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Information Distribution Analysis Based on Human’s Behavior
State Model and the Small-World Network

Pao SRIPRASERTSUK®, Nonmember and Wataru KAMEYAMA ™", Member

SUMMARY In this paper, an information distribution model based on
human’s behavior is proposed. We also propose dynamic parameters to
make the model more practical for real life social network. Subsequently,
the simulations are conducted based on the small-world network and its
characteristics, and the parameters in the model are analyzed to increase
efficiently the power of information distribution. Our study and simulation
results show that the proposed model can be used to analyze and predict the
effectiveness of information distribution. Moreover, the study also shows
how to use the model parameters to increase power of the distribution.

key words: information distribution, primary and secondary information
distribution, small-world network

1. Introduction

In general, there are two kinds of information flows in an
information distribution such as advertisement distribution:
one is the primary information distribution, and the other is
the secondary information distribution. The primary infor-
mation distribution is the distribution done by providers or
broadcasters to consumers through certain kinds of media
such as television, newspaper, etc. The secondary informa-
tion distribution is the distribution done by users to users
such as word-of-mouth. Today, the advanced information
technologies enable the secondary information distribution
to perform by various methods and through media. This
type of distribution has been playing an important role in our
society and we cannot ignore its power anymore. Therefore,
it is necessary to analyze the power of secondary informa-
tion distribution.

We have investigated how the secondary information
distribution affects the information circulation based on the
statistical observation [1]. Our experiment in [1] shows that
the model can present a part of the real world information
distribution, and analyze its effectiveness. However, the pro-
posed model does not consider the human network structure
but only the statistical aspects of information distribution
being consumed.

On the other hands, there are researches about infor-
mation distribution taking into account the structure of the
human network structure, that is the small world network.
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Fig.1  The SIR model.

The small-world network have been very popular in the
scientific community because of its ability to model many
complex systems in our nature and man-made networks [2].
The World Wide Web [3], food web [4], scientific collabo-
ration networks [5], electronic circuits [6] and even human
languages [7] are the examples of these systems.

The small-world network model has been widely ap-
plied in various research domains. One of the popular do-
main is epidemics, particularly disease propagation in the
human network. An epidemic model popularly used in
such researches is the SIR(Susceptible, Infected and Re-
fractory) model proposed by W.O. Kermack and A.G. Mck-
endrick [11]. The SIR model is composed of three states,
Susceptible, Infected and Refractory states, and a node in
the network can be in one of them as shown in Fig. 1.

There are researches [8]-[10] using the SIR model to
analyze the effectiveness of information distribution. Ac-
cording to the nature of human’s behavior, we consider the
SIR model is not suitable to represent the information prop-
agation cycle. Therefore, in order to analyze and control
the power of secondary information distribution efficiently,
we propose a new information distribution model and equa-
tions considering the human’s behavior. Subsequently, the
proposed model is simulated and analyzed by applying the
small-world network and it characteristics.

This paper is organized as follows: in Sect.2, some
problems of the SIR model are described. We explain the
proposed model and equations in Sect. 3. Sections 4 and 5
describe the simulation results, and finally Sect. 6 shows our
conclusion and future works.

2. Problems of SIR Model

The SIR model has been widely used in many research areas
such as computer viruses [12], information propagation [8]—
[10] and so forth [13],[14]. For example, [8]-[10] use the
SIR model for their proposals and simulation by considering
“Susceptible” as individuals who have not heard the infor-
mation and they are susceptible to be informed, “Infected”
as individuals who are spreading the information, and “Re-
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fractory” as individuals who know the information but no
longer spreading it. However, using the SIR model is not
suitable because it concerns but not fully the human behav-
ior of information distribution. For instance, after individu-
als get the information, they may not spread the information
or they may forget it and become susceptible again. Even
they become information spreaders, they may forget the in-
formation, and they reverse to be susceptible in the future
time. Moreover, infected nodes do not always spread the
information to neighbors as mentioned in the SIR model in
[8]-[10]. These points show the limitation and constraint of
the SIR model to represent the real world information prop-
agation by human.

Furthermore, the result from [8]-[10] applying the SIR
model shows that all of information propagation reaches al-
most all individuals when time passes. In other words, any
information is passed on to almost all nodes in the network.
However, this kind of phenomenon is rare in the real world
information distribution .

Another problem of [8]-[10] is that there are some
cases in practical information distributions such as adver-
tisement distribution where the primary information distri-
bution is also done during the secondary information distri-
bution. But their model and algorithm cannot explain and
analyze this kind of distribution because they only concern
the secondary information distribution.

