
826
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

PAPER Special Section on Information and Communication System Security

Development of Single Sign-On System with Hardware Token and
Key Management Server

Daiki NOBAYASHI†a), Student Member, Yutaka NAKAMURA†, Takeshi IKENAGA†,
and Yoshiaki HORI††, Members

SUMMARY With the growth of the Internet, various types of services
are rapidly expanding; such services include the World Wide Web (WWW),
the File Transfer Protocol (FTP), and remote login. Consequently, man-
aging authentication information, e.g., user ID/password pairs, keys, and
certificates– is difficult for users, since the amount of required authentica-
tion information has been increased. To address this problem, researchers
have developed a Single Sign-On (SSO) system that makes all the services
available for a user via a one-time authentication: however, existing authen-
tication systems cannot provide such SSO services for all kind of services
on the Internet, even if the service provider deploys the SSO server. Further,
existing systems also cannot provide the SSO service which does not make
it conscious of a network domain to a user on secure network environment.
Therefore, in this paper, we propose a new SSO system with a hardware
token and a key management server to improve the safety, ubiquity, and
adaptability of services. Further, we implement the proposed system and
show its effectiveness through evaluation. Adding any functions for this
system provides various conveniences to us. We also explore the ability
to add functions to this system; for example, we add high trust connection
functionality for a Web server and show its effectiveness.
key words: single sign-on, hardware token, key management server, au-
thentication, security

1. Introduction

A Single Sign-On (SSO) system, which provides one-time
authentication for one or more services for a user, has been
developed in recent years [1]–[6]. Indispensable network-
based service in enterprises and academic organizations are
expanding and becoming increasingly diverse. Most ser-
vices identify users via an authentication scheme. Cur-
rently, authentication schemes typically require a variety
of authentication information, including UserID/Password
pairs, Private/Public keys, a certificate, and so on. It is dif-
ficult for users to manage their authentication information
because users maintain such information independently for
each service. Each service provider requires an authentica-
tion scheme to reduce management costs for authentication,
and users want simpler authentication schemes for their con-
venience.

There are two fundamental SSO architectures: one is
provided as part of the infrastructure constructed by service
providers; the other is provided by a user-side tool each

Manuscript received August 4, 2008.
Manuscript revised December 29, 2008.
†The authors are with the Kyushu Institute of Technology,

Kitakyushu-shi, 805–8550 Japan.
††The author is with the Kyushu University, Fukuoka-shi,

819–0395 Japan.
a) E-mail: nova@net.ecs.kyutech.ac.jp

DOI: 10.1587/transinf.E92.D.826

user can utilize to automatically manage various authenti-
cation credentials. To adopt the former architecture, service
providers have to build a common SSO environment to share
the authentication scheme, requiring additional investment
among service providers and coordination between such
providers to use the common SSO environment. Such an ap-
proach provides benefits for its users because it requires no
additional cost for the users. The latter architecture requires
no additional investment from service providers. Instead,
it requires an additional cost on the user side; however, it
provides several benefits for the users, summarized below:

• Applicability to a variety of services provided by dif-
ferent service providers
• Flexibility to interface with a new service
• User mobility

In this paper, we propose a new SSO system that does
not interrupt the functionality of various legacy services on
the Internet, such as remote login, File Transfer Protocol
(FTP), and World Wide Web (WWW) Services. Our pro-
posed system consists of a Key Management Server (KMS),
a Hardware Token (HT) and a Client Agent (CLA). The
KMS maintains user authentication information, such as
UserID/Password pairs, Private/Public keys, and a certifi-
cates. The Hardware Token maintains two keys, (1) a sym-
metric key to encrypt/decrypt user credential, and (2) a pri-
vate key to access the KMS. The CLA mediates the authen-
tication process between a service provider’s authentication
scheme and a user. The CLA takes in authentication creden-
tials from the KMS, when the CLA needs to provide access
to services. Users on a network can obtain the authentica-
tion information in the KMS by using the CLA. Further,
when a user access a Web server, the CLA is able to vali-
date the Web server’s legitimacy from such credentials as a
server certificate. With this functionality, our SSO system is
effective against phishing attacks.

This paper is organized as follows. In Sect. 2, we dis-
cuss existing SSO systems and their inherent problems. In
Sect. 3, we show our proposed SSO system. Section 4 de-
scribes the prototype construction of our system. We show
an additional functionality of the CLA in Sect. 5. We discuss
our proposed system in Sect. 6, and, finally, we summarize
our work in Sect. 7.

