
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009
723

LETTER

Processor-Minimum Scheduling of Real-Time Parallel Tasks∗

Wan Yeon LEE†a), Kyungwoo LEE††, Nonmembers, Kyong Hoon KIM†††, and Young Woong KO†, Members

SUMMARY We propose a polynomial-time algorithm for the schedul-
ing of real-time parallel tasks on multicore processors. The proposed al-
gorithm always finds a feasible schedule using the minimum number of
processing cores, where tasks have properties of linear speedup, flexible
preemption, arbitrary deadlines and arrivals, and parallelism bound. The
time complexity of the proposed algorithm is O(M3 · log N) for M tasks
and N processors in the worst case.
key words: scheduling algorithm, real-time task, parallel task, multicore

1. Introduction

Multicore processors have become increasingly popular in
embedded systems as well as server systems. In the multi-
core platform, processing cores dominate the entire energy
consumption and thus implementing effective energy sav-
ing technologies for the processing cores has become a crit-
ical goal. In fact, many real-time tasks do not need to be
run on all available processing cores to meet their deadlines.
If we know the minimum number of processing cores re-
quired for the completion of the given real-time tasks, we
may achieve potential energy-saving by deactivating the un-
needed cores [1], [2]. To do so, we propose a polynomial-
time algorithm which schedules all real-time tasks so as to
complete their execution before their respective deadlines
using the minimum number of cores (or processors). The
time complexity of the proposed algorithm is O(M3 · log N)
for M tasks and N processors in the worst case.

The task model considered in this paper has the prop-
erties of flexible preemption, linear speedup, parallelism
bound, arbitrary deadlines and arbitrary arrivals. In flexible
preemption, it is assumed to suspend and restart tasks among
processors without incurring any additional costs [3], [4]. In
linear speedup, the speedup is linearly proportional to the
number of allocated processors [5]. In parallelism bound,
the speedup of parallel tasks can be maintained only up to
some bounded number of processors [6].

There have been many researches for the scheduling
of real-time parallel tasks on multiprocessors. Caramia and
Drozdowski [3] studied an optimal scheduling problem of

Manuscript received December 16, 2008.
†The authors are with Hallym Univ., South Korea.
††The author is with Intel Corporation, U.S.A.
†††The author is with Gyeongsang National Univ., South Korea.
∗This work was supported by the Korea Research Foundation

Grant funded by the Korean Government (MOEHRD, Basic Re-
search Promotion Fund) (KRF-2007-313-D00634).

a) E-mail: wanlee@hallym.ac.kr
DOI: 10.1587/transinf.E92.D.723

real-time parallel tasks having properties of flexible pre-
emption, linear speedup and parallelism bound. They stud-
ied the problem of minimizing the mean completion time
of all tasks, but did not consider the problem of minimiz-
ing the number of processors. Burchard et al. [7] studied to
find a feasible schedule on the minimum number of proces-
sors. Burchard’s algorithm works only for non-parallel tasks
but not for parallel tasks. Some previous studies [4], [8],
[9] with optimal criteria are similar to our algorithm. Even
though these studies can find a feasible schedule for real-
time tasks having properties of linear speedup, flexible pre-
emption and parallelism bound, they enforced some specific
constraints on tasks’ deadlines or arrivals, such as the same
deadline [4], the same arrival time [8], or a particular order
of Last Come First Served (LCFS) between arrival times and
deadlines [9]. Contrarily, our algorithm allows tasks to have
arbitrary arrivals and arbitrary deadlines. Hence, our algo-
rithm is more practical than the previous theoretical studies.

Although this paper focuses on the processor-minimum
scheduling of real-time tasks, the proposed algorithm is also
applicable to any minimization problem of resources with
like model of multiple requests and their parallel consump-
tion, e.g., allocating the bandwidth (computation) of simul-
taneous channels (real-time tasks) using the minimum num-
ber of communication links (processors) of routers [3].