Hence, in this paper we propose a model and equations
that can be used for analyzing practicle information distri-
bution as described in Sect. 3.

3. Proposed Information Distribution Model
3.1 Model Overview

With regard to the human’s behavior state for information
distribution, we consider that there are three states that
are “Unknown”, “Known” and “Distribute”. The proposed
model is shown in Fig. 2, and the definitions are described
as below.

e Unknown State (U)
Individuals in this state do not know information. They
either do not receive information yet or they forget it.
In the case of forgetting information, individuals transit
from Known State to this state.

e Known State (K)
In this state, individuals know information but do not
have any action to the information distribution.

STB T B

Unknown Known Distribute
@) (K) D)

SR R

Fig.2  The proposed information distribution model.
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e Distribute State (D)
Individuals in this state are active to distribute informa-
tion. The distribution by their own intentions and other
individuals requests are considered as the same.

e Probability of Becoming Known State(B;)
This parameter shows the probability of individuals in
Unknown State to change into Known State. For exam-
ple, some individuals in Unknown State are informed
with the information by individuals in Distribute State.

e Probability of Becoming Distribute State (B;)
This parameter shows the probability of individuals in
Known State to change into Distribute State. For ex-
ample, if individuals in Know State start to distribute
the information, they move from Known State to Dis-
tribute State.

e Probability of Returning to Unknown State (R;)
This parameter shows the probability of individuals in
Known State to change into Unknown State. For ex-
ample, they forget the information because they are not
interested or the information becomes stale after time
passes.

e Probability of Returning to Known State (R;)
This parameter shows the probability of individuals in
Distribute State to change into Known State. For exam-
ple, after individuals distributed the information, they
may change their mind to stop the action. Thus, their
state is changed to Known State.

With regards to Fig.2 and the above definitions, the nota-
tions with time series are defined as below.

e N : the number of all individuals in the network

e U(t): the number of Unknown State individuals in N at
time ¢

e K(t): the number of Known State individuals in N at
time ¢

e D(t): the number of Distribute State individuals in N at
time ¢

Thus, U(t) + K(t) + D(¢) = N.

3.2 The Process of Transiting to Known State from Un-
known State

New individuals get information by being in contact with
individuals in Distribute State. We assume that each indi-
vidual in Distribute State contacts k neighbors in each pe-
riod, and the probability of successful distribution of each
individual in Distribute State is B;. Therefore, the proba-
bility of successful distribution for individuals in Unknown
State depends on numbers of neighbors in Distribute State.
This probability is defined as Eq. (1), where G; is successful
distribution probability of individual i and n is the number
of neighbors of it in Distribute State. The transition process
from Unknown State to Known State with B; = 0.5 is il-
lustrated in Fig.3. In Fig. 3, the probability of successful
distribution of “Unknown (11)” is 0.875 because there are
three neighbors in Distribute State, while this probability of
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Gs=1-(1-0.5)'=0.5

'Gi=1-(1-0.5)° =0.875

Fig.3  The process of transiting to known state from unknown state with
By =0.5.

“Unknown (6)” is 0.5 because there is only one neighbor in
Distribute State. If the distribution is successful, Unknown
State of the informed node changes to Known State. Note
that this figure shows an illustration of the process on a reg-
ular lattice model. However, the actual simulation is done
on a small-world network.

Gi=1-(-B)" (D

3.3 Dynamism in R,

R, shows the probability of forgetting information. We
apply the forgetting curve theory of Hermann Ebbing-
haus [15]. According to [15], the human forgetting formula
is described by R = ¢~5) where R is memory retention, S is
the relative strength of memory, and ¢ is time. As discussed
in Sect. 3.2, new individuals might transit from UnKnown
and Distribute State to Known State, and individuals might
leave Known State any time. We consider that, when those
new individuals transit to Known State, they start to forget
the information with the probability of R;. Thus, R;(?); for
individual i is defined in Eq. (2) where ¢, is time when indi-
vidual i transit to Know State. An example graph of R; is
shown in Fig. 4 where 7, = 0 and S = 100.

R =1-¢" )

3.4 Dynamism in R, and B,

We also consider B, and R, as dynamic parameters in this
paper because their values depend on motivation and feel-
ing of individuals to information itself. For instance, indi-
viduals might be motivated to distribute information in the
beginning of the distribution but their intention might di-
minish when time passes. So, we consider the information
distribution life cycle is similar to the Product Life Cycle
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Fig.4  Anexample graph of Ry with#, = 0 and § = 100.
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Fig.5  The product life cycle (PLC) model [16].