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers



NOBAYASHI et al.: DEVELOPMENT OF SINGLE SIGN-ON SYSTEM WITH HARDWARE TOKEN AND KEY MANAGEMENT SERVER
827

2. Single Sign-On

Andreas et al. classify SSO systems in [4], categorizing the
structure and how to operate SSO systems. In this paper, we
focus on who provides the SSO service. A SSO system is
classified into the service of the server side and the applica-
tion at the user side.

2.1 Application of a SSO System for Users

User-side SSO systems can be used by installing software
on a client computer. Such a user-side SSO system has the
advantage of adapting to various services, because a user
can configure this system at any time. This system has the
disadvantage of increased costs in constructing the SSO en-
vironment, resulting in increased management costs of the
user. For example, commercial system products include
PassOne [7] by NEC Software Tohoku and e-z-Login [8]
by NTT Data, both password managers. These examples
both automatically input authentication information instead
of the user; however, these products differ in how they man-
age authentication information. In PassOne, a user sets
up a database server that stores the authentication informa-
tion in a network domain provided to the SSO. The e-z-
Login product uses the management server much like the
PassOne. Both products provide SSO within the same net-
work domain as that of the database server. Software prod-
uct, such as ID Memory [9] by goo and ID Manager [10] by
WoodenSoldier Software, are password manager in which
users must manage their UserIDs and Passwords person-
ally. Therefore, installing such software on an external hard
drive, password managers provide a SSO service for a user
everywhere; however, if a user loses this external hard drive,
others may misuse the authentication information.

2.2 SSO by a Service Provider

In this subsection, we describe SSO systems made avail-
able by service providers providing FTP and WWW ac-
cess. Such service construct a SSO environment that sup-
ports multiple user applications. This approach has the ad-
vantage of managing all users’ information; however, users
can only use services that the service provider offers.

Some systems provide unifying authentication against
several Internet services; such systems include Network
Information Service (NIS), Lightweight Directory Access
Protocol (LDAP) and Kerberos. In these cases, users only
manages one user UserID/password pair; however, if this
pair is leaked the user is negatively affected at all services.
Furthermore, users also cannot use such SSO environments
on different service providers.

Another approach to server-side SSO is to set the au-
thentication server as an intermediary between users and the
services’ server. Users can use all services via this mech-
anism. This approach is classified into reverse-proxy type
and agent type, as described in the following subsections.

2.2.1 Reverse-Proxy Type

Applying the reverse-proxy approach to server-side SSO, a
reverse-proxy server exists between a server and a user ter-
minal. When a user authenticates to the server, the reverse-
proxy server obtains certificate information from an au-
thentication server and authenticates services instead of the
user [4]. An example of such a product is the HP Ice-
Wall SSO [11] by Hwelett-Packard. As shown in Fig. 1,
all communication to the services’ server goes through the
reverse-proxy server. When the server requests login in-
formation, the reverse-proxy server queries the authentica-
tion server to obtain login information. The reverse-proxy
server obtains authentication information from an authenti-
cation server and authenticates the server instead of the user.
For Web services, the authentication server answers such a
query by publishing an “access ticket” used as a cookie on
the user’s Web browser.

An advantage of using a reverse-proxy type ap-
proach is that no additional SSO software is required on
the service’server. Therefore, this approach is platform-
independent; however, because all traffic goes through a
proxy server, this system has scalability problems.

From the user’s perspective, this approach reduce the
need to input a password or other authentication informa-
tion; however, if authentication information is stolen, all ap-
plications may be access ed illegally. As a countermeasure
to such an authentication information leak, an authentication
server using Public Key Infrastructure (PKI) and a one-time
password may be used. Further, to improve security, we can
apply the method using a hardware token.

2.2.2 Agent Type

A software called “Agent” is installed on a service’s servers,
and this software acts as the authentication server’s deputy.
Entrust Get Access [12] by Entrust Japan is an example
product that uses this approach. Figure 2 shows an exam-
ple of SSO of agent type SSO. For Web services, a user
logs in to the authentication server. The client’s terminal

Fig. 1 Example of reverse-proxy type SSO.



828
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

obtains an “Access Ticket” from the authentication server,
which the Web browser uses to authenticate when the user
accesses the services’ servers. The agent in the services’
server obtains the user’s credentials from the authentication
server and confirms the access ticket. In such agent SSO
systems, the load on the server from user activity does not
increase, thus this approach is superior in term of scalabil-
ity; however, this approach requires agent software to be
installed on each server. The service provider has to build
and support the SSO environment.

