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Distinctive Phonetic Feature (DPF) Extraction Based on MLNs and

Inhibition/Enhancement Network

Mohammad Nurul HUDA®, Hiroaki KAWASHIMA, Nonmembers, and Tsuneo NITTA", Member

SUMMARY  This paper describes a distinctive phonetic feature (DPF)
extraction method for use in a phoneme recognition system; our method has
alow computation cost. This method comprises three stages. The first stage
uses two multilayer neural networks (MLNs): MLNr_ppr, which maps
continuous acoustic features, or local features (LFs), onto discrete DPF
features, and MLNp,,, which constrains the DPF context at the phoneme
boundaries. The second stage incorporates inhibition/enhancement (In/En)
functionalities to discriminate whether the DPF dynamic patterns of tra-
jectories are convex or concave, where convex patterns are enhanced and
concave patterns are inhibited. The third stage decorrelates the DPF vectors
using the Gram-Schmidt orthogonalization procedure before feeding them
into a hidden Markov model (HMM)-based classifier. In an experiment
on Japanese Newspaper Article Sentences (JNAS) utterances, the proposed
feature extractor, which incorporates two MLNs and an In/En network, was
found to provide a higher phoneme correct rate with fewer mixture compo-
nents in the HMMs.

key words: distinctive phonetic feature, hidden Markov model, multilayer
neural network, inhibitionfenhancement network, local features

1. Introduction

Conventional automatic speech recognition (ASR) systems
use stochastic pattern matching techniques in which word
candidates are matched against word templates represented
by hidden Markov models (HMMs). Although these tech-
niques perform adequately in certain limited applications,
they always reject a new vocabulary or a so-called out-of-
vocabulary (OOV) word. Therefore, an accurate phonetic
typewriter or a phoneme recognizer is expected to assist
next-generation ASR systems in resolving this OOV-word
problem via a short interaction (talk-back) by automatically
adding the word into a word lexicon from the phoneme
string of an input utterance [1], [2].

Various methods have been proposed to realize
phoneme recognition [3]-[6]. Although some of them per-
form adequately, most HMM-based methods have several
limitations. For example, (a) they require a large number of
speech parameters and a large speech corpus to solve coar-
ticulation problems using context-sensitive triphone models,
and (b) they require a higher computational cost to achieve
an acceptable performance. On the other hand, a system
based on articulatory features or distinctive phonetic fea-
tures (DPFs) can model coarticulatory phenomena more nat-
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urally [7].

A previous study introduced a DPF-based feature ex-
traction method that used a multilayer neural network
(MLN) to extract DPFs [8]. This DPF-based method (i) pro-
vides robust features under different acoustic environments
with fewer mixture components in HMMs, and (ii) it im-
proves the margin between acoustic likelihoods. Fig-
ures 1(a) and 1(b) show the phoneme distances of five
Japanese vowels in an utterance /ioi/ that are calculated with
a mel frequency cepstral coefficient (MFCC)-based ASR
system and a DPF-based system, respectively. In both sys-
tems, each distance is measured using the Mahalanobis dis-
tance between a given input vector and the corresponding
vowel set of mean and covariance in a single-state model.
The input sequence in the figures, /i/../i//0/../o//i/../i/, spec-
ifies a phoneme for each frame and has total 20 frames in
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Fig.1 Phoneme distances for input vectors of utterance /ioi/ with a)
MFCC-based system and b) DPF-based system using MLN.
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which first three frames, middle 13 frames, and last four
frames are phonemes /i/, /o/, and /i/, respectively. The
MFCC-based system (Fig. 1 (a)) shows seven misclassifica-
tion of phonemes (/u/ output for /o/ and /i/ input) for frames
4,5,13, 14, 15, 16, and 17, while two misclassification (/o/
and /u/ output for /i/ input) for frames 17 and 18 are ob-
served by the DPF-based system (Fig. 1 (b)). Therefore, the
DPF-based system outputs few misclassification. However,
because some errors caused by coarticulation still remain,
as shown in Fig. 1 (b), the DPF-based system using a single
MLN requires further modifications. On the other hand, a
DPF extraction method can be implemented by using tan-
dem MLNS to reduce training times and number of param-
eters, but S. Sivadas, et al. [9] pointed out that their feature
extraction method based on tandem MLNs does not show a
higher recognition accuracy over a single monolithic MLN.

