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Collision-Based Power Attack for RSA with Small Public Exponent

Kouichi ITOH†,††a), Dai YAMAMOTO†b), Jun YAJIMA†c), and Wakaha OGATA††d), Members

SUMMARY This paper proposes a new side channel attack to RSA
cryptography. Our target is an implementation with a combination of coun-
termeasures. These are an SPA countermeasure by m-ary method and a
DPA countermeasure by randomizing exponent techniques. Here, random-
izing exponent techniques shows two DPA countermeasures to randomize
the secret exponent d. One is an exponent randomizing technique using
d′i = d + riφ(N) to calculate cd′i (mod N), and another is a technique using
di,1 = �d/ri� and di,2 = (d (mod ri)) to calculate (cdi,1 )ri × cdi,2 (mod N).
Using the combination of countermeasures, it was supposed that the im-
plementation is secure against power attack. However, we firstly show the
result to successfully attack the implementation of the combination of these
countermeasures. We performed the experiment of this search on a PC, and
complete d has been successfully revealed less than 10 hours for both at-
tacks.
key words: power attack, collision attack, SPA, DPA, RSA, window
method, countermeasure

1. Introduction

Power attack can reveal the secret key stored in a cryp-
tographic device by using the information obtained from
power consumption of the device. Currently, this attack
is widely known as a big threat on smart cards and other
cryptographic devices. Power attack is classified into two
types, simple power attack (SPA) and differential power at-
tack (DPA). For securing the cryptographic device against
power attack, the device must resist to SPA and DPA.

The main concern for the countermeasure against
power attack is minimizing the extra cost for resisting to
these attacks. For securing RSA device, the largest interest
is minimizing the overhead of the processing time and many
speed-efficient countermeasures are proposed.

1.1 History of Countermeasures against Power Attack on
RSA

For attacking RSA by SPA, the attacker tries to distinguish
square and multiply operations performed in the device by
observing the power trace. This attack can reveal the se-
cret exponent d if binary method is implemented, because
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square and multiply operation is directly related with the
bit value of d: square and multiply operation is performed
if a bit value of d is 1, and only the square operation is per-
formed if it is 0. For resisting to SPA, some countermeasures
are known, which perform square and multiply operation
in a constant sequence regardless to d. One countermea-
sure of this type is a square-and-multiply method [1]. This
method is based on the binary method, but dummy multiply
operation is performed when a bit value of d is 0. Joye’s
method [13] is based on the right-to-left binary method, and
also performs square and multiply operations in a constant
sequence without dummy operation. Another countermea-
sure is m-ary (window method), which also perform square
(S) and multiply (M) operation in a constant sequence as
S S S S MS S S S MS S S S M . . ..

For resisting to DPA, data randomizing is a common
countermeasure technique to hide the correlation between
the secret exponent d and the power trace. Most popular
DPA countermeasure is to randomize a exponent by using
the multiplication (RMUL) [1]. In the RMUL, the random-
ized exponent d′i = d + riφ(N) is used instead of d, where ri

is 20-bit random number and φ(N) is Euler function of N.
Besides this method, the DPA countermeasures by di-

viding the exponent with the random number are also pro-
posed (RDIV) [7], [2]. In these methods, random number ri

is generated and the quotient di,1 = �d/ri,1� and the remain-
der di,2 = d (mod ri) is calculated for the secret exponent d.
Then cd (mod N) is calculated by (cdi,1 )r × cdi,2 (mod N). In
[7], ri is recommended to be 20 ∼ 30-bit random number to
reduce the overhead of the processing time.

The bit length of ri on RDIV is set to be long as
(log2 d)/2 in [2]. If such a long bit random number is used,
the overhead of the processing time can be huge, but this
problem is solved by the Shamir’s trick mentioned in [3].
With this technique, the overhead of the processing time is
very small.

RMUL and RDIV are the technique to randomize the
exponent. Other than the exponent, the modulus or the mes-
sage can be also randomized. For randomizing the modulus,
N′i = N × ri is used for random number ri to decrypt c by (cd

(mod N′i )) (mod N) (RMOD) [19]. If ri is 20 ∼ 30-bit, the
overhead of the processing time is small.