2.2.3 Hybrid Type

To help overcome the respective problems of the reverse-
proxy and agent types described above, a combined ap-
proach may be used. For example, when the services’ server
cannot install the agent application, the reverse-proxy type
operates; otherwise, the agent type used.

2.2.4 Summary

In the above subsections, we described existing SSO meth-
ods. Password managers are superior to other systems in
term of mobility, because password manager applications
are carried around in the outside storage. SSO implemented
by a service provider doesn’t have the mobility of a user.
When several providers cooperate about user authentica-
tion, user mobility improves. The password managers are
scalable; however, other SSO systems can only support one
application. For personal authentication, we can improve
user credential security by using Public Key Infrastructure
(PKI). The password managers cannot use the PKI. How-
ever, reverse-proxy type and agent type can use the PKI.

Judging from the above summary, we conclude that
future SSO systems require ubiquity, security, and adapt-
ability for many services. Ubiquitous SSO implies location-
independent authentication. Secure SSO guarantees secure
communication, preventing information leaks to external
entities. Adaptable SSO integrates services without the user
taking action to integrate such services.

Fig. 2 Example of agent type SSO.

3. Proposed SSO System

We propose a new SSO system that is able to manage large
amounts of authentication information, providing users the
ability to manage unified authentication information. Many
services’ servers can use the proposed SSO environment
without installing SSO software on services’ servers. In-
stead, we build a Key Management Server on the Internet to
provide the necessary SSO environment. Our system uses a
Hardware Token to authenticate personal credentials of each
user.

3.1 Components

As shown in Fig. 3, our SSO consists of the following three
components:

• Key Management Server (KMS)
• Hardware Token (HT)
• Client Agent (CLA)

3.1.1 Key Management Server (KMS)

The Key Management Server (KMS) maintains an Authen-
tication Information Database (AIDB). Available on the In-
ternet, the KMS also has an original Certificate Authority
(CA) that generates a client certificate and a server cer-
tificate. Communication between the KMS and the Client
Agent (CLA) is encrypted via Secure Socket Layer (SSL).
When a client machine communicates to the KMS, both
client host and the KMS verify the client certificate and the
server certificate of each other. The AIDB maintains the
UserID/password pair and service identifier per user. To
encrypt or decrypt the authentication information, the CLA
uses a symmetric key on the client machine. This authenti-
cation data is stored in the KMS. To identify the user, the
KMS stores the user certificate generated by user’s Hard-
ware Token. The CA signs the user certificate to verify the
user’s identification.

Fig. 3 Components of proposed system.



NOBAYASHI et al.: DEVELOPMENT OF SINGLE SIGN-ON SYSTEM WITH HARDWARE TOKEN AND KEY MANAGEMENT SERVER
829

Table 1 Compare the method of SSO.

SSO with a user SSO with service provider Our proposal
PassOne etc. password manager reverse proxy agent HT & KMS

Safety Good Not good Good Good Good
Ubiquity Not good Good Depend on the situation Good

Adaptability Depend on the situation Good Not good Not good Good

3.1.2 Hardware Token (HT)

The user carries the Hardware Token (HT) usually any-
where. The HT maintains two keys to authenticate a user
and encrypt or decrypt information in the AIDB. The first is
a symmetric key to encrypt or decrypt user credentials, the
second is a private key to access the KMS when the CLA
needs to access provided services. Users must enter a per-
sonal PIN code to make the HT available. If a user inputs
an incorrect PIN code a configurable number of times, the
HT is locked to prohibit further access. Therefore, if a user
loses the HT, the others cannot use it to authenticates. To
further confirm ownership of the HT for a user, the KMS
check the user certificate via the KMS. If a user loses his
or her hardware token, the CA in the KMS will expire the
user certificate. Therefore, authentication information in the
KMS is strongly protected.

3.1.3 Client Agent (CLA)

The CLA mediates the authentication process between a ser-
vice provider’s authentication scheme and a user with an
HT. Independent from other client applications, such as a
Web browser or Mail User Agent (MUA), the CLA takes in a
credential information from the KMS, when the CLA needs
to access provided services. The CLA enters authentication
information into the services’ server instead of a user.

3.2 Characteristics

Table 1 compares our proposed method to the aforemen-
tioned existing SSO methods in term of safety, ubiquitously,
and adaptability for services.

Our system is superior to other system in term of ubiq-
uity due to the HT, because users can easily carry their re-
spective HTs. Users with the HT can use the SSO environ-
ment wherever they can connect to the Internet.