2. Proposed Algorithm

This paper deals with the problem of scheduling a set of M
tasks on N identical processors. To formulate the problem,
processor n is denoted as Pn and task m is denoted as Tm

with a quadruplet (am, dm, cm, bm). am, dm, cm and bm denote
the arrival time, the deadline, the computation amount and
the parallelism bound of Tm, respectively. The case of cm >
bm · (dm−am) is excluded because it is impossible to execute
more than bm · (dm − am) for the time (dm − am). M tasks
are given as a set TS = {T1, · · · ,TM}. We assume that am,
dm, cm and bm of each task Tm are known to the scheduler in
advance.

Now we describe how the proposed algorithm sched-
ules M tasks on N processors. We define at most (2M − 1)
intervals using each am and dm of M tasks. All am and dm of
M tasks are sorted in the increasing order and labeled with
another index ex when their corresponding ranking is the x-
th place. An interval Ix is then defined as [ex, ex+1). The
number of interval Ixs is at most (2M−1), because the num-
ber is (2M − 1) when all am and dm are distinct. We also

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

724
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009

define the minimal computation amount that must be allo-
cated at Ix as mandatary computation of the task. In other
words, the mandatary computation is the partial computa-
tion amount that remains when Tm is assumed to be exe-
cuted with its maximum parallelism bm in the next intervals,
i.e., cm − bm · (dm − ex+1). An interval is called overloaded
if its computation capacity is less than the total mandatory
computation assigned to this interval. The excess of the total
mandatory computation over the available computation ca-
pacity is called surplus workload of the overloaded interval.

We schedule tasks within each interval from I1 to I2M−1

sequentially. For each Ix, our algorithm first selects all
tasks Tm which are executable at Ix (i.e., Tm satisfying
am ≤ ex < ex+1 ≤ dm). Next, it allocates the mandatory
computations of the tasks executable at Ix. When all manda-
tory computations can not be completely allocated due to
lack of available computation capacity, the algorithm simply
fails to schedule the task. Finally, if all mandatory compu-
tations at Ix are completely allocated and there still remains
available computation capacity at Ix, the algorithm utilizes
this computation capacity to execute the mandatory compu-
tations at the next intervals. It preferentially executes the
surplus workload of the nearest overloaded interval. After
executing all surplus workloads of overloaded intervals, it
executes the mandatory computations at the next intervals
from Ix+1 to I2M−1.

Figure 1 shows the Feasible-Scheduling algorithm
which finds a feasible schedule of M tasks in TS using given
N′ processors, where the following notations are used:

S Lx: a set of all tasks executable at Ix

δx
m: the mandatory computation of Tm in S Lx at Ix

Φx: the available computation capacity at Ix

λx
m: the computation amount allocated to Tm at Ix

The algorithm initializes Φx, S Lx and δx
m for each Ix at

lines 1–7, and schedules tasks from I1 to I2M−1 sequentially
at lines 8–21. When scheduling S Lx within each Ix, it allo-
cates the mandatory computation of all tasks Tm in S Lx at
line 10. If the available computation capacity is less than
the total mandatory computation (i.e., Φx <

∑
δx), it imme-

diately fails at line 9. If there remains available computation
capacity (i.e.,Φx > 0) after completely allocating all manda-
tory computations of Ix, the mandatory computations δym at
some behind interval Iy for Tm executable at both Ix and Iy

(i.e., Tm ∈ S Lx and Tm ∈ S Ly) is allocated to the remaining
computation capacity of Ix at lines 11–21. Preferentially, the
surplus workload of the nearest overloaded interval Iy is al-
located at lines 12 and 16. If there is no overloaded interval
including any positive δym allocatable at Ix, the mandatory
computation of the next interval from Ix+1 to I2M−1 is allo-
cated at lines 13 and 15. The additional allocation amount λ′
associated with δym is limited by the remaining computation
capacity of Ix (i.e., Φx), the available execution capacity of
Tm at Ix (i.e., bm · (ex+1− ex)−λx

m), and the surplus workload
of the selected overloaded interval (i.e.,

∑
δy − Φy). Their

minimum value determines the additional allocation amount
λ′ at line 15 or 16. This allocation procedure is repeated