(PLC) [16] in the marketing study area, because the PLC
concept is based on consumers and manufacturers behav-
iors, and the social psychology. In addition, information is a
product that is designed with a purpose in mind, while data
serves as the ingredient in this product[17]. The model of
the PLC is similar to the bell curve as shown in Fig. 5. In the
PLC, there are 4 states that are Introduction, Growth, Matu-
rity and Decline. The length of each state varies enormously
because it depends on the product itself.

B, , i.e. motivation or incentive to distribute informa-
tion, increases in the Introduction state where the motiva-
tion is created and the individuals in Distribute State start to
distribute the information. In Growth state, the motivation
and distribution are growing significantly along with public
awareness. After Growth state, the motivation to distribute
information is still growing for a short period of time and
starts to decline because information becomes stale, and it
happens in Maturity state. Finally, in Decline state, motiva-
tion decreases continuously or it becomes stagnant.

However, for R,, i.e. when individuals have no motiva-
tion to re-distribute information after having distributed it,
R, might not have Decline state, because lack of motivation
of distributors is difficult to decline if there is no any stimu-
lation.

Nevertheless, human intention, motivation and feeling
of information distribution are so varied due to information
itself. Such variations are able to be represented in many
kinds of graph such as asymmetric bell curve. Hence, we
propose Eq. (3) to represent B,(¢) and R,(f). Eq.(3) is flex-
ible to produce various kind of graphs by changing u, A,p,
Adown and B. Changing u, A, Agow, and § means chang-
ing time when the graph reach maximum value, changing
graph scale when ¢ < u, changing graph scale when ¢ > p,
and changing maximum value of y-axis, respectively. Some
examples of graphs produced by Eq. (3) is shown in Fig. 6.
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As a note, R(¢); of individual i varies depending on
a point of time(#,) when each individual transit from Un-
known State or Distribute State to Known State. On the
other hand, we assume that B,(#) and R,(#) depend on the
information life cycle but not depend on individuals’ state
transition like R (¢);. In other words, B>(¢) and R,(¢) have
the fixed curves independent from individuals’ state transi-
tion. It means an individual who get the information at early
time tends to distribute it to others with high probability,
but an individual who get the information at later time tends
not to be interested information and to distribute it to others
with low probability because of the oldness of the informa-
tion. Therefore, B,(f) and R,(¢) for all individuals at time ¢
are same and fixed as given by Eq. (3).

3.5 Primary Information Distribution

Occasionally the primary information distribution is also
done during the secondary information distribution. There-
fore, we define the primary information distribution parame-
ter P(¢) as shown in Eq. (4). In this equation, ¢ and tprimary
are number of individuals informed by primary informa-
tion distribution and time when primary information is dis-
tributed, respectively. For instance, if ¢ = 10,000 and
tprimary = 200, it means 10,000 individuals in Unknown
state are randomly selected, and transit to Known state when
t = 200 as they are deemed to be informed by primary in-
formation distribution power such as television, newspaper,
etc.

In addition, the primary information distribution can be
also done many times during the secondary information dis-
tribution. For example, if ¢ = 10,000 and tprimary = 200
and 400, 10,000 individuals in Unknown state are randomly
chosen and transit to Known state when ¢ = 200 and ¢ = 400.

c (t = tprimary)
0 (otherwise)

P(t) = { )

p=50, A,,=0.1, 2 oin. 005, p=1
pn=450, =0.005,, 6 =0.1 ,p=2 ——
up down

n=50, 7 =0.003, %, =0.004, p=1
up dow n
=250, xup:o. 008, kdow:rp. 008, p=1 ]

o
=)

Probability
o o
S [=2]

Time

Fig.6  The graphs from Eq. (3).
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4. Simulation and Analysis of Proposed Model
4.1 Simulation Overview

In the present, the most popularly used small-world network
models are WS model [2] and NW model [18]. In this paper,
we use the NW model instead of the WS small-world net-
work model, because there is probability for the WS model
to be broken into unconnected cluster and the average dis-
tance between pairs of nodes on the graph is poorly defined
due to the rewiring connection [18].

In our simulation, we apply our model and proposed
equations to the one-dimension ring lattice small-world net-
work. We deploy the following two steps to construct a
small-world network which has the average degree equal
to four because real social networks usually have aver-
age coordination numbers significantly higher than two [19].
First, we arrange and connect all nodes, then the network
is formed as a regular one-dimension ring lattice model
where each node has four connections to the nearest neigh-
bor nodes. Second, we create shortcuts by repeatedly con-
necting two nodes chosen randomly according to the NW
model. Furthermore, in social networks there are not only a
few shortcuts in networks arising the small-world effect but
also a few nodes in the network which have unusual high
connections [20] called hubs. In order to make the simula-
tion to be more practical for real-world social networks, we
also randomly add a few hubs in our simulation. Table 1 is a
list of parameters used in the simulation. An illustration of
the NW model in our simulation is depicted in Fig. 7. In this

Table 1  Parameters used in the simulation.
Parameter | Explanation
K(0) Number of initial Known State individuals at

the beginning of information distribution. This
parameter can be also considered as the result
of the initial primary information distribution
done in advance.

k Average number of connections of each node in
the network. In other words, k is average
degree.