For randomizing the message, c is decrypted by
c = ((Ri)e × c)d × R−1

i (mod N) for random number Ri

(RMES) [5]. This technique involves to compute a pair of
the random number and its inverse, but it can be easily com-
puted by (Ri)e = (γe)ri (mod N) and R−1

i = (γ−1)ri (mod N)
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when pre-computed constant values γe (mod N) and γ−1

(mod N) are provided. If ri is 20 ∼ 30-bit, the overhead
of the processing time is also small.

A DPA countermeasure based on the window method
is proposed in [12]. This technique randomizes a table data
in m-ary method by 20 ∼ 30-bit random number. This coun-
termeasure can also resist to SPA because this technique is
combined with m-ary method.

Another DPA countermeasure based on the window
method is proposed in [20]. This countermeasure uses the
technique to randomize addition chain of window method
by repeating to divide the exponent d with small random
numbers.

BRIP [14], [16] and RIP [10], [11] are DPA counter-
measures to randomize the initial data of the modular ex-
ponent operation. BRIP provides SPA and DPA counter-
measure, while RIP provides DPA countermeasure. RIP can
resist to SPA by combining it with SPA countermeasure, but
the variation of the combination is limited because it as-
sumes binary method. For using RIP, square-and-multiply
method is recommended for resisting to SPA.

1.2 An Analysis of DPA Countermeasures by Randomiz-
ing the Exponent

Among countermeasures described in Sect. 1.1, RMUL,
RDIV, RMOD and RMES randomize the intermediate data
for resisting to DPA, but these countermeasures do not re-
sist to SPA. In other words, the strength of RMUL, RDIV,
RMOD and RMES against SPA depends on the implemen-
tation of modular exponentiation, namely the choice of the
binary method or the window method.

Among these countermeasures, RMUL and RDIV are
the best choice to minimize the overhead of the process-
ing time, because entire processing time is O(n2(n + s)) in
RMUL and RDIV, while it is O(n(n + s)2) in RMOD and
O(n2(n + 2s)) in RMES, where n is bit length of N and s is
bit length of the random number ri. So we discuss the best
choice of modular exponentiation method to be combined
with RMUL or RDIV.

Binary method is out of the choice, because (random-
ized) exponent is directly revealed when the attacker distin-
guished the sequence of square and multiply operation.

A next choice is the square-and-multiply method [1].
In this method, the sequence of square and multiply oper-
ation is repeated in a constant sequence regardless to the
exponent, so this method seems to be good choice. But it
is analyzed by the power attack proposed by Yen et al. [21]
for the left-to-right square-and-multiply method. If this at-
tack is used, the dummy multiply operation can be detected
by the attacker, which allows the attacker to reveal the ex-
ponent, even when the exponent is randomized by RMUL
or RDIV. In this attack, ciphertext c is chosen as c = −1
(mod N) by the attacker. By this choice, the data pattern
of the square and multiply operation is limited just only to
3 patterns: 1 × 1, (−1) × 1 and 1 × (−1). Dummy multi-
ply operation in the square-and-multiply method can be de-

tected if these 3 pattern are distinguished. Another choice is
SPA countermeasure based on right-to-left binary method,
which are right-to-left square-and-multiply method [1] and
Joye’s method [13]. By using these methods, SPA can be
prevented, but overhead of the processing time is large be-
cause 2 square/multiply operation are required per 1-bit of
the exponent.

Now, we can see the window-based modular exponen-
tiation method is the best choice be combined with RMUL
and RDIV for securing against SPA with minimizing the
overhead of the processing time.

But if the sliding window method is combined with
RMUL, it is proposed to be attacked by Fouque et al. when
the public exponent e is small [6]. In general, the sliding
window method is known to leak the partial bits of the
exponent if the square and multiply operations are distin-
guished. In the Fouque et al.’s attack, the attacker collects
non-consecutive partial bit(s) of the randomized exponent
with distinguishing the square and multiply operation in
sliding window. Then the attacker reveals the secret expo-
nent d by using special search technique which uses these
non-consecutive partial bit(s) as the hint to reveal the secret
exponent d [6].

