the better indexing performance in similar
sequence matching [3], [9], by using the maximum distance
we can get the better performance in indexing the trans-
formed points.

Theorem 1 shows that the hybrid transformation satis-
fies Parseval’s theorem for the hybrid distance.

Theorem 1: Given a data sequence S and a query
sequence (, if the lower-dimensional transformations
F(,F,,...,F, satisfy Parseval’s theorem, then the L,-
distance D(S, Q) and the hybrid distance HD(HT(S),
HT(Q)) satisfy the following Eq. (4):

D(S,0)<e= HD(HT(S),HT(Q)) <€ “)

Proor: By Parseval’s theorem, every F; satisfies the rela-
tionship of D(S, Q) < € = D(Fi(S), Fi(Q)) < €[1]. Thus,
D(S, Q) < € = maX<i<mw{D(Fi(S), Fi(Q))} < € also holds.
By Definition 2, max<j<,{D(Fi(S), Fi(Q))} is denoted as
HD(HT(Q), HT(S)). It means that Eq. (4) holds. ]
Theorem 1 means that we can perform similar sequence
matching correctly if we use the hybrid distance for the hy-
brid transformation.

3.2 Index Building and Similar Sequence Matching Algo-
rithms

To perform similar sequence matching, we need to construct
a multidimensional index first. Index building mechanism
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for the hybrid transformation is the same as that for the tradi-
tional transformation. That is, using the hybrid transforma-
tion we first transform high-dimensional sequences to low-
dimensional points, and then construct an index by storing
the transformed points. Algorithm 1 shows the index build-
ing algorithm that uses the hybrid transformation. Algo-
rithm 1 is for whole matching [1], [2], and by referring [3],
[9] it can be easily extended to that for subsequence match-
ing. In Line 2, we transform each data sequence to a low-
dimensional point using the hybrid transformation. After
then, in Line 3 we store the transformed point into the in-
dex with a pointer to the corresponding data sequence. By
repeating these two steps for every data sequence, we can
complete the index construction (Lines 1 to 4). We use the
index built by Algorithm 1 to obtain the candidate [1], [3],
[9] data sequences in the following similar sequence match-
ing algorithm.

Algorithm 1 BuildIndex (S, F1, ..., F,)

Input: S is a set of data sequences; F; is the i-th lower-dimensional transformation.
1: for each data sequence S € S do

2:  Obtain the hybrid transformed point HT(S) using F1, ..., Fus

3:  Insert HT(S) into the index with a pointer to S;

4: end for

We now explain the similar sequence matching algo-
rithm. For the traditional transformation, we generally use
the L,-distance in searching the index to compare two trans-
formed points. In contrast, for the hybrid transformation,
we need to use the hybrid distance of Definition 2 in search-
ing the index. It is because, as we explained in Sect. 3.1,
the traditional transformation satisfies Parseval’s theorem,
in contrast, the hybrid transformation satisfies Theorem 1,
the modified Parseval’s theorem for the hybrid transforma-
tion.

Algorithm 2 shows the whole matching algorithm [1],
which can be extended to the subsequence matching algo-
rithm by [3],[9],[11] and the k-nearest neighbor algorithm
by [2], [5], [6]. As shown in Algorithm 2, we first construct
a range query using the hybrid transformed point and the
given tolerance (Lines 1 and 2). We then obtain the candi-
date data sequences by evaluating the range query on the
index (Line 3). In this index searching step, we use the hy-
brid distance instead of the original L,-distance since we use
the hybrid transformation instead of the traditional trans-
formation. After obtaining the candidate data sequences,
we perform the post-processing step [1]-[3], [9] that identi-
fies only true similar sequences by accessing the actual data
sequences (Line 4). We finally return the true similar se-
quences as the results (Line 5).

Algorithm 2 WholeMatching (Q, €, F1, ..., F,)

Input: Q is a query sequence; € is the tolerance; F; is the i-th lower-dimensional
transformation.

: Obtain the hybrid transformed point HT(Q) using Fi, ..., Fpu;

. Construct a range query using HT(Q) and €;

. Search the index using the hybrid distance;

. Perform the post-processing step to remove false alarms;

: Return the true similar data sequences;
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4. Performance Evaluation

We performed experiments using four types of data sets: the
first one is STOCK-DATA that contains a real stock data [3],
[8]1,[9] consisting of 329,112 entries; the second one is
WALK-DATA that contains random walk synthetic data [3],
[9] consisting of one million entries; the third one is SINE-
DATA that contains synthetic streaming time-series [4] con-
sisting of one million entries; and the fourth one is PERIOD-
DATA that contains pseudo periodic synthetic time-series [9]
consisting of one million entries. For lower-dimensional
transformations, we use two transforms, DFT and PAA,
since the characteristics of DCT and Wavelet are similar to
those of DFT and Wavelet, respectively [6]. We use both
DFT and PAA for the hybrid transformation and extract four
features from each transformation. As the similar sequence
matching method, we use Dual Match [9], a subsequence
matching method, and as the multidimensional index, we
use the R*-tree [3]. For the experimental results, we mea-
sure the elapsed time of each transformation because the
filtering efficiency of transformations can be measured as
the query response time, and most papers [3], [6], [9] used
the response time as the efficient measure of transforma-
tions. We set the query sequence length to 256, but change
the selectivity [3], [9] from 1073 to 1073, To avoid effects
of noise, we experiment with ten different query sequences
and use the average as the result. The hardware platform
is a PC equipped with an Intel Pentium IV 2.80 GHz CPU
and 512MB RAM. The software platform is GNU/Linux
Version 2.6.6 operating system.