Our system is superior to other system in term of safety.
The HT consists of the private key to authenticate the user,
as well as a symmetric key to encrypt or decrypt information
in the AIDB. Users must use their HTs to authenticate to the
AIDB of the KMS.

Another feature in our system is the CLA, which pro-
vides adaptability for a variety of services. The CLA pro-
vides the UserID/Password pair on behalf of the user.

A disadvantage of our system is the reliance on the HT.
If a user loses his or her HT, the CA in the KMS expires
the user certificate, thereby avoiding any misuse or security
breaches. Further, our system avoids misuse via the AIDB;

if the KMS is cracked, the AIDB is unreadable because it is
encrypted using the symmetric key in the HT.

Our proposed system belongs to the Pseudo-SSO cat-
egory introduced in [4]. A Pseudo-SSO system manages
UserID/Password pairs for services. Such Pseudo-SSO sys-
tem are further categorized as local Pseudo-SSO and proxy-
based Pseudo-SSO systems. Our SSO system belongs to
neither the local Pseudo-SSO nor the proxy-based Pseudo-
SSO, because our SSO system stores authentication infor-
mation to the AIDB on the network. If authentication infor-
mation exists on a local computer, a malicious user may be
able to gain access to its security information. Therefore,
our proposed system is a new category of Pseudo-SSO.

3.3 Process Overview

In the following subsections, we show several processes of
our system, including system preparation, registration, the
login process, and others.

3.3.1 Preparation

Before using our system, a user must perform the following
operations. A client host and a server host must obtain host
certificates to verify themselves. The CA working with the
KMS publishes these certificates, and the client and server
certificates are kept on each computer. These certificates
are used to verify the client host and the server host to each
other.

A user generates a private key and a user certificate
from the HT. The private key is kept in the HT, whereas
the user certificate is stored in the KMS and is signed by the
CA. These keys are utilized to perform personal authentica-
tion.

A user must make a symmetric key to encrypt or de-
crypt authentication information in the AIDB of the KMS.
Because the plain text does not have security, we encrypt or
decrypt information in the AIDB by using this symmetric
key. Our system maintains this key in the HT.

3.3.2 Login to Client Agent

Figure 4 shows the login process. A user inserts a HT into
a slot on the client host machine, then inputs a UserID and
PIN to access the HT. The CLA sends the UserID to the
HT to encrypt it via the private key. We show UserID that is
encrypted by the private key Kpriv as EncKpriv (UserID). The
EncKpriv (UserID) and UserID are send to the KMS which
decrypts EncKpriv (UserID) by using the public key in the



830
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fig. 4 Flow diagram of login processing.

user’s certificate. The UserID that is decrypted by the pub-
lic key Kpub is shown as DecKpub (EncKpriv (UserID) The login
process finishes and the user is authenticated by comparing
DecKpub (EncKpriv (UserID) and UserID.

3.3.3 Communication between the CLA and the KMS

Our system uses Secure Socket Layer (SSL) to validate and
encrypt communication between the CLA and the KMS.
Each client and the server keep host certificates published
by the CA in the KMS. Each host identifies one another’s
reliability by using these certificates. The communication
line is verified and encrypted by the SSL and the use of these
certificates. Whenever a user connects to the KMS, commu-
nication between the KMS and the CLA occurs via a new
encrypted session.

3.3.4 Process of Registering Login Information in the
KMS

Our system use authentication information including user
name, application name, application options, login ID, pass-
word, credential key, and so on. Figure 5 summarizes
the registration process in which such login information is
stored in the AIDB.

First, given the login ID and password (LoginInfo),
the HT create EncSymKey(LoginInfo) by encrypting LoginInfo
using symmetric key SymKey in the HT. Second, the
CLA creates M(EncSymKey(LoginInfo), the message digest
(MD) by applying the symmetric key to the encrypted
text. Third, this MD is encrypted by the private key
in the HT, shown as EncKpriv (M(EncSymKey(LoginInfo))).
Fourth, the CLA sends the UserID, EncSymKey(LoginInfo),
EncKpriv (M(EncSymKey(LoginInfo)) and application informa-
tion (AppInfo) to the KMS. Fifth, the KMS decrypts

Fig. 5 Flow diagram of registration processing.

Fig. 6 Flow diagram showing process of obtaining login information
from the KMS.

the encrypted MD to obtain the MD of the user certifi-
cate (DecKpub (EncKpriv (M(EncSymKey(LoginInfo))))). Sixth,
the KMS generates M(DecKpub (EncKpriv (M(EncSymKey

(LoginInfo)). Given these last two MDs, if the MD gen-
erated by the CLA (step 5) and the KMS (step 6) are the
same, EncSymKey(LoginInfo) are transmitted to the AIDB.