So, we see square and multiply operation must be re-
peated in a constant sequence when using the window-based
modular exponentiation method. For satisfying this require-
ment in RSA, m-ary method is suitable. By using m-ary
method, square and multiply operations are always con-
stantly repeated as S S S S MS S S S M, . . .. Since this se-
quence is not related to the exponent, no information is
leaked by distinguishing the square and multiply operation.
And m-ary method is also secure against the attack to detect
dummy multiply operation, because no dummy operation is
performed. Hence, the best choice of the modular multipli-
cation method combined with RMUL and RDIV is m-ary
method.

1.3 Overview of Our Proposal

We propose a new attack on the SPA and DPA-resistant
implementation providing the RMUL or RDIV with m-ary
method, if the public exponent e is small as e = 3 or 65537,
and the random number is small as 20-bit. We note our at-
tack can not break RMOD and RMES. Our result means
RMUL and RDIV are faster than RMOD and RMES, but
not secure against our attack. Our attack to RDIV can be
applied to Fouque et al.’s attack [6], which did not include
the attack to RDIV.

In m-ary method, the sequence of square and multiply
operation is repeated in a constant pattern regardless to the
exponent, which looks to leak no information about the ex-
ponent. So how can we get the information of the exponent?
As we have already discussed, no information is leaked by
distinguishing square and multiply operation because it is
repeated in a constant pattern like S S S S MS S S S M . . .. For
obtaining the information related with the bit value of the
exponent, we applied the Yen el at.’s attack [21] to m-ary
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method. By choosing c = −1 (mod N) as the ciphertext, we
can limit the data pattern of the multiply operation to 2 pat-
terns, 1×1 and 1×(−1). These 2 pattern occur in accordance
with the bit value of every m-th bit of the exponent (i.e. least
bit of each m-bit window). With our collision-based power
attack technique, these two multiply operations can be dis-
tinguished from just a single power trace. Therefore, our
proposal is very effective and efficient.

Next, we also propose recovery technique of the secret
exponent d from these non-consecutive partial bit values.
Our technique is an improvement of the special search tech-
nique in [6]. With our technique, the secret exponent d can
be recovered from the partial bit values with running time
O(2se), where s is bit length of the random number ri and e
is the public exponent.

Therefore, RMUL or RDIV countermeasure with m-
ary method can be totally attacked by using our proposed
techniques.

As Fouque et al.’s attack [6], our attack assumes the
case when the public exponent e is small as e = 3, 65537
and the bit length of the random number is 20-bit. These
parameters are mostly used in the real application and are
propriety assumption. Success of the our attack depends on
the running time O(2se), not on the value of e or ri. When
running time is O(2se) = O(236), we confirmed 2048-bit
d was recovered within 10 hours by the experiment ran on
a PC. So our attack will work for other parameters with
similar running time.

For examining our attack really works in real world,
we performed two experiments. First is an experiment of
our collision-based power attack to collect partial bits of the
randomized exponent. Second is an experiment to reveal the
secret exponent d by using the collected information. In the
first experiment, we tried to distinguish 1 × 1 and 1 × (−1)
from a single power trace, and succeeded to distinguish it.
In the second experiment, we tried to find d with our search
technique by running a search program on a PC. When run-
ning time is O(236), we succeeded to reveal the secret ex-
ponent d within practically short time (less than 10 hours
on Core2Quad-3.6 GHz PC) and high probability of success
(around 0.9), by collecting the partial bit value of 14 ran-
domized exponents when setting m = 4 on m-ary.