In this study, we propose a DPF extraction method
for constructing a more accurate phoneme recognizer by
solving coarticulation problems; our method has a low
computation cost. This method incorporates (i) an ex-
tra MLN, MLNp,,, to reduce misclassification at phoneme
boundaries by restricting DPF context resulted from the
first MLN, MLN;r_ppr [8], and then embeds (ii) an inhi-
bition/enhancement (In/En) network to obtain more precise
DPF patterns for an HMM-based classifier by enhancing
convex patterns (DPF peaks) and by inhibiting concave pat-
terns (DPF dips). The effects of two MLNs (MLN+MLN
or MLN;r_ppr+MLNp,,) and the In/En network in our
method increase phoneme recognition performance signifi-
cantly over the other existing methods [8],[10]. A phoneme
recognition method with low cost can be obtained by reduc-
ing the required number of Gaussian mixture components
in the HMMs. In this study, we investigate and evaluate
two types of DPF extraction methods along with the conven-
tional MFCC-based method from the viewpoint of phoneme
recognition performance. These methods are (i) DPF using
an MLN[8],[10] and (ii) our proposed method using two
MLNSs and an In/En network.

This paper is organized as follows. Section 2 ex-
plains the DPF extraction methods along with the proposed
method. Section 3 describes speech databases and the exper-
imental setup. Section 4 presents the experimental results
and some discussions. Finally, Sect.5 presents the conclu-
sions and remarks on our future works.

2. DPF Extraction Methods

A phoneme can easily be identified by using its unique DPF
set[11],[12]. The Japanese balanced DPF set [10] for clas-
sifying Advanced Telecommunications Research Institute
International (ATR) phonemes has 15 elements. The fol-
lowing subsections describe two feature extraction methods
based on the balanced DPF set.

2.1 Using a Multilayer Neural Network

T. Fukuda, et al. [8] implemented a DPF-based feature ex-
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tractor with an input acoustic vector of local feature (LF) us-
ing an MLN, and it was shown that LF is superior to MFCC
as the input to the MLN; Fig. 2 shows the system diagram
for this method. At the acoustic feature extraction stage, the
input speech is first converted into LFs that represent a vari-
ation in spectrum along the time and frequency axes [13].
Two LFs are then extracted by applying three-point linear
regression (LR) along the time (¢) and frequency (f) axes
on a time spectrum pattern, respectively. After compress-
ing these two LFs with 24 dimensions into LFs with 12
dimensions using discrete cosine transform (DCT), a 25-
dimensional (12 At, 12 Af, and AP, where P stands for the
log power of a raw speech signal) feature vector called LF
is extracted. LFs are then entered into an MLN with four
layers including two hidden layers after combining a cur-
rent frame x, with the other two frames that are three points
before and after the current frame (x;_3, x;4+3). The MLN has
45 output units (15%3) corresponding to a set of triphones,
or to a context-dependent DPF vector that comprises three
DPF vectors (a preceding context DPF, a current DPF, and
a following context DPF) with 15 dimensions each. The
two hidden layers comprise 256 and 96 units, respectively.
The MLN is trained using the standard back-propagation
algorithm. The DPF-based method has a recognition per-
formance comparable to that of the MFCC-based method
although it requires fewer Gaussian mixture components in
the HMM. However, because a single MLN suffers from the
inability to handle a longer context, it exhibits some misclas-
sification at the phoneme boundaries.

2.2 Proposed Method

Figure 3 shows the proposed feature extraction method.
This method comprises three stages. The first stage ex-
tracts 45-dimensional DPF vectors from the LFs of an in-
put speech using two MLNs. The second stage incorporates
In/En functionalities to obtain modified DPF patterns. The
third stage decorrelates the DPF vectors using the Gram-
Schmidt (GS) orthogonalization [10] before connecting with
an HMM-based classifier.