3.3.5 Process of Obtaining Login Information from KMS

Figure 6 shows the process of retrieving the authentica-



NOBAYASHI et al.: DEVELOPMENT OF SINGLE SIGN-ON SYSTEM WITH HARDWARE TOKEN AND KEY MANAGEMENT SERVER
831

tion information from KMS, described below. First, when
a user connects to the services’ server, the CLA sends
the request (UserID and AppInfo) to the KMS. Sec-
ond, the KMS searches the AIDB for encrypted login in-
formation EncSymKey(LoginInfo). Third, the KMS gener-
ates M(EncSymKey(LoginInfo)), the MD of the searching lo-
gin information. Fourth, the M(EncSymKey(LoginInfo)) is
encrypted using the user certificate stored in the KMS
(EncKpub (M(EncSymKey(LoginInfo)))). Fifth, the KMS sends
EncSymKey(LoginInfo) and EncKpub (M(EncSymKey(LoginInfo)))
to CLA. Sixth, the CLA obtains the DecKpriv (EncKpub

(M(EncSymKey(LoginInfo)))) to use the private key in the HT.
Seventh, the CLA generates the M(EncSymKey(LoginInfo)).
Eighth, the MD generated by the KMS (step 6) is compared
to the MD generated by the CLA (step 7) to ensure a match.
Ninth, the CLA decrypts the EncSymKey(LoginInfo) using the
symmetric key in the HT, thus obtain the authentication in-
formation which an application can then use via the CLA.

3.3.6 Logout

When a user detaches the HT in the client’s computer and
logs out of the client machine, the CLA immediately closes
the encrypted connection to the KMS. Therefore, other can-
not illegally gain access to the CLA.

4. Implementation and Experimentation

In this section, we describe a prototype implementation of
our proposed SSO system, and show the results of our ex-
perimentation.

4.1 Prototype Implementation

We developed a prototype system consisting of three com-
ponents (as shown in Fig. 3); a KMS, a CLA and a HT.
Server and client applications were implemented in C++.
The KMS runs on a Linux operating system. The CLA
application is available on both Windows XP and Linux
operating systems. We use USB token ePass1000 by the
FEITIAN Corporation [13] as a HT because it has an ac-
cess control functionality using a PIN code and supports the
PKCS#11 API published by RSA Corporation [14].

4.2 Experimentation

Figures 7 and 8 show screenshots of our implemented SSO
system, executing in debug mode such that processing may
be monitored. In particular, Figs. 7 and 8 show a series of
operations, including when personal information is regis-
tered in AIDB, and when such personal information is ob-
tained from the AIDB. During execution in debug mode,
the encrypted binary data is displayed in base 64 form so
that people can check. From Figs. 7 and 8, we verified that
the CLA and the KMS which were implemented operate as
showed in Figs. 5 and 6. The CLA registers the encrypted
credential information to AIDB in the KMS in process of

Fig. 7 Screenshot of the KMS.

“regist”. Moreover, when the CLA needs credential infor-
mation, CLA obtains the information from the KMS accord-
ing to process of “get” and decrypted the information We
verify that the KMS, and the CLA, and a HT can manage a
user’s credential information.

Further, we tried to log in to a Social Networking Site
(SNS) Web site called “mixi” that is the most popular SNS
site in Japan. In addition, we verified behavior logging in to
the MSN Messenger and the POP3 server using the Thun-
derbird as our MUA. Integrated into our SSO system, we
registered authentication information such as UserID, Pass-
word and service identifier with the KMS. We then tested
using this authentication information through the CLA, ver-
ifying the successful operation of our SSO environment.

To investigate the overhead of storing and retrieving
authentication information using our SSO system, we mea-
sured the time from the occurring service request and the
finish of retrieving process. This time is approximately 1.2
seconds (excluding the database search time), which adds
minimal time to the user’s wait time. Therefore, the user
can use our proposed method without feeling as stressed.

5. Application -Safety Web Basic Authentication

We expand our proposed Single Sign-On system by pro-
viding anti-phishing/anti-pharming features. Phishing is a
problem in which a user is tricked into entering his or her
secret information (e.g. a password or other such sensitive



832
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fig. 8 Screenshot of the CLA.

information) into an illegitimate Web server [15], [16]. To
prevent such threats, we propose a scheme the automatically
logs in, on the user’s behalf, to validated a Web server.