1.4 Organization of the Paper

Rest of this paper is organized as follows. In Sect. 2, we
define the notations. In Sect. 3, we describe Fouque et al.’s
attack on RMUL combined with sliding window. In Sect. 4,
we describe the overview of our attack on RMUL and RDIV
combined with m-ary method. In Sect. 5, we describe the
idea of our collision-based power attack and show its experi-
mental result. In Sect. 6, we describe our technique to reveal
d by using the information collected by the collision-based
power attack, and show its experiment result in Sect. 7. In
Sect. 8, we analyze the impact of our attack on the other
window-based countermeasures. In Sect. 9, we discuss how
to prevent our attack when using the RMUL and RDIV, and

describe conclusion in Sect. 10.

2. Preliminaries

In this section, we define some notations. In the RSA key
setting, we use following notations:

• e: Public exponent.
• d: Secret exponent.
• N: A public modulus satisfies N = pq for two large

primes p and q, where n = log2N.
• φ(N): order of modulus N, φ(N) = (p − 1)(q − 1).
• c: A ciphertext, where decryption operation without

CRT is cd (mod N).
• k: An small integer satisfies ed = 1+kφ(N) for 0 < k <

e.

In RMUL countermeasure, we use following notations.

• ri: Random numbers (1 ≤ i ≤ v).
• v: Number of ri.
• s: Bit length of ri with setting s = 20.
• d′i : Randomized exponent d′i = d + riφ(N).

In RDIV countermeasure, we use following notations.

• ri: Random numbers (1 ≤ i ≤ v).
• v: Number of ri.
• s: Bit length of ri with setting s = 20.
• d′i,1: First randomized exponent d′i,1 = �d/ri�.
• d′i,2: Second randomized exponent d′i,2 = d (mod ri).

In our attack, we use following notations.

• dH: A value given by dH = (1 + kN)/e,
• [x]a,b: Partial bit value of x from a-th to b-th bit (a ≥

b ≥ 0).
E.g., Let x = 111010, [x]4,1 = 1101.

• Leak(d′)a,b: Partial bit value of d′ from a-th to b-th bit
leaked by power attack (a ≥ b ≥ 0).
E.g., let d′ = 11101011 and assume 0,2,3,5-th bit of d′
is leaked by power attack, Leak(d′)4,0 = ∗10 ∗ 1 where
∗ represents the unknown bit.

• [x]a,b � Leak[y]a,b: Partial bit value of x and y are all
the same from a-th to b-th bit except unknown bit of y.
E.g., let x = 10111101 and Leak[y]7,0 = ∗01 ∗ 10 ∗ 1.
[x]7,4 � Leak[y]7,4 is true, and [x]7,3 � Leak[y]7,3 is
also true, but [x]7,2 � Leak[y]7,2 is false.

3. Fouque et al.’s Attack on RMUL with Sliding Win-
dow Method [6]

Fouque et al. proposed an SPA-based attack on RMUL im-
plementation combined with sliding window method [6].
Entire steps of the attack is shown in Fig. 1. This attack
consists of four steps.

In step 1, the attacker calculates upper half of d. In
generic RSA key setting, upper half bits of d is difficult to
calculate, but if e is very small as 3 or 65537, it is easy to
calculate. In such a small e, upper half bits of d is same as
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that of dH = (1+kN)/e, because d satisfies d = (1+kφ(N))/e
and upper half bits (e.g. leftmost log2d + 30 bits) of φ(N) is
equal to that of N with high probability. To calculate dH ,
k is the only unknown parameter. But this is not problem
because k is very small value that satisfies 0 < k < e. Es-
pecially, k is known to satisfy k = 2 when e = 3 [6]. When
e = 65537, the attacker can perform brute-force search for
every possible value 0 < k < e. If assumed value of k is not
correct, it is detected in the matching algorithms of step 3
described in later. Hence, we can assume that value of k is
correct in step 4.

In step 2, the attacker collects the power trace to reveal
partial bit value of the randomized exponent d′i (1 ≤ i ≤ v).
In this step, the attacker distinguishes the square and mul-
tiply operation performed in the sliding window method to
collect non-consecutive bits of d′i as shown in Fig. 2. If mul-
tiply operation was observed, the attacker can know the cor-
responding bit of d′i is 1. If continuous square operations
were observed more than m-times, the attacker knows the
corresponding bit of d′i is 0, where m is the bit length of the
window.