2.2.1 DPF Extractor

In this method, two MLNSs instead of a single MLN are used
to construct the DPF extractor. The first MLN, MLN; r_ppr,
maps acoustic features, or LFs, onto discrete DPF fea-
tures [8] and the second MLN, MLNp,,, reduces misclas-
sification at phoneme boundaries by constraining the DPF
context. Here, M LN, r_ppr has the same architecture as that
described in Sect. 2.1, and it is trained using the same learn-
ing algorithm. The 45-dimensional context-dependent DPF
vector provided by the MLNp_ppr at time ¢, and its cor-
responding A and AA vectors calculated by three-point LR
are appended into the subsequent MLNp,, with four lay-
ers including two hidden layers of 300 and 100 units, re-
spectively. The MLNp,, is trained using the standard back-
propagation algorithm and outputs a 45-dimensional DPF
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vector in which context effects for the current “s’-th frame
are reduced.

2.2.2 Inhibition/Enhancement Network

The DPF extractor, MLN+MLN, generates 45 DPF patterns
(15 preceding context DPF patterns, 15 current context DPF
patterns, and 15 following context DPF patterns) for each
input speech. Because all of these 45 DPF patterns may
not follow the input DPF patterns of a phoneme string ex-
actly, there exists an ambiguity among some phonemes for
classifying the target phoneme in the HMM-based classifier.
Consequently, some phonemes are not correctly recognized.
An ambiguity sometimes occurs when the values of consec-
utive DPF peaks and DPF dips in a DPF time pattern of a
phoneme string are closer to each other. For example, left

Proposed orthogonalized DPF extractor.

peak, middle dip, and right peak values generated by a DPF
extractor are <0.7, 0.7, 0.7, 0.7>, <0.4, 0.4, 0.4>, and <0.7,
0.7, 0.7>, respectively, where {<0.7, 0.7, 0.7, 0.7>, <0.4,
0.4, 0.4>, <0.7, 0.7, 0.7>} or <0.7, 0.7, 0.7, 0.7, 0.4, 0.4,
0.4, 0.7, 0.7, 0.7> is a set of output DPF values of 10 con-
secutive frames along time axis for a labeled DPF pattern,
<1,1,1,1,0,0,0, 1, 1, 1>. The classifier faces a problem
to decide whether the output pattern is <1, 1, 1, 1, 0, 0, 0,
1,1,1>o0r<l1,1,1,1,1, 1, 1, 1, 1, 1>, while labeled DPF
pattern was <1, 1, 1, 1, 0, 0, 0, 1, 1, 1>. Here, the value,
0.4 is assumed as either zero or one, while the value, 0.7
is considered as one. So, there must have clear distinction
between a DPF peak and dip along time axis. If there exist
a mechanism that enhances DPF peak values upto a certain
level and that suppresses DPF dip values accordingly, then
a distinction between a peak and dip is found. We have in-
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Fig.4 Working mechanism of the In/En network. Five curves are de-
noted by (a), (b), (c), (d), and (e), respectively. The curves: a) Labeled
“anterior” DPF for input utterance, /mam/, b) Output “anterior” DPF by
MLN+MLN, c) AA for output “anterior”, d) f(AA) for AA, and e) Modified
“anterior” by multiplying curve (b) with curve (d).

corporated an In/En network to get this type of effect. An
algorithm for this network is given below.

Stepl: For each element of the DPF vectors, find the ac-
celeration (AA) parameters by using three-point LR.
Step2: Check whether AA is positive (concave pattern) or

negative (convex pattern) or zero (steady state).
Step3: Calculate f(AA).
if pattern is convex,

Cy
AN = ——MM 1

S(AA) 1+ (Cp — 1)ePrA M

if pattern is concave,
B 2(1 - Cy)

f(AA) =Cr + EEYN 2)
if steady state,

f(AA) =1.0 3)

Step4: Find modified DPF patterns by multiplying the DPF
patterns with f(AA).

Figure 4 shows the working mechanism of the In/En
network using the “anterior” DPF pattern of an input ut-
terance, /mam/ along time axis. In the figure, five curves,
which represent (a) labeled “anterior” DPF, (b) output
“anterior” generated by the MLN+MLN, (c) AA for the out-
put “anterior” values, (d) f(AA) for AA values, and (e) mod-
ified “anterior” DPF, are observed. Here, the curve (e) is ob-
tained by multiplying curve (b) with curve (d). After apply-
ing the In/En network algorithm on curve (b), the DPF val-
ues of frames 1-6 and 13-19 (convex pattern or DPF peak)
are enhanced, and frames 7-11 (concave pattern or DPF dip)
are inhibited. It should be noted that the DPF pattern of
curve (e) shows a clear distinction between a DPF peak and
dip.
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2.2.3 Gram-Schmidt Orthogonalization

Because each of the three 15-dimensional context vectors
outputted by the In/En network is not orthogonal to each
other, these three context vectors should be decorrelated us-
ing the GS orthogonalization [10] with respect to the current
context vector.