5.1 Additional Mechanism

We expand the functionality of our SSO system to validate
a Web server. Our system verifies a server’s certificate with
a Web server when the user connects to the Internet. When
this server’s certificate is valid, the user can log in to the Web
site without inputting his or her UserID and password. We
avoid leaking authentication information to illegitimate Web
sites because the user does not input his or her authentication
information. We add the new feature as follows:

• The CLA keeps a list of the root CA
• The CLA verifies a certificate of the Web server

5.2 Anti-Phishing/Anti-Pharming Process

The CLA of Our proposed system validates the legitimacy
of a Web server by using the aforementioned functional-
ity. We describe the flow of the anti-phishing/anti-pharming
process in Fig. 9 and in the following subsections.

Fig. 9 Processing of Web basic authentication on our proposal.

5.2.1 Preparation

A user registers the URL and an authentication information
for the Web service with our system. This registered data is
stored in the KMS.

5.2.2 Case of a Legitimate Web Site

When a legitimate Web site is to be accessed, the follow-
ing steps are performed. First, a user accesses the Web
site on the Internet. Second, the Web server requests the
login information to authenticate the user. Third, the Web
browser forwards the URL to the CLA when the user opens
the Web page containing the login request. Fourth, the CLA
queries the Web server for a server certificate. Fifth, the
CLA checks the server certificate from the Web server and
the list of the root CA. Sixth, the CLA requests the UserID
and password from the KMS (the CLA’s request generated
from Web server certificate). Seventh, the KMS obtains the
user credentials in the AIDB and sends the authentication
information from the KMS to the Web server through the
Web browser.

The user can log in to the Web server without inputting
his or her UserID and password. Further, our system avoids
Web phishing because our system verifies the legitimacy of
the Web server by the list of the root CA.

5.2.3 Case of Fake URL

In the case of accessing a fake URL, the CLA sends a re-
quest for authentication information to the KMS. The KMS
searches for the user credentials in the AIDB; however, the
KMS cannot find the user credential for the fake URL. The
KMS sends a warning message to the CLA, which forwards
this warning message to the Web browser. Our system de-
tects the fake URL because our system validates each given
URL.

5.2.4 Case of Fake Server Certificate

In the case of accessing a Web server with a fake server cer-
tificate, the CLA sends a request for the server certificate to
the fake Web server. The CLA checks the server certificate
based on whether or not it is published by a reliable root
CA. The CLA judges the server as illegitimate if the server
certificate is not legitimate. In such cases, the CLA sends a
warning message to the Web browser without accessing the



NOBAYASHI et al.: DEVELOPMENT OF SINGLE SIGN-ON SYSTEM WITH HARDWARE TOKEN AND KEY MANAGEMENT SERVER
833

KMS. Our system detects the fake certificate because our
system validates both the server certificate and the list of the
root CA.

6. Discussion

In this section, the security and reliability of our proposed
SSO method is described.

6.1 Security Analysis

The KMS has manages a user’s personal information.
Therefore, the KMS must handle illegitimate access, eaves-
dropping, and other such security problems, strictly from
the third party. In the following discussion, we analyze typ-
ical attacks for personal information acquisition, such as an
eavesdropping, an alteration, a replay attack, and a session
hijack.

An eavesdropping attack is an act in which a malicious
party peruses the packet flow of a communication path and
uses such information illegally. As a countermeasure, com-
munication between a CLA and the KMS is protected by
PKI and encryption using the secret key in a HT. Through
these methods, the attacker cannot peruse information that
flows across the communication path unless the key in the
HT is illegally acquired.

An alteration attack alters information that flows across
a communication path, sending strange or malicious infor-
mation to a destination node. As a countermeasure, our
proposed method uses a message digest; detection is im-
mediately discovered when a transmitting error is found in
the communication stream. For an attacker to successfully
achieve an alteration attack, key information in the HT is
required.

Finally, we describe a replay attack and a session hi-
jack. A replay attack is an attack in which a third party
illegally accesses a server by copying a user’s log-in in-
formation. A session hijack is an attack in which an at-
tacker illegally accesses a server by stealing a session ID
used at the time of the connection was initially established
between client and server. As a countermeasure to both
types of attack, our proposed method uses a client certifi-
cate of SSL when the connection between client and server
is established; our proposed method also uses the challenge
response method. The KMS specifies a user by verifying
the client certificate of the CLA. Therefore, the attacker
cannot carry out a session hijack. Moreover, since infor-
mation flowing across the connection uses the challenge re-
sponse method, such information is encrypted with a dif-
ferent key for every login and is difficult to access illegally
using copied information.