In step 3, the attacker tries to find all random numbers
ri, (1 ≤ i ≤ v) from partial bit information of d′i obtained in
step 2. Since each ri is 20-bit value, all of ri can be revealed
by brute-force search. In this search, the attacker assumes
a 20-bit value of ri for some i. Then he calculates dH +

riN to simulate upper half bits of d′i = d + riφ(N). Since
upper half bits of dH and N are the same as that of d and
φ(N) respectively, upper half bits of dH + riN are equal to d′i
with high probability. So matching algorithm can be used
by comparing the partial bit value of d′i observed in step 2
and the corresponding bit value of dH+riN to choose correct
ri for some i.

If the number of the observed bits of d′i in step 2 is
longer than 20-bit, the attacker can choose a unique ri. Fur-

Fig. 1 Entire steps of Fouque et al.’s attack [6].

Fig. 2 Bit leakage of previous attack [6] on m-bit sliding-window
method.

thermore, if the observed bits of d′i is longer than 37-bit
(Maximum value of 20 + log2k), the attacker detect the as-
sumed value of k is correct or not.

ri and k are uniquely chosen with high probability for
typical parameter of RSA and sliding window method. If
we assume a case d is 1024-bit and m = 4, at least 1/4 of up-
per half of d′i (e.g. 480 bits) would be leaked, which means
120-bit of d′i is leaked. This bit length is enough to uniquely
determine unique ri and k. Hence, if no matched ri is found
for some k and i = 1, the assumed value of k is turned to be
wrong, and the attacker returns to step 1 without proceed-
ing the search of ri for i ≥ 2. Most time-consuming process
through entire steps is the loop between step 1 to step 3 un-
til correct k is found, and the running time is estimated as
O(2se). After the correct k and r1 is found, all ri are ob-
tained by repeating the search of ri for every i = 2, . . . , v.

In step 4, the attacker finds lower-half bits of d. This
is done by repeating 8-bit brute-force search, which runs
from lowest 8-bit to higher 8-bits. In this search, d is re-
vealed by comparing the partial bit value of d′i obtained in
step 2 and simulated value of d + riφ(N) for all 1 ≤ i ≤ v.
For speeding up this search, the attacker utilizes the rela-
tionship d = (1 + kφ(N))/e to eliminate d. Hence, the at-
tacker performs the brute-force search for only the value of
φ(N). At first, the attacker assumes lowest 8-bit value of as
φ(N) =????????, and if matched 8-bit value is found (e.g.
11011001), he performs brute-force search for next 8-bit
higher bits as φ(N) =????????11011001 and repeats simi-
lar search process. If the search is finished for lowest-half
bits of φ(N), the attacker knows all bits of φ(N) because up-
per half bits are equal to N with high probability. Thus the
attack is completed.

4. An Overview of Our Attack

In this section, we propose an attack on RMUL and RDIV
implementation combined with m-ary method shown in Ta-
ble 1. Entire steps of the attack is shown in Fig. 3.

As previous attack [6], our attack also consists of four
steps. And the objective of each step is also the same as
previous attack with the same running time O(2se), but the
method differs in step 2, 3 and 4, which are summarized as

Table 1 m-ary method.

INPUT: c,N, d = (dγ−1, . . . , d1, d0)2m

OUTPUT: X = cd (mod N)
1: w[0] := 1;
2: for (i = 1; i < 2m; i + +)
3: w[i] := w[i − 1] × c (mod N);
4: next i;
5: X := w[dγ−1];
6: for (i = γ − 2; i ≥ 0; i − −)
7: for ( j = 0; j < m; j + +)
8: Z := Z × Z (mod N)
9: next j;
10: X = X × w[di] (mod N);
11:next j;
12:return X;
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Fig. 3 Entire steps of our attack.

below.