Feasible-Scheduling(TS , N′)
1 c′m ← cm for each Tm in TS ;
2 for each x from 1 to 2M − 1
3 Φx ← N′ · (ex+1 − ex); make a subset S Lx of TS ;
4 for each Tm in S Lx

5 δx
m ← max(c′m − bm · (dm − ex+1), 0); c′m ← c′m − δx

m;
6 endfor
7 endfor
8 for each x from 1 to 2M − 1
9 if(Φx <

∑
δx), return FAIL;

10 Φx ← Φx −∑ δx; λx
m ← δx

m and δx
m ← 0 for each δx

m > 0;
11 while(Φx > 0 and S Lx � { })
12 select the nearest Iy such that Φy <

∑
δy and δym > 0 for some

Tm ∈ S Lx;
13 if(Φy ≥ ∑ δy or δym = 0 for any y and any Tm ∈ S Lx), select

the nearest Iy such that δym > 0 for some Tm ∈ S Lx;
14 for each positive δym such that Tm ∈ S Lx

15 if(Φy ≥ ∑ δy), λ′ ← min(δym,Φ
x, bm · (ex+1 − ex) − λx

m);
16 else, λ′ ← min(

∑
δy − Φy, δ

y
m,Φ

x, bm · (ex+1 − ex) − λx
m);

17 increase λx
m by λ′; decrease Φx, δym and cm by λ′;

18 if(λx
m = bm · (ex+1 − ex) or cm = 0), remove Tm from S Lx;

19 if(Φx = 0 or S Lx = { }), go to line 22;
20 endfor
21 endwhile
22 n← 1;
23 Task-Allocation(λx

m, I
x) for each λx

m > 0;
24 endfor
25 return TRUE;

Procedure Task-Allocation(λx
m, Ix)

26 while(λx
m > 0)

27 τs ← the earliest available time of Pn within [ex, ex+1);
28 τe ← min((τs + λ

x
m), ex+1); λx

m ← λx
m − (τe − τs);

29 reserve Pn for the execution of Tm from τs to τe;
30 if(τe = ex+1), n← n + 1;
31 endwhile

Fig. 1 Description of Feasible-Scheduling.

until the available computation capacity is exhausted (i.e.,
Φx = 0) or each Tm in S Lx is allocated up to its parallelism
bound or completely allocated (i.e., λx

m = bm · (ex+1 − ex) or
cm = 0).

Assigning each λx
m to available processors within Ix

is performed in the Task-Allocation() procedure at line 23.
The Task-Allocation() procedure searches the starting time
τs and the ending time τe for Pn to execute Tm at lines 27–
28. Pn is reserved for the execution of Tm from τs to τe at
line 29. Until λx

m is completely assigned (i.e., λx = 0), the
processor number n is increased by one and the next Pn is
reserved for the execution of Tm at Ix.

A schedule completing all tasks before their respective
deadlines is called feasible. Then Feasible-Scheduling al-
ways finds a feasible schedule. If Feasible-Scheduling fin-
ishes at line 25, the total computation of each task is com-
pletely allocated and the execution time of each task does
not exceed its deadline. The number of processors allocated
to tasks is not larger than N′ at any time. The number of pro-
cessors executing each task does not exceed its parallelism
bound at any time.

Figure 2 shows the MinProc-Scheduling algorithm,
which finds a feasible schedule using the minimum num-
ber of processors. MinProc-Scheduling utilizes the binary
search operation. This binary search operation finds the

LETTER
725

MinProc-Scheduling(TS , N)
1 L← 1; H ← min(N,

∑M
m=1 bm); N′ ← 	(L + H)/2
;

2 while(N′ < H)
3 if(Feasible-Scheduling(TS , N′)), H ← N′;
4 else, L← (N′ + 1);
5 N′ ← 	(L + H)/2
;
6 endwhile

Fig. 2 Description of MinProc-Scheduling.