6.2 Reliability

In this section, we discuss about the management and de-
ployment of our proposed system. A KMS manages authen-
tication information for users. Therefore, a user cannot be

provided with SSO if a server fails to operate due to sched-
uled maintenance a failure, a denial-of-service (DoS) attack,
and so on. Deployment of the KMS may take one of two ap-
proachs: a Centralized Management approach or a Decen-
tralized Management approach. Authentication information
may be centralized or decentralized. The centralized man-
agement approach has the advantage that all users are man-
aged by one server, but has the disadvantage of being weak
against an outage and high load caused by the increase in the
number of users. The decentralized management approach
has the advantage of having high fault tolerance; however,
since authentication information is distributed, management
of such information is difficult.

6.2.1 Server Mirroring

The KMS may be set up by an Internet Server Provider
(ISP) in such a way that the management of user informa-
tion is provided by an authenticator function. Users with
HTs can access the KMS from all networks and can use a
single sign-on. When KMS falls into a situation with lim-
ited or no service after an accident, disk crash, DoS attack,
etc., it will become impossible for all users to use a single
sign-on. Moreover, the KMS has a load corresponding to the
user increment. Providing stable services in these situations
is difficult for KMS. When the KMS manages authentica-
tion information of all users, some of the aforementioned
problems can be avoided by preparing the mirror server for
the KMS, all user information that all KMSs have must be
synchronized. Moreover, assigning the server that a user
accesses according to load is necessary. Since these mecha-
nisms are already used in various Web system, realization of
mirroring and load-balancing technologies for our proposed
system is straightforward.

6.2.2 P2P Technology for Distributed KMS

As another approach to implementing and operating our
SSO system, each network administrator installs a KMS.
Figure 10 shows an overview of the distributed method to
set up multiple KMSs. A user registers authentication in-
formation in the network in which he or she belongs. The
user can usually use a service of single sign-on when he is

Fig. 10 The overview of distributed management method to set up
KMSs.



834
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

in the network; when a user uses the KMS from another
network, the local KMS obtains authentication information
from the KMS in the network in which a user belongs.
When the local KMS does not have the information a user
needs, the local KMS searches other KMSs across the In-
ternet. The searching methods in P2P, such as a Distributed
Hash Table, can offer a high-speed searching strategy to the
KMS [17]. Moreover, a KMS can search efficiently by set-
ting up KMSs in consideration of network hierarchy, such as
Domain Name Service. Therefore, the user can use the ser-
vices from KMS in other networks. By this method, since
secret information must not be revealed the safe communi-
cation between KMSs is required. When KMSs are set up in
a distributed manner, secret information must be transmitted
as safely and securely as possible.

As mentioned above, to use this system effectively in
a networked environment, various decentralized administra-
tion methods are required. Since these methods are beyond
the scope of this paper, we will not discuss this topic further.

7. Conclusion

In this paper, we discussed existing SSO systems and their
limitations. We proposed a new SSO system without mod-
ifying the functionality of various legacy services available
on the Internet. Our proposed system consists of a KMS,
HTs, CLAs. User on a network can store and obtain au-
thentication information in the KMS by using the CLA and
a HT. We showed that our proposed system could be ap-
plied to various services by implementing a prototype of the
proposed system, and showed its effectiveness through eval-
uation.

Moreover, added a function specifically for Web sys-
tems. The CLA validates a Web server’s legitimacy from
a credential such as a server certificate when users access
such a Web server. We showed that our SSO system with
this additional functionality was effective against phishing
attacks.

Acknowledgment

This research was partially supported by the Ministry of Ed-
ucation, Science, Sports and Culture, Grant-in-Aid for Sci-
entific Research on Priority Areas, New IT Infrastructure for
the Information-explosion Era, 19024062, 2007.

References

[1] A. Volchkov, “Revisiting single sign-on — A pragmatic approcah in
a new context,” IT Pro, pp.39–45, Jan./Feb. 2001.

[2] S. Chu, D. Good, M. Mamajek, and D. Washington, “Web-based
single sign-on solutions: An SSO product matrix,” Comput. Secur.
J., vol.16, no.1, pp.39–49, 2000.

[3] J.D. Clercq, “Single sign-on architectures,” Proc. InfraSec 2002,
LNCS 2437, pp.40–58, 2002.

[4] A. Pashalidis and C.J. Mitchell, “A taxonomy of single sign-on sys-
tem,” Proc. ACISP 2003, LNCS 2727, pp.249–264, 2003.