• Step 2: In the previous attack, the attacker obtains par-
tial bit values of the randomized exponent by distin-
guishing square and multiply operation. But in our at-
tack, the attacker obtains partial bit values of the ran-
domized exponent by distinguishing multiply opera-
tion performs 1 × 1 or 1 × (−1) for a chosen message
c = −1 (mod N).

• Step 3, 4: When attacking RMUL, method of this step
is almost the same as that of previous attack. When
attacking RDIV, method of this step is different from
previous attack.

Largest difference is step 2. It comes from the assumption
of the attack. The previous attack assumes the target de-
vice implements sliding-window method, which allows to
leak partial information of the randomized exponent by dis-
tinguishing square and multiply operations. But our attack
assumes the target device implements m-ary method, which
does not leak any information of the randomized exponent
by distinguishing square and multiply operations. So we
adopt another approach to obtain partial bit value of the ran-
domized exponent.

Our approach is to observe the power trace by choos-
ing the ciphertext c as c = −1 (mod N). When c = −1
(mod N) is chosen, data pattern of the square and multiply
operation is limited only to 3 patterns, 1 × 1, 1 × (−1) or
(−1) × (−1). This idea is based on the Yen et al.’s attack to
binary-based method [21], which enables to directly reveal
all bits of the randomized exponent. By applying this idea
into m-ary method, we found partial bit values are leaked for
every m-th bit. (See Fig. 4.)

By using this leaked partial bit values, the attacker tries
to obtain the rest of information to reveal d in step 3 and 4,
which are the almost same as previous method when attack-
ing RMUL, or modified method when attacking RDIV.

Our attack in step 2 and its experimental result is ex-
plained in Sect. 5. Our attack in step 3 and 4 are explained
in Sect. 6.

Fig. 4 Bit leakage of our attack on m-ary method.

5. Our Power Attack to Obtain the Partial Bit Value of
Randomized Exponent on m-ary Method

In this section, we describe our method to obtain the partial
bit value of the randomized exponent using power attack.
Since our target is RMUL and RDIV countermeasures, the
attacker must observe the bit information of the random-
ized exponent just from a single power trace because ran-
dom number is varied in every time. This observation is not
easy because noise always appear in the real measurement
of the power trace.

For this goal, we focused on the power attack tech-
nique using a chosen message. This technique assumes
the attacker can input any value of c as the ciphertext of
RSA decryption, which allows to obtain more information
than the attack inputting random ciphertext. For attacking
RSA, many results with this technique are proposed [4], [8],
[9], [21]. We extended the Yen’s technique [21] to m-ary
method.

5.1 Previous Power Attack Using the Chosen Message

In this section, we describe previous power attack tech-
niques using a chosen message on RSA. First attack of this
type was doubling attack proposed by Fouque et al. [4]. In
this attack, the attacker observes a pair of power traces when
c = X (mod N) and c = X2 (mod N) for some chosen in-
teger X. The attacker guesses some bit of the exponent, and
if the guess is correct, same intermediate value appear for
these two different inputs. This is so-called “collision”, and
the attacker can detect it by comparing the power trace of
these two inputs.

Another type of the chosen message attack is proposed
by Yen et al. [21]. This attack is based on the following ob-
servation: if c = −1 (mod N) is input, the data pattern of the
square or the multiply operation is limited to only 3 patterns,
1 × 1, 1 × (−1) or (−1) × (−1), which make it easy to dis-
tinguish the power trace. Their attack is applicable on both
binary method and square-and-multiply always method [1].
It can directly reveal all bits of the exponent from the ob-
served power trace.

By using this idea on binary method, square and multi-
ply operations are easily distinguished because 1× (−1) cor-
responds to multiply operation, while 1 × 1 and (−1) × (−1)
correspond to square operation. This attack is also applica-
ble on the square-and-multiply-always method [1], because
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the attacker can distinguish the dummy multiply operation
by distinguishing square operation is 1 × 1 or (−1) × (−1)†.
This attack is extended to the attack using a message pair
c = X (mod N) and c = −X (mod N), which is generalized
as using the pair (X,Y) satisfying Xα = Yα (mod N) [21].
They did not show the experimental result to distinguish the
power trace of these attacks, but it was shown by Homma
et al. [8].