3. Experiments
3.1 Speech Database

The following two clean data sets are used in our experi-
ments.

D1. Training data set
A subset of the Acoustic Society of Japan (ASJ) Con-
tinuous Speech Database comprising 4503 sentences
uttered by 30 different male speakers (16 kHz, 16 bit)
is used [14].

D2. Test data set
This test data set comprises 2379 Japanese Newspaper
Article Sentences (JNAS) [15] uttered by 16 different
male speakers (16 kHz, 16 bit).

In the experiments, the same training data set D1 is used for
the MLNLF—DPF, MLNDyn, and HMM.

3.2 Experimental Setup

In this study, two types of acoustic features are used: LFs
and MFCC. The frame length and frame rate are set to 25 ms
and 10 ms, respectively, to obtain acoustic features from an
input speech. MFCC feature consists of a vector of 38 di-
mensions (12 MFCC, 12 delta and 12 acceleration coeffi-
cients of MFCC, delta and acceleration coefficients of log
energy of speech signal). On the other hand, LFs are a 25-
dimensional vector consisting of 12 delta coefficients along
time axis, 12 delta coefficients along frequency axis, and
delta coefficient of log power of a raw speech signal [13].

Since our goal is to design a more accurate phoneme
recognizer, phoneme correct rate (PCR) for D2 data set is
evaluated using an HMM-based classifier. The D1 data set
is used to design 38 Japanese monophone HMMs with five
states, three loops, and left-to-right models. Input features
for the classifier are MFCC features or DPFs. In the HMMs,
the output probabilities are represented in the form of Gaus-
sian mixtures, and diagonal matrices are used. The mixture
components are set to 1, 2, 4, 8, and 16.

In our experiments of the MLN and MLN+MLN, the
non-linear function is a sigmoid from 0 to 1 (1/(1+exp(—x)))
for the hidden and output layers. For evaluating the per-
formance of a DPF extractor, we measure DPF correct rate
(DCR) using D2 data set. Here, a DPF value, which is in
current frame (middle 15 of 45-dimensional output vector),
below 0.5 is considered to be a negative feature; otherwise,
it is a positive feature. The phoneme-wise DCR is obtained



HUDA et al.: DPF EXTRACTION

Table1  Phonemes and their frequencies in the test data set.
Phoneme Count Phoneme Count
a 151319 t 52111
i 93117 k 81168
u 51338 ts 17233
e 83847 ch 17722
o 145644 b 10736
N 41279 d 19388
w 22585 g 20383
y 15088 z 7572
i 20942 m 27714
my 186 n 40239
ky 8189 s 50261
dy 15 sh 45300
by 472 h 17465
gy 1704 f 5294
ny 1180 r 24332
hy 1720 q 16525
ry 2566 silB 108388
py 441 silE 107628
p 4294 sp 133972

by Eq. (4) after counting the total number of correctly rec-
ognized DPF values, N,, and total number of DPF values,
N, for that phoneme. The overall DCR is calculated in the
same manner by taking summation over the all phonemes.
Table 1 shows phonemes and their frequencies in the test
data set.

DCR = % % 100% @)

For the In/En network, the value of the enhancement
coefficient, Cy, is set to 4.0 after evaluating the proposed
method, DPF(MLN + MLN + In/En + GS,dim : 45), for
different values of Cy, such as 2, 4, and 6, and the value
of the steepness coefficient, S, is set to 80. The value of
inhibitory coeflicient, C, is fixed to 0.25 after observing the
DPF data patterns to keep the values of f(AA) between 0.25
and 1.0.