SC Number of shortcuts.

Hub Number of hubs.

(@) k=4

Fig.7  An illustration of one-dimensional ring lattice small-world
network (NW Model).
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figure, (a) and (b) represent the NW model with k = 4 and
k = 6, respectively. A node which has more shortcut than
one is a hub.

In our simulation, the initial Known State nodes at the
beginning of information distribution (K(0)), shortcuts and
hubs are randomly chosen from all nodes in the network.
During the process of simulation, all nodes that are in Dis-
tribute State distribute information to their neighbors. And,
the probability of nodes in Unknown State becoming Known
State depends on numbers of neighbor that are in Distribute
State as discussed in Sect. 3.2. For the process of becoming
Distribute State and returning to Unknown State, nodes in
the Known State are checked to change their state with the
probability of B,(¢) and R;(¢);, respectively. In the process
of returning to Known State, nodes in Distribute State are
checked to change their state with the probability of R, ().

In order to determine the number of shortcuts in our
simulation, we consider the characteristic path length (L) in
the network because this parameter shows the average dis-
tance between two nodes over all pairs of nodes on the net-
work, and adding a few of shortcuts can reduce L dramati-
cally [2]. M.E.J Newman et al. propose interesting method
to calculate L using a mean-field-like approximation [21],
and a complete solution for L is shown as Eq. (5). In this
equation, ¢ is characteristic length and & = 1/(k’¢) where k’
and ¢ represent constant range(%) and shortcut density(%),
respectively.

& -1 1
E=—°  tanh! ——— 5
2k" \J1 +2£/N an V1 +26/N ©)
—~ 1< _ 20E@)
C—NZCi,Ci—m (6)

i=1

We use the above Eq. (5) to find appropriate number
of shortcuts which gives small-world effect by conducting
simulation of L with N = 1,000,000 and £k = 4. Com-
paring with L of no shortcuts, L is reduced 10, 34 and 250
times when 22, 100 and 1000 shortcuts are added in the net-
work respectively, while Clustering Coefficient of the whole
network C is almost constant where C can be obtained by
Eq.(6)[2]. In this equation, C; is clustering coefficient of
subgraph I, k; is number of neighbor connections of the
nodes i in subgraph I'; and |E(T;)| is the numbers of exist-
ing links in the neighborhood of node i. A graph of L of
N = 1,000,000 and k = 4 is shown in Fig. 8 where y-axis
and x-axis are L/N and number of shortcuts, respectively.
As seen in this figure, L/N reduces quite considerably when
shortcuts are added. But after 100 shortcuts are added, L/N
reduces gradually. Therefore, we decide to use 100 short-
cuts as a default value in our simulation.

For B,(t), we use the values shown in Table 2, and these
values produce a graph in which the probability increases
rapidly at the beginning of the distribution time and gradu-
ally decreases after it reaches the maximum value of prob-
ability. For R,(f), the values in Table 2 generate a graph in
which the probability increases gradually. In other words,
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Fig.8  Graph of L with N = 1,000,000 and k = 4.
Table2  Default parameter values.

Parameter Value

By 0.5

Ri(?) Eq. (2) with § = 100

By(1) Eq. (3) with u =5,

Aup = 0.1, Agown = 0.005, 8 =1
Ry(1) Eq. (3) with u = 450,
/lup = 0.008, Agown =0,8=1

K(0) 1000

k 4

N 1,000,000

range of ¢t | 1to500

sC 100

Hub 100. Each hub has 10+k connections

P(1) always 0

©
o

Probability

0

0 100 200 300 400 500

t
Fig.9  Graph of B;(r) and Ry (f) generated by values in Table 2.

we assume that, the motivation to distribute this information
by the nodes in Known State is rapidly created, but after the
motivation reaches to a peak, it gradually decreases. And,
the lack of motivation to distribute this information by the
nodes in Distribute State gradually increases and becomes
stagnant later because there is no stimulation. Graphs of
B,(7) and R,(¢) generated by values in Table 2 are shown in
Fig.9.