Figure 2 shows the experimental results for STOCK-
DATA and WALK-DATA. In the graphs, the horizontal axis
represents the selectivity, and the vertical axis the relative
elapsed time between DFT (or PAA) and the hybrid trans-
formation. As shown in Fig.2 (a), DFT and PAA show the
similar performance trend, but the hybrid transformation is
always superior to DFT and PAA. It is because, for each
part of time-series data, we select the best transformation
and use it as the hybrid transformation. In Fig. 2 (a), the per-
formance difference decreases as the selectivity increases. It
is because, as the selectivity increases, the time for the post-
processing step becomes much longer than that for the index
searching step. The result for WALK-DATA in Fig. 2 (b) is
very similar to that for STOCK-DATA, since WALK-DATA
has the similar characteristics with STOCK-DATA [3].

Figure 3 shows the results for SINE- and PERIOD-
DATA. We note that the overall trend is similar to that of
Fig. 2, and the hybrid transformation also shows the better
performance than DFT and PAA. Especially in Fig. 3 (b),
DFT is better than PAA for low selectivity ranges, but PAA
is better than DFT for high selectivity ranges. Likewise, the
best transformation can vary by the selectivity range. Our
hybrid transformation, however, shows the best performance
in all the selectivity ranges since it integrates both DFT and
PAA. In summary, the hybrid transformation shows the bet-
ter performance than the traditional transformations for all
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Fig.2  Experimental results on STOCK- and WALK-DATA.
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Fig.3  Experimental results on SINE- and PERIOD-DATA.

types of time-series data and for all ranges of selectivity.
It means that we can use the hybrid transformation with-
out considering the data characteristics and the selectivity
ranges.

5. Conclusions

The previous approach [6] with multiple transformations has
a problem of requiring the investigation on time-series char-
acteristics in advance and another problem of incurring the
index maintenance overhead. To solve these problems, we
proposed a hybrid lower-dimensional transformation and
presented the similar sequence matching method based on
that hybrid transformation. Using the hybrid transformation
we can exploit the similar effect of using multiple lower-
dimensional transformations in an index at a time. We also
reduced the index maintenance overhead by using only one
hybrid index. Through experiments for various data sets, we
also showed that our hybrid approach outperformed the sin-
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gle transformation-based approach. These results indicate
that our hybrid transformation can be widely used for var-
ious time-series data with different characteristics. Future
research includes extension of the hybrid transformation to
support the dynamic time warping distance [5], [7]

References

[1] R. Agrawal, C. Faloutsos, and A. Swami, “Efficient similarity search
in sequence databases,” Proc. 4th Int’] Conf. on Foundations of Data
Organization and Algorithms, pp.69-84, Oct. 1993.

[2] K.-P. Chan, A.W.-C. Fu, and C.T. Yu, “Haar wavelets for efficient
similarity search of time-series: With and without time warping,”
IEEE Trans. Knowl. Data Eng., vol.15, no.3, pp.686-705, Jan./Feb.
2003.

[3] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subse-
quence matching in time-series databases,” Proc. Int’l Conf. on Man-
agement of Data, pp.419-429, ACM SIGMOD, May 1994.

[4] L. Gao and X.S. Wang, “Continually evaluating similarity-based
pattern queries on a streaming time series,” Proc. Int’l Conf. on Man-
agement of Data, pp.370-381, ACM SIGMOD, June 2002.

[5] W.-S. Han, J. Lee, Y.-S. Moon, and H. Jiang, “Fast ranked subse-
quence matching in time-series databases,” Proc. Int’l Conf. on Very
Large Data Bases, pp.423-434, Vienna, Austria, Sept. 2007.

[6] E.J. Keogh, S. Chu, and M.J. Pazzani, “Ensemble-index: A new ap-
proach to indexing large databases,” Proc. 7th Int’l Conf. on Knowl-
edge Discovery and Data Mining, pp.117-125, ACM SIGKDD,
Aug. 2001.

[7]1 E.J. Keogh, L. Wei, X. Xi, S.-H. Lee, and M. Vlachos, “LB_Keogh
supports exact indexing of shapes under rotation invariance with ar-
bitrary representations and distance measures,” Proc. Int’l Conf. on
Very Large Data Bases, pp.882-893, Sept. 2006.

[8] H.-S. Lim, K.-Y. Whang, and Y.-S. Moon, “Similar sequence
matching supporting variable-length and variable tolerance contin-
uous queries on time-series data stream,” Inf. Sci., vol.178, no.6,
pp-1461-1478, March 2008.

[9] Y.-S. Moon, K.-Y. Whang, and W.-S. Han, “General match: A sub-
sequence matching method in time-series databases based on gener-
alized windows,” Proc. Int’l Conf. on Management of Data, pp.382—
393, ACM SIGMOD, June 2002.

[10] Y.-S. Moon, “An MBR-safe transform for high-dimensional MBRs
in similar sequence matching,” Proc. 12th Int’l Conf. on Database
Systems for Advanced Applications (DASFAA 2007), pp.79-90,
Bangkok, Thailand, April 2007.

[11] Y.-S. Moon and J. Kim, “Efficient moving average transform-based
subsequence matching algorithms in time-series databases,” Inf.
Sci., vol.177, no.23, pp.5415-5431, Dec. 2007.