In the calculation of ADPFs for the current “f’-th
frame, the width of each window is set to seven frames,
(t-3,..,t,..,t+3). Then, AADPFs for the “#’-th frame are
calculated from the ADPFs by setting a window of same
width. It should be noted that AADPFs cover up to 13
frames, (t - 6,..,t — 3,..,t,..,t + 3,..,t + 6), of DPF values
along time axis.

We have investigated DCR for MLN and MLN+MLN
to show the advantages of two MLNs over a single MLN.
Two measures are considered for both the DPF extractors:
phoneme-wise DCR and overall DCR.

In our experiments, the phoneme recognition tests are
carried out for the following methods to compare the per-
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formance of the DPF extractor, MLN+MLN, with the base-
line system, MFCC-based method, which inputs a feature
vector with 38 dimensions to the HMM classifier and the
method proposed by T. Fukuda, et al. [8], which feeds a 45-
dimensional feature vector into the classifier.

(a) MFCC (baseline,dim:38).
(b) DPF (MLN,dim:45) [8].
(c) DPF (MLN+MLN,dim:45).

On the other hand, T. Fukuda, et al.[10] incorpo-
rated the Karhunen-Loeve Transform (KLT) in their method
before applying GS orthogonalization, and extracted 33-
dimensional feature vector for the HMM classifier. For com-
parison purposes, we have further designed some phoneme
recognition tests for the following methods with GS or-
thogonalization; all the methods except[10] input a 45-
dimensional feature vector for the classifier.

(d) DPF (MLN+GS,dim:45).
(e) DPF (MLN+KLT+GS,dim:33) [10].
(f) DPF (MLN+MLN+GS,dim:45).

To observe the effect of the In/En network on phoneme
recognition, we have evaluated the following methods,
which input a 45-dimensional feature vector for the HMM-
classifier, including the proposed method.

(¢) DPF (MLN+In/En+GS,dim:45).
(h) DPF (MLN+MLN+In/En+GS,dim:45)[Proposed].

4. Experimental Results and Discussion
4.1 DPF Detection Performance

Segmentation for a clean /jiNkoese/ utterance is shown
in Figs.5 and 6 for a balanced-DPF set[10] using a sin-
gle MLN and MLN+MLN, respectively. In both the fig-
ures, “Solid thin line” and “Solid bold line” represent
“ideal segmentation” and “output segmentation”, respec-
tively; “nasal”, “nil (high/low)”, and “high” of phoneme /N/,
and “unvoiced”, “coronal”, and “anterior” of phoneme /s/
are denoted by @, @, @, @, ®, and ®, respectively. Af-
ter observing @O, @, @, @, ®, and ® marked places, we
can say that the MLN+MLN exhibits more precise segmen-
tation (less deviation from ideal boundary) than the single
MLN, reduces some fluctuations caused by the first MLN,
MLN/p_ppr and provides more smoothed DPF curves, and
hence, it misclassifies fewer phonemes.

Figure 7 shows the phoneme-wise DCRs using DPF
extractors implemented by MLN and MLN+MLN. Here,
the MLN+MLN provides higher DCRs for all the phonemes
except /o/ and /silB/. The overall DCRs for the MLN and
MLN+MLN are shown in Table 2; the MLN+MLN ex-
hibits 1.2% improvement of DCR over the DPF extractor
implemented by a single MLN. Because the second MLN,
M LNp,,, resolves coarticulation effects more widely by tak-
ing dynamic feature parameters, ADPF and AADPF, as in-
put, the MLN+MLN exhibits better segmentation as well as
higher DCR.
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MLN silB j i N Kk o e se
semivowel ——
nasal D?t
unvoiced <M\~ — A N P@L
voiced |__a s~/ ~A__/ ~N 7
continuant /WA~ A/ — A
affricative
plosive /S A/ 4
coronal | s oA ‘\J@L
nil(ant./ backj AN~ A A ___/ s
back |eAAN Ao /.
anterior LA~ AN - r\_@\&
nil(high! low) \__/ —~T
low
high N~ S/ N e T~ —— A~
MOra|_ AN—— A~ A D y
Fig.5  Segmentation of utterance, /jiNkoese/ for DPF extractor based on single MLN.
MLN+MLN siliB j 1 N Kk o e s.e
semivowel
nasal D
unvoiced M \A~S~——— A __~ N\ @ N\
voiced |__ AN NN NAALA— o~/ /e
continuant AN NAANLEANT N
affricative — —t
plosive_AA —— > o
coronal . ~ o\
nil(ant./ backl _ ANANAAAN~_ .~ N s
back SANAANA [
anterior | A s e e~ — 5)
nil(high! low) o\ ~—~7-
low
high M\ N NG N P S
mora ~T N _/ o s
Fig.6  Segmentation of utterance, /jiNkoese/ for DPF extractor based on MLN+MLN.
Table 2  Overall DPF Correct Rate for MLN and MLN+MLN.