Other parameters for the simulation are also shown in
Table 2. The parameter values in this table are a set as de-
fault values, and we change the values in the simulation to
analyze their impacts afterward. Furthermore, we define the
effectiveness of information distribution as the number of in-
dividuals in the network who know the information at each
time ¢. Hence, in the simulation, we focus on the effective-
ness of the distribution by observing K(¢)+ D(f). The default
parameter values in Table 2 generate a graph of K(f) + D(¢),
U(1), K(t) and D(t) shown in Fig. 10. As a note, all nodes
and shortcuts are randomly created in the simulation as men-
tioned above. Therefore, in order to make the result data
be reliable, every simulation is conducted 5 times. Subse-
quently, we calculate all result data to find the average val-
ues, that makes Fig. 10.
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Fig.10  Graph of K(r) + D(z), U(z), K(t) and D(¢) generated by values in
Table 2.

4.2 Effect of R;, R, and B, to Distribution Result

We consider that the effectiveness of general information
distribution gradually increases at the beginning of the dis-
tribution time until they peak out and starts to gradually de-
crease to zero as shown in K(#) + D(t) of Fig. 10. Therefore,
the values of Ry, R, and B, in Table 2 are selected in order
to represent this kind of typical phenomenon. Nevertheless,
changing the values of R;, R, and B, can change the phase
transition and represent other kinds of phenomena as well.
For example, the graphs of U(¢), K(¢), D(t) and K(t) + D(¢)
in Fig. 11 begin with gradual increase or decrease, then sta-
bilize to constant values as time progresses. This graphs is
generated by using the values of Patternl in Table 3. Fur-
thermore, the changes of U(¢), K(¢), D(¢) and K(t) + D(t) are
linear shown in Fig. 12 when the values of Pattern2 in Ta-
ble 3 are used. According to those results, changing the val-
ues of Ry, R, and B, can control the patterns of the speed and
the effectiveness of the information distribution. In other
words, those parameters can change phase transition of the
distribution results.

4.3 Comparison of Proposed Model and SIR Model

In this section, we compare the temporal variation of indi-
vidual numbers in each state of the proposed model to that of
the SIR model. First, we conduct the simulation of the SIR
model on the small-world network with the similar process
and the parameters in [8]-[10]. The process is as follows:
at the beginning, the initial / State individuals are randomly
chosen. Then, individuals in the 7 state distribute the infor-
mation to their neighbors with the constant transmissibility
rate § whereby its value is 1. If the neighbors are in the S
state, they become infected and change to the I state. How-
ever, if their neighbors are already in the / or R state, the
original infected nodes become refractory and move to the
R state. The process is repeated until simulation ends. How-
ever, in order to make the comparison more effective, we
change the total number of individuals in the network, num-
ber of initial infected individuals and number of contacted
neighbors in each time ¢, to the same numbers as the sim-
ulation of the proposed model. For the simulation result of
proposed model, we use the result shown in Fig. 10.

After conducting simulations of the SIR model, we
compare the temporal variation of individual numbers in §,
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Fig.11  The impact of R;(¢), R2(f) and B,(?) in Patternl.
Table3  Groups of Ry, Ry, B> and Bj values.
Pattern | Parameter | Value
B(1) Eq. (3) with u = 200,
Aup = 0.01, Agown = 0.015,8=1
Patternl | Ra(?) Eq. (3) with u = 120,
Aup = 0.03, Agown = 0.009, 8 =1
Ri(?) 0
B 0.5
By (1) 1
Pattern2 | Ry (?) 0.5
R (l) 0.5
B 0.5
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Fig.12  The impact of R;(¢), R2(f) and B,(¢) in Pattern2.

I, R states and I(t) + R(t) of the SIR model to U, K, D states
and K(¢) + D(¢) of the proposed model, respectively. S (),
I(1), R(t) are defined as number of individuals of each re-
spective state. The result is shown in Fig. 13 where y-axis is
the number of individuals and x-axis is time.

As seen in Fig. 13 (a), while the number of individu-
als in the S state of the SIR model gradually decreases,
the number of individuals in the U state of the proposed
model also decreases with slower rate but it later increases
back slowly. According to Fig. 13 (b), in the beginning, the
number of individuals in the K state of the proposed model
starts to increase slowly until # ~ 170 where it rapidly in-
creases up to ¢ ~ 315, before decreasing back. On the other
hand, the number of individuals of the 7 state of the SIR
model increases up to almost 8000 individuals in the begin-
ning and then gradually decreases as shown in upper inset
of Fig. 13 (b).