Fig. 3 A scheduling example of the Feasible-Scheduling algorithm.

median number of processors and performs the Feasible-
Scheduling algorithm with the median number of proces-
sors. Depending on whether the Feasible-Scheduling algo-
rithm succeeds, the algorithm searches either the lower or
the upper half of processor numbers. This procedure is re-
peated until N′ ≥ H. When the algorithm completes the
while loop at line 6, N′ is the minimum number of proces-
sors to satisfy the deadlines of all tasks in TS .

The total time complexity of MinProc-Scheduling is
O(M3 · log N) in the worst case. The innermost loop body
at the lines 14–20 of Fig. 1 determines the time complexity
of Feasible-Scheduling. This loop body performs O(M3) it-
erations because the loops at lines 8, 11, and 14 iterate at
most (2M − 1), 2 · (2M − 2) and M, respectively. The while
loop at line 26 performs at most N iterations for all λx

m in
Ix. Usually M2 > N and thus the total time complexity of
Feasible-Scheduling is O(M3). The binary search at lines 2–
6 of Fig. 2 is a logarithmic algorithm and always performs
�log min(N,

∑M
m=1 bm)� iterations.

Figure 3 shows a scheduling example of Feasible-
Scheduling, where four tasks are scheduled on six proces-
sors. By ordering all am and dm of tasks Tm, each inter-
val Ix = [ex, ex+1) is assigned. Set of executable tasks S Lx

and all mandatory computations δx
m are initialized. They are

shown in the right side of Fig. 3. When scheduling tasks
T1 and T2 in S L1, the mandatory computations δ11 and δ12
are allocated to λ1

1 and λ1
2 respectively (line 10 in Fig. 1).

Because there still remains available computation capacity
(i.e., Φ1 = (e2 − e1) · N′ − (λ1

1 + λ
1
2) = 6 > 0), the algo-

rithm utilizes the remaining computation capacity to allo-
cate the surplus workload of the nearest overloaded interval
I2. It selects δ22 arbitrarily among δ21 and δ22, and allocates

min(
∑
δ2 − Φ2, δ22, Φ

1, b2 · (e2 − e1) − λ1
2) = 2 to λ1

2
(line 16 in Fig. 1). Then the interval I2 is not overloaded any
more and the interval I3 becomes the nearest overloaded in-
terval. Next it allocates min(δ31, Φ

1, b1 · (e2 − e1)−λ1
1) = 2

to λ1
1. Then the assigned values at I1 are λ1

1 = 6 and λ1
2 = 4.

The mandatory computations δ22 = 4 and δ31 = 6 are updated
with δ22 = 2 and δ31 = 4. Because Φ2 =

∑
δ2 when schedul-

ing S L2, λ2
m becomes equal to δ2m (λ2

1 = δ
2
1 = 6, λ2

2 = δ
2
2 = 2

and λ2
3 = δ

2
3 = 4). Because Φ3 <

∑
δ3 when scheduling

S L3, the algorithm fails to schedule T1, T2, and T4 within
I3.

3. Properties of the Proposed Algorithm

For clarity, we use the following notation:

• ηx
m: the smallest number of processors allocated to Tm

within Ix.
• ηx: the smallest number of processors allocated to

T1,T2, · · · ,TM within Ix.

Lemma 1: For any Tm ∈ S Ly and Ix such that am ≤ ex <
ey, if ηx < N′ and ηy

m > 0 after scheduling S Lx at Ix, then
ηx

m = bm.

proof: Whenever available processors remain within Ix

(i.e., Φx > 0), Feasible-Scheduling uses these processors
to execute δym for any Tm in S Lx such that am ≤ ex < ey until
ηx

m = bm or cm = 0. If cm = 0 after scheduling S Lx at Ix,
then ηy

m = 0 for any Iy such that ex < ey. Hence, if ηy
m > 0

after scheduling Iy, then ηx
m = bm for ηx < N′ and Tm ∈ S Ly.