[5] S.S. Sandhu, “Single sign on concepts & protocols,” SANS Institute
2004, 2004.

[6] J. Miyoshi and H. Ishii, “Network-based single sign-on architecture
for IP-VPN,” Proc. PACRIM 2003, pp.458–461, 2003.

[7] PassOne, NEC Software Tohoku,
http://www.tnes.co.jp/product/passone.html

[8] e-z-Login, NTT Data,
http://www.nttdata.co.jp/release/2004/012000.html

[9] ID Memory, goo (NTT Resonant Inc.), http://idmemory.goo.ne.jp/
[10] ID Manager, WoodenSoldier System,

http://www.woodensoldier.info/soft/idm.htm
[11] HP IceWall SSO, Hewlett-Packard Development Company,

http://h50146.www5.hp.com/products/software/security/icewall/
index.html

[12] Entrust Get Access, Entrust,
http://www.entrust.com/internet-access-control/index.htm

[13] ePass1000, FAITIAN Technologies Co.Ltd, http://www.FTsafe.com
[14] PKCS#11, RSA Security, http://www.rsasecurity.com
[15] R. Dhamija, J.D. Tygar, and M. Hearst, “Why phishing works,”

Proc. SIGCHI Conference on Human Factors in Computing Sys-
tems, Montre’al, Que’bec, Canada, April 2006.

[16] R. Dhamija and J.D. Tygar, “The battle against phishing: Dynamic
security skins,” Proc. SOUPS 2005, pp.77–88, July 2005.

[17] S.A. Theotokis and D. Spinellis, “A survey of peer-to-peer con-
tent distribution technologies,” ACM Comput. Surv., vol.36, no.4,
pp.335–371, 2004.

Daiki Nobayashi received the B.E. and
M.E. degrees from Kyushu Institute of Tech-
nology, Tobata, Japan in 2006, and 2008. He
is Graduate student of Graduate School of En-
gineering, Kyushu Institute of Technology in
Japan. His research interests include wireless
network, network architecture, and network se-
curity.

Yutaka Nakamura received the B.S. de-
gree from Kyoto Institute of Technology, Kyoto,
Japan, in 1996 and M.E. and D.E. degrees in
information systems from Nara Institute of Sci-
ence and Technology in 1998 and 2001, respec-
tively. From 2001 to 2002 he was a Research as-
sociate in Engineering Science from Osaka Uni-
versity, Osaka, Japan. From 2002 to 2004 he
was an Assistant professor at Information Tech-
nology Center in Nara Institute of Science and
Technology, Nara, Japan. Currently, he is Asso-

ciate Professor at Information Science Center in Kyushu Institute of Tech-
nology, Fukuoka, Japan. His research interests include technology for net-
work monitoring, network operation and network security.



NOBAYASHI et al.: DEVELOPMENT OF SINGLE SIGN-ON SYSTEM WITH HARDWARE TOKEN AND KEY MANAGEMENT SERVER
835

Takesih Ikenaga received B.E., M.E. and
D.E. degrees in computer science from Kyushu
Institute of Technology, Iizuka, Japan in 1992,
1994 and 2003, respectively. From 1994 to
1996, he worked at NEC Corporation. From
1996 to 1999, he was an Assistant Professor in
the Information Science Center, Nagasaki Uni-
versity, From 1999 to 2004, he was an Assistant
Professor in the Department of Computer Sci-
ence and Electronics, Faculty of Computer Sci-
ence and Systems Engineering, Kyushu Institute

of Technology, Since March 2004, he has been an Associate Professor in
the Department of Electrical, Electronic and Computer Engineering, Fac-
ulty of Engineering, Kyushu Institute of Technology. His research interests
include performance evaluation of computer networks and QoS routing. He
is a member of the IEEE.

Yoshiaki Hori received B.E., M.E., and D.E.
degrees from Kyushu Institute of Technology,
Iizuka, Japan in 1992, 1994, and 2002, respec-
tively. From 1994 to 2003, he was a Research
Associate in Common Technical Courses, Kyu-
shu Institute of Design, Fukuoka. From 2003
to 2004, he was a Research associate in the De-
partment of Art and Information Design, Kyu-
shu University, Fukuoka. Since March 2004, he
has been an Associate Professor in the Depart-
ment of Computer Science and Communication

Engineering, Kyushu University. His research interests include network
security, network architecture, and performance evaluation of network pro-
tocols on various networks. He is a member of IEEE, ACM, and IPSJ.