Furthermore, as shown in (c) and (d) of Fig. 13, the
number of individuals in the R state of the SIR model and
I(t) + R(¢) gradually increase and the number will reach to N
in the future of time . However, the number of individuals
in the D state and K () + D(¢) of the proposed model gradu-
ally increase until they peak out and start to decrease. Note
that we compare 1(¢) + R() of the SIR model to K(¢)+ D(¢) of
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Fig.13  Comparison of the SIR model and the proposed model.

the proposed model because I(¢) + R(¢) is considered as the
information distribution effectiveness same as the K(¢)+D(t)
in the proposed model.

The different results between the SIR and the proposed
model are obtained because there are no returning states in
the SIR model. Therefore, all individuals in the network
would receive information when time passes and this kind
of phenomenon is occasional in our society. In the proposed
model when appropriate R; and R, are selected, individuals
can return to Known and Unknown states again.

Moreover, we also compare the SIR model and the pro-
posed model by the mean-field equation. According to [22],
[23], the mean field differential equation of the SIR model in
a population of N individuals is given by the below Eq. (7),
where ¢ is transmissibility, and g is the rate of conversion
from the I state to the R state(recovery rate). The mean-
field differential equation of the proposed model is shown
in Eq. (8). Subsequently, we calculate Eq. (7) with § = 1,
g = 0.5 and initial infected node is 1000. For the Eq. (8),
we use the By, B, Ry, Ry and K(0) values in Table 2. The
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Fig.14  Comparison of the SIR model and the proposed model by the
mean-field equation.

result is shown in Fig. 14 in which (a) and (b) are the result
of Eq. (7) and Eq. (8), respectively.

% = —5S(11(1) ™)
% = 6S(OI(1) — gI(1)

PO g

% = —B|D(t) + R K(t) (®)
% = (=Ri — B))K(1) + B, D(1) + RyD(1)

% = —R,D(1) + ByK(t)

According to (a) of Fig. 14, the temporal variations of
individual numbers in the S and R states of the SIR model
show rapid decrease/increase, and once reaching a bottom or
peak, they remain steady. However in the [ state, there is a
period where the number of individuals rapidly rises until it
peaks out, and rapidly falls to the bottom and remains stable.

The temporal variations in the proposed model are dif-
ferent from the ones in the SIR model. In the proposed
model, after the individual numbers reach a peak or bottom
and remain steady, they decrease/increase back again as seen
in (b) of Fig. 14. Since it is difficult to see the temporal vari-
ations in the beginning of the distribution time, the uppper
insets that focus on the temporal variations from r = 0 to
t =20and ¢ = 0 to ¢ = 50 are added to Fig. 14 (a) and (b),
respectively.

Since there are no parameters in Eq. (7) that represent
the potential to return individuals to their previous states,
while there are such parameters instead in Eq. (8), the result
of Fig. 14 gives the similar curve-shape patterns to the result
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of Fig. 13. However in Fig. 14, the changes are much more
extreme because the network structure is neglected in Eq. (7)
and Eq. (8).

5. Parameters’ Impacts of Proposed Model

Figure 15, Fig. 16, Fig. 17 and Fig. 18 shows the impact of k,
shortcuts, R; and Bj, respectively, where y-axis is the total
number of individual who know the information(K(z)+D(t))
and the x-axis is time(z). In the simulation of shortcuts im-
pact (Fig. 13),we exclude hubs from the simulation because
connections between hubs and other nodes can be consid-
ered as shortcuts, and, thus, they can create confusion (with
normal shortcuts).

After conducted the simulation, the result from Fig. 15
shows that k gives distinguish impact of increasing maxi-
mum value of K(f) + D(t) when k < 8. However, this impact
is reducing when k > 8. Moreover, there is no much differ-
ent results of maximum value of K(¢) + D(t) between k = 12
and k = 14. Those of results imply that the effectiveness of
information distribution on the network which has high k is
not much improved.

The impact of shortcuts(SC) is shown in Fig. 16. As
seen in this figure, there is small but noticeable impact be-
tween S C = 0O(the regular ring lattice model) and S C = 100.
However, after adding 100 shortcuts there are hardly any
impact by providing more several hundreds shortcuts, while
there is distinguished impact by providing a huge number of
shortcuts such as thousand and several ten thousands. How-
ever, as seen in the simulation results of SC = 30000 and
SC = 40000 in Fig. 13, there is no much difference result
between the two graphs. The results represent that if the net-
work have very high number of shortcuts, it is not necessary
to increase shortcuts in the networks in order to increase the
power of the distribution.