�

Lemma 2: If Φy <
∑
δy when scheduling S Ly at Iy, then

the remaining computation of any Tm ∈ S Ly cannot be
allocated to the available processors in any Ix such that
am ≤ ex < ey or in any Iz such that ey < ez < dm.

proof: It is clear that a positive δym cannot be allocated
when there is no available processors in Ix (i.e., ηx = N′).
When there are available processors in any Ix such that
am ≤ ex < ey (i.e., ηx < N′), the remaining computation
of any Tm cannot be allocated to these processors because
ηx

m = bm by Lemma 1. Also, cm ≥ bm · (dm − ey) for any
Tm ∈ S Ly because Feasible-Scheduling does not decrease
any δz in Iz such that ey < ez until Φy =

∑
δy. Hence, the

remaining computation cm of Tm cannot be allocated com-
pletely to the processors in any Iz such that ey < ez < dm,
when Φy <

∑
δy. �

Lemma 3: If ηx
k > 0 and Φy <

∑
δy for any Tk ∈ S Lx such

that ak ≤ ex < min(ey, dk) when scheduling S Ly at Iy, then
ηw

k = bk for any Iw such that ex < ew < min(ey, dk) and
ηw < N′, and ck = bk · (dk − ey) when ey < dk.

proof: If Φy <
∑
δy and ey < dk for any Tk ∈ S Ly when

scheduling S Ly at Iy, then ck = bk ·(dk−ey) because Feasible-
Scheduling does not decrease δzk in any Iz such that ey < ez

until Φy =
∑
δy. Also, if Φy <

∑
δy when scheduling S Lu

at Iu such that ex ≤ eu < ey, Feasible-Scheduling does not
decrease any δw in any Iw such that eu < ew < ey and Φw >
∑
δw until Φy =

∑
δy. If Φw <

∑
δw when scheduling S Lu,

then Φw =
∑
δw when scheduling S Lw. Hence, ηw

k = bk or
ηw = N′ after scheduling S Lw at Iw such that ex ≤ ew <
min(ey, dk). �

726
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.4 APRIL 2009

Fig. 4 The case of failing to schedule Tm within Iy.

Theorem 1: Feasible-Scheduling always finds a feasible
schedule if there are feasible schedules on given N′ proces-
sors.

proof: If Φy <
∑
δy when scheduling S Ly at Iy, then

Feasible-Scheduling fails to schedule the tasks Tm ∈ S Ly

because the remaining computation of any Tm cannot be al-
located to available processors in any interval by Lemma 2.
We assume that there is a feasible schedule which satis-
fies the deadlines of all tasks simultaneously. This feasi-
ble schedule is referred to as New Schedule and the failed
schedule of Feasible-Scheduling is referred to as Original
Schedule. Compared with the Original Schedule, the New
Schedule must additionally use some processors reserved
for the execution of a previously scheduled task Tk in Ix

such that ak, am ≤ ex ≤ ey, in order to schedule Tm suc-
cessfully. Only when ηx

k > 0, ηx
m < bm and ηx = N′ such

that ak, am ≤ ex ≤ ey, Tm is allowed to use some proces-
sors reserved for Tk within Ix. If ηx < N′, then ηx

m = bm

by Lemma 1. When ηx
m = bm or ηx

k = 0, bm processors are
already allocated to Tm within Ix or there is no processor
reserved for Tk within Ix, respectively.