DPF extraction method
MLN
MLN+MLN

DPF Correct Rate(%)
89.8
91.0

4.2 Phoneme Recognition Performance

Figure 8 shows the phoneme recognition performance us-
ing the methods (b) and (c). In the figure, we can observe

that the method (c) exhibits a better performance for all in-
vestigated mixture components. For example, at mixture
component 16, (c) has a PCR of 81.47%, while (b) ex-
hibits 78.54%. It should be noted that (c) provides 2.93%
higher PCR compared to (b) at mixture component 16. The
phoneme recognition performance after applying the GS
orthogonalization using the methods (d), (e), and (f) are
given in Fig. 9; (f) exhibits its highest performance (81.60%)
for mixture component 2, while (d) and (e) show 78.06%
and 79.12% PCRs, respectively. At mixture component 2,
(f) shows an improvement of 3.54% over the method (d).
Since the MLN+MLN produces more accurate segmenta-
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Fig.10  Phoneme recognition performance using In/En network and GS

Fig.8 Phoneme recognition performance without GS orthogonalization.
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Fig.9 Phoneme recognition performance using GS orthogonalization.

orthogonalization.

tion for an input utterance (Fig.6) than the single MLN,
better DPF patterns are obtained and hence, a higher PCR
is achieved.

After incorporating the In/En network with the meth-
ods (d) and (f) of Fig.9, we can evaluate the orthogonal-
ized DPF, and the recognition results are shown in Fig. 10.
From the figure, we can observe that the proposed method
(h) provides a higher PCR over the method (g) for all mix-
ture components. The proposed method exhibits its best
PCR (83.33%) for mixture component 16. Again, Fig. 11
shows the effect of the In/En network on phoneme recogni-
tion performance in the proposed method. An improvement
of 2.01% PCR at mixture component 16 by the proposed
method over the method (f) illustrates the advantage of an
In/En network. From Figs. 9 and 10, it should be noted that
an addition of In/En network into the methods (d) and (f)
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Fig.11  Effect of the In/En network on phoneme recognition perfor-
mance in the proposed method.
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Fig.12  Variation of recognition performance for different values of en-
hancement coefficient in the proposed method.

always increases PCR upto a certain level because an In/En
network always gives the DPF patterns with clear distinction
between a DPF peak and dip (Fig. 4, curve(e)).

The variation of performance of the proposed method
for different values of enhancement coefficient, Cy, is shown
in Fig. 12. At all mixture components except 1, C;=4.0 ex-
hibits the highest PCR over the other investigated values of
C and hence, Cj is set to 4.0 for our experiments.

4.3 Advantages of the Proposed Method

Figure 13 shows a comparison of the phoneme recognition
performance of the proposed method with baseline (a) and
the method (e) proposed by T. Fukuda, et al. [10] for the in-
vestigated mixture components. It should be noted that the
proposed method outperformed the baseline at all mixture
components. For example, at mixture component 16, the
proposed method (83.33% PCR) improves the performance
by 10.63% in comparison with the baseline (72.70% PCR).
On the other hand, at mixture component 16, an improve-
ment of 4.04% is achieved by the proposed method in com-
parison with the method proposed by T. Fukuda, et al. [10]
(79.29% PCR). Moreover, the proposed method requires
fewer mixture components in the HMMs.
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Fig.13  Comparison among proposed and other existing methods for
phoneme recognition rate.