The impact of R; is shown in Fig. 17. Increasing R
does not only increases the maximum value of K(¢) + D(t)
but also increases the horizontal(x-axis) size of the graphs.
Nevertheless, there is almost no impact for the maximum
value of K(¢) + D(¢) when S > 3000. This result implies that
the maximum value of K(¢) + D(¢) is not much improved
when S is very high because only a few of individuals in the
network forget the information.

Furthermore, according to Fig. 18, B; does not give
impressive impact because K(7) + D(¢) is slightly changing
when increased by 0.2.

5.1 The Impact of P(t)

In this subsection, we observe the impact of P(¢). In the sim-
ulation, we also use the data in Table 2 but change the value
of P(¢) to P(¢tprimary) = 10,000. Subsequently, we conduct
three simulations where tprimary = 150, tprimary = 350
and tprimary = 450 to compare the impacts of each value.
In other words, when ¢t = 150, t = 350 or ¢ = 450, primary
information distribution is done to the network and as a re-
sult 10,000 nodes in Unknown State are randomly selected
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and changed into Known State. The reason to select those
of ¢ is because the total number of individuals who know
the information (K(¢) + D(¢)) is increasing when ¢t = 150,
decreasing when ¢ = 350 and becoming nearly zero when
t = 450, respectively, as seen in Fig. 10.

The simulation results are shown in Fig. 19, Fig. 20 and
Fig.21. As seen in those figures, using primary information
distribution gives very impressive result if it is done when
K(t) + D(¢) is increasing. In fact, the maximum value of
K(?) + D(t) with P(150) = 10,000 reaches approximately
2.5 times of the maximum value of K(¢)+ D(t) with P(¢) = 0.
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However, if this primary information distribution takes place
during the period when K(¢) + D(¢) is decreasing(P(350) =
10,000) or becoming nearly zero(P(450) = 10,000), there
is almost no impact to K(¢) + D(¢). The focus impacts of
P(350) = 10,000 and P(450) = 10,000 are shown in up-
per insets of Fig.20 and Fig.21, respectively. As shown
in upper insets of those figures, K(f) + D(¢) is slightly in-
creased, then it is gradually decreasing. Hence, in order
to increase the power of the distribution we conclude that

P(tprimary) should be applied when K(#) + D() is increas-

ing or d—(K(l();D(t)) > 0.

5.2 Consideration of Network Structure with Shortcuts

The number of shortcuts in the network is one of most im-
portant factors to the network structure. In order to observe
the impact of network structure to information distribution
result by the number of shortcuts, we define a new param-
eter calling Distribution Effectiveness Rate (DER) and its
equation is shown in Eq. (9) whereas T is rang of the sim-
ulation time. This parameter represents the effectiveness of
the distribution result, and the maximum value of DER is
one. Subsequently, we conduct simulation by increasing
number of shortcuts and observe impact to DER. The re-
sult is shown in Fig. 22 whereas y-axis is DER and x-axis is
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As seen in this figure, the circle line graph is produced by us-
ing B>(f) and R, () from Table 2, while the square line graph
is generated by using B,(¢) = 1 and R,(¢) = 0. Those results
give the similar graphs pattern, and show that DER gradu-
ally increases but it slightly increases when number of short-
cut is more than 15,000. In other words, when the network
contains very high number of shortcuts, further increasing
shortcuts does not have significant impact even though the
motivation of nodes for the distribution is high, i.e. By(f) = 1
and R,(¥) = 0.

Furthermore, we conduct the simulation on the random
network and the regular ring lattice network, and compare
their results. In this random network, each node has four
connections which are randomly connected to other nodes,
i.e. both the networks have the same k (k = 4). For the other
necessary parameters values, the values from Table 2 are
used. The distribution results in regular ring lattice network
and the random network are shown in (a) and (b) of Fig. 23,
respectively. The upper inset of Fig. 23 (b) is focused on the
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temporal variations from ¢ = 0 to ¢ = 50.

According to the Fig. 23 (a) and (b), the temporal vari-
ation of individual numbers of the U(f), K(t), D(t) and
K(t) + D(¢) gradually change in the regular lattice model,
while they show rapid changes in the random network.
Moreover, the information is distributed to all individuals
within very short-time in the random network, while it is
distributed slowly and only less than 30 percent of all in-
dividuals can receive it in the regular ring lattice network.
In other words, the information is distributed slowly in the
regular ring lattice network because the network is highly
ordered and the connections are localized, then the informa-
tion can not reach to all individuals during the distribution
time. However, the distribution result is much more extreme
in the random network because the network is disordered
and there is no effect of spatial correlations.