If Tm uses some processors reserved for Tk in Ix, then
Tk must use some processors available between ak and dk, in
order to compensate for the additional processors required
for Tm. Then let us check whether both Tk and Tm can be
scheduled in the New Schedule. We first check the case that
Tk uses available processors in any Iv such that ak ≤ ev <
ex in order to compensate for its loss, which is described
as arrow A in Fig. 4. Because ηv

k = bk by Lemma 1, the
lost computation amount of Tk in Ix cannot be allocated to
available processors in Iv. Next, we check the case that Tk

uses available processors in any Iw such that ex < ew < dk in
order to compensate for its loss, which is described as arrow
B in Fig. 4. If ηx

k > 0 and Φy <
∑
δy for any Tk ∈ S Lx

such that ak ≤ ex ≤ min(ey, dk) when scheduling S Ly at Iy,
then ηw

k = bk for any Iw such that ex < ew < min(ey, dk)
and ηw < N′, and ck = bk · (dk − ey) when ey < dk by
Lemma 3. Hence, the lost computation amount of Tk in Ix

cannot be allocated to available processors in any Iw such
that ex < ew < dk.

From the above-mentioned facts, the New Schedule
cannot satisfy the deadlines of both Tk and Tm. In order
to schedule both Tk and Tm successfully, the New Schedule
must use some additional processors reserved for the execu-
tion of another task T j. However, all of T j, Tk and Tm cannot
be scheduled in the New Schedule by the same reason. Con-
sequently, the assumption on feasibility of the New Sched-
ule is a contradiction. This means that Feasible-Scheduling
always finds a feasible schedule if there are feasible sched-
ules on given N′ processors. �

Theorem 2: MinProc-Scheduling always finds a feasible
schedule using the minimum number of processors.

proof: When MinProc-Scheduling finds a feasible sched-
ule using N′ processors, let us assume that there is a fea-
sible schedule using N′′ processors such that N′′ < N′. If
Feasible-Scheduling finds a feasible schedule on N′′ proces-
sors, then Feasible-Scheduling can find a feasible schedule
on N∗ processors for any N∗ ≥ N′′. If MinProc-Scheduling
selects a feasible schedule using N′ processors, then this
means that Feasible-Scheduling failed to find the feasible
schedule on N∗ processors such that N′ > N∗ ≥ N′′. Then it
is a contradiction of Theorem 1. �

References

[1] M. Nikitovic and M. Brorsson, “An adaptive chip-multiprocessor ar-
chitecture for future mobile terminals,” Int’l Conf. Compilers, Archi-
tecture, and Synthesis for Embedded Systems, pp.43–49, 2002.

[2] L. Benini, A. Bogliolo, and G.D. Micheli, “A survey of design tech-
niques for system-level dynamic power management,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol.8, no.3, pp.299–316, 2000.

[3] M. Caramia and M. Drozdowski, “Scheduling malleable tasks for
mean flow time criterion,” Tech. Rep. RA-008/05, Poznam Univeristy,
2005.

[4] M. Drozdowski, “Real-time scheduling of linear speedup parallel
tasks,” Inf. Process. Lett., vol.57, no.1, pp.35–40, 1996.

[5] J. Blazewicz, M.Y. Kovalyov, M. Machowiak, D. Trystram, and J.
Weglarz, “Malleable tasks scheduling to minimize the makespan,”
Annals of Operations Research, vol.129, pp.65–80, 2004.

[6] K.C. Sevcik, “Application scheduling and processor allocation in mul-
tiprogrammed parallel processing systems,” Perform. Eval., vol.19,
no.2-3, pp.107–140, 1994.

[7] A. Burchard, J. Liebeherr, Y. Oh, and S.H. Son, “New strategies
for assigning real-time tasks to multiporcessor systems,” IEEE Trans.
Comput., vol.44, no.12, pp.1429–1442, 1995.

[8] W.Y. Lee and H. Lee, “Optimal scheduling for real-time parallel
tasks,” IEICE Trans. Inf. & Syst., vol.E89-D, no.6, pp.1962–1966,
June 2006.

[9] W.Y. Lee and Y.W. Ko, “Real-time scheduling of parallel tasks on
fewest processors,” IEEE Int’l Conf. Hybrid Information Technology,
pp.562–567, 2006.