It is claimed that our proposed method requires less
computation time than the method proposed by T. Fukuda,
et al.[10]. Here, we assume that the total number of
frames is 1000 on an average in a speech file, and mul-
tiplication and division carry same meaning. The pro-
posed method requires total 124,095,000 (= 48,096, 000 +
75,360,000 + 495,000 + 135,000 + 9, 000) multiplications,
where the MLN;r_ppr, MLNpy,, In/En network, GS or-
thogonalization and HMM-based classifier use 48,096,000
(= 1000 X (75 X 256 + 256 x 96 + 96 x 45)), 75,360,000
(= 360,000 + 1000 x (135 x 300 + 300 x 100 + 100 x 45)),
495,000 (= 360, 000 + (45 x 1000 + 45 x 1000) + 45 x 1000),
135,000 (= 9% 15 1000), and 9,000 (= 1 x 32 x 1000) mul-
tiplications, respectively. In the proposed method, 75, 256,
and 96 are dimensions of input, first hidden, and second hid-
den layers of the MLN,p_ppr, respectively; 135 (= 3 x 45),
300, and 100 indicate input, first hidden, and second hid-
den layer units of the MLNp,,, respectively; 45 is for out-
put DPF dimensions of MLN;r_ppr/MLNpy,; nine and 15
represent number of multiplications in GS procedure and
dimensions of each context vector, respectively; 360,000
(=2x45%x3 %1000+ 2 x45 % 1000) is for 45-dimensional
ADPF and AADPF calculation in which two and three de-
note {delta, delta-delta} and three-points LR, respectively;
one and three in the HMM-based classifier represent mixture
component and number of states (three loops only), respec-
tively. On the other hand, the total number of multiplications
required by the method of T. Fukuda, et al.[10] is at least
3,186,280,080,150 (= 48, 096, 000 + 3, 186,231, 840, 150 +
135,000 + 9,000) in which the MLN r_ppr, KLT proce-
dure, GS orthogonalization, and HMM-based classifier take
48,096,000 (described in proposed), 3,186,231,840,150 (re-
quired multiplications to evaluate determinant of 15 X 15
matrix for calculating orthogonal basis), 135,000 (described
in proposed), and 9,000 (described in proposed) multipli-
cations, respectively. Since our proposed method and the
method proposed by T. Fukuda, et al. [10] require 124.1 M
(=124,095,000) and 3.2 T (=3,186,280,080,150) multiplica-
tions, respectively, our proposed method extracts DPFs with
low computation cost.
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On the other hand, conventional MFCC-based method
requires higher mixture components (more than 16 for
Fig. 13) to achieve comparable recognition performance.
For each mixture component, a Viterbi search needs O(S>T')
computation time, where S and T represent the number of
states and the number of observation sequences, respec-
tively. Therefore, for phoneme recognition, the MFCC-
based method requires at least 144,000 (= 16 x 32 x 1000)
multiplications at the HMM classifier stage to obtain its
highest performance, while each of our proposed method
and the method proposed by T. Fukuda, et al.[10] needs
9,000 (= 1 x 3% x 1000) multiplications using one mix-
ture component for achieving better performance than the
MFCC-based method.

In this paper, the proposed method inserts dynamic
parameters, ADPF and AADPF, into the second MLN,
MLNp,,, to solve coarticulation problems (Fig.6) and
adopts monophone models, which require a small number
of speech parameters, in the HMM classifier.

5. Conclusion

This paper presents a DPF-based feature extraction method
using two multilayer neural networks and an Inhibi-
tion/Enhancement network for accurate phoneme recogni-
tion. The findings of our study include the following

(a) The DPF extractor based on two MLNs shows a higher
DPF detection performance and exhibits a higher
phoneme correct rate than the DPF extractor imple-
mented with a single MLN.

(b) The proposed method, DPF(MLN + MLN + In/En +
GS,dim : 45), provides a higher phoneme correct rate
than the existing methods [8], [10] and MFCC-based
method for all mixture components investigated.

(c) A higher phoneme recognition performance can be ob-
tained by incorporating an In/En network with the DPF
extraction methods based on MLN (s)+GS.

In future work, we would like to evaluate noise-corrupted
speech data at different acoustic environments for different
signal-to-noise ratios (SNRs) using the proposed DPF ex-
tractor. Moreover, we intend to do some experiments for
evaluating the word accuracy by incorporating the language
model in near future. Since this paper is limited to mono-
phone models, further evaluation based on DPF and MFCC
using triphone models will be done in future as a continua-
tion of our current research.
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