5.3 Consideration of B,(f)

As described in Sect. 3.3, we consider and define B,(¢) as a
dynamic parameter. This parameter is also very important
for the proposed model to achieve fruitful distribution re-
sults. The experimental study of the global social network
by forwarding more than 60,000 e-mail messages shows a
final result that if the individual incentive is insufficient dur-
ing forwarding messages or searching for remote targets, the
small-world effect does not occur even the network structure
is well connected [24]. This experimental result supports the
idea of B,(¢) in our proposed model, because the proposed
model can explain this kind of phenomenon by adjusting
B»(1), in which the SIR model is not able to do so.

In order to prove that, we set a new value of B,(7) as
a low value and generate a graph of B,(¢) shown in Fig. 24
while R, () is still the same as shown in Table 2. In addi-
tion, we also increase 200,000 shortcuts in the network in
order to produce well connected network structure. After
conducting the simulation, our result is shown in Fig. 25. In
this figure, the solid line and the dotted line show the sim-
ulation results when B,(f) of Fig.24 and Table 2 are used,
respectively. The result shows that even though the network
has a lot of shortcuts and well connected, if B,(f), i.e. in-
centive to distribution is low, the distribution result would
be poor(solid line) and the small-world effect does not oc-
cur. Nevertheless, if we use B(f) of Table 2, it gives a very
impressive distribution result(dotted line) as seen in Fig. 25.
The result of this figure explains the conclusion of [24].

5.4 Discussion

There are some research studies [25] that give suggestions to
concentrate on shortcuts to increase or accelerate the distri-
bution. Nevertheless, it is difficult to find or locate shortcuts
in real world networks due to the limitation of the whole
network structure information. For example, [25] shows
that the navigation process in the social network is an in-
terplay between the network structure and the individual’s
decisions based on their limited information of the whole
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network structure. Since individuals are lacking of informa-
tion of the whole network structure, therefore they find that
it is very difficult to select the best routes when distribut-
ing information. Even recent research efforts [26]-[28] have
studied algorithms to find such shortcuts in networks but
those efforts are still far from complete when applying the
algorithms in practical social networks. Therefore, not only
the network structure but also incentive or motivation plays
an important role in making fruitful information distribution
result.

6. Conclusion and Future Works

In this paper, information distribution model based on hu-
man’s behavior is proposed. We also introduce dynamic pa-
rameters to make the model more practical for the real life
social network. Some limitations of the SIR model and re-
lated works are explained. One of the big differences in the
proposed model and the SIR model is that there are no re-
turning states in the SIR model. However, in the proposed
model when appropriate R; and R, are selected, individu-
als can return to the previous states again. Subsequently, we
apply small-world network and its characteristics to conduct
the simulations.

Having conducted various simulations, the results
show that the model can present, analyze and predict the
effectiveness of the secondary information distribution. The
simulation results also show how to increase the power of
the distribution efficiently by using parameters in the pro-
posed model, and how the model can be useful for optimiz-
ing and controlling information distribution on social net-
works. In summary, the impact of R; shows that increasing
S in Eq. (2) increases both maximum value of K(¢)+D(f) and
range of distribution effectiveness time. However, if value of
S is big enough, further increasing its value does not have
significant impact on the maximum value of K(#)+D(¢). Fur-
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thermore, using B; and R to increase the maximum value
of K(t) + D(z) is not effective because they do not give im-
pressive impacts. Our results also show that if the networks
have very high shortcuts or high %, it is not necessary to in-
crease shortcuts or k in the networks in order to increase the
power of the distribution. The simulation results also show
that changing the values of R;, R, and B; can change the
phase transition of the distribution results.

Moreover, in order to use the primary information dis-
tribution during the secondary distribution in effective way,

the primary information distribution should be done when
d(K()+D(1)) >0

d, . : . .

According to the consideration of network structures

and B,(?), network structure gives significant impact to the
distribution result. Nevertheless, its impact is ineffective if
motivation to distribute information is low. In other words,
not only the network structure but also incentive or motiva-
tion plays an important role in making effective information
distribution.

In this research, our ultimate goal is to analyze and
observe the real-world phenomena by using the proposed
model and its parameters. In order to achieve our goal, in
this paper we propose a model with analytical results as the
first step. We will find the relationship between the real-
world phenomena and the parameters, and also how to map
those parameters to such phenomena in our future works.
There are also other remaining issues in the proposed model
such as analysis of B, and R,. Because these parameters
can produce fruitful distribution results, B, and R, will be
studied more in order to maximize the accuracy and the ef-
fectiveness of the proposed model. Furthermore, some influ-
encing factors for real-world information distribution will be
investigated to find the relation and impacts on the parame-
ters in the proposed model.
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