Yen et al.’s message pair attack was generalized by
Homma et al. [9]. They proposed to use a message pair
(X,Y) satisfying Xα = Yβ (mod N) and showed the valid-
ness of the attack by the experiment result.

5.2 Basic Idea of Our Chosen Message Attack

For attacking RMUL or RDIV, we assumed that a power
attack using chosen message pair is not available, because
data pattern of the square/multiply operation is randomly
varied between the first and the second message. So we
focused on the chosen message attack using c = −1
(mod N) [21]. However, it does not make any sense to dis-
tinguish the square/multiply operation or dummy multiply
operation on m-ary method. So what type of the informa-
tion is obtained?

We focused on the window calculated in the process
of m-ary method. In Table 1, w[i] represents the window
which satisfies w[i] = ci (mod N) for 0 ≤ i ≤ 2m − 1. If
c = −1 (mod N) is chosen, we can see that w[i] = 1 when
i is even and w[i] = −1 when i is odd. So the multiply op-
eration shown in line 10 of Table 1 are divided into 2 cases:
when di is even, 1 × 1 is performed, and when di is odd,
1× (−1) is performed. Hence, if we can distinguish the mul-
tiply operation is 1×1 or 1× (−1) from a single power trace,
every m-th bit of the exponent of m-ary will be leaked. By
using this idea to RMUL or RDIV, partial bit value of the
randomized exponent will be leaked.

“Randomized exponent” is equal to d′i = d + riφ(N) in
RMUL, and d′i,1 = �d/ri� in RDIV. We note that this attack
has exception to fail get partial information of the random-
ized exponent in RDIV. If RDIV is implemented as to cal-
culate cri (mod N) and (cri )d′i,1 (mod N) in this order, partial
information of the randomized exponent can not be obtained
when ri is even because the multiplication is always 1 × 1.
To avoid this case, the attacker must ignore the power trace
when ri is even. If ri is even, it can be detected by distin-
guishing the final multiply operation of cri (mod N) is 1×1.

5.3 How to Distinguish the Multiplication

If we can distinguish 1×1 and 1× (−1) just by observing the
waveform of a single power trace, there is no problem in step
2 of our attack in Fig. 3. But it will be difficult because we
assume to distinguish it from a single power trace including
the noise content.

So we introduce collision-based power attack tech-
nique to distinguish it easier. Our collision-based power is
illustrated in Fig. 5. Let Poweri(t) be the power trace of d′i

Fig. 5 An overview of our collision-based power attack.

Fig. 6 The platform board used in our power attack experiment, SA-
SEBO (Sidechannel attack standard evaluation BOard) [18].

in RMUL or d′i,1 in RDIV, and Δt be the processing time of
square or multiply operation, a differential power trace

Poweri(t) − Poweri(t − Δt) (1)

is made by the attacker in our collision-based power attack.
If the multiplication is 1×1, it causes a collision to squaring
operation of 1 × 1 performed just before the multiply oper-
ation, the differential power trace of this part will be plain.
In contrast, if the multiplication is 1 × (−1), the differential
power trace of this part will be peak, whose length will be
3Δt as illustrated in Fig. 5.

5.4 Experimental Result of Our Collision-Based Power
Attack

In this section, we show the experiment result of our
collision-based power attack. As a platform device, we used
SASEBO (Sidechannel Attack Standard Evaluation BOard)
board [18] shown in Fig. 6, which is a FPGA-based standard
platform for evaluating the strength of side-channel analy-

†This attack can be extended to attack on the binary-method
version of BRIP [14], [16].
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Fig. 7 The differential power trace of Fig. 5 in our experiment.

sis. We implemented 128-bit† modular exponentiation algo-
rithm for the randomized exponent with m-ary method for
m = 4 on FPGA.

Through this experiment, we set 24-MHz as the clock
of the FPGA and 125 Ms/sec as the sampling ratio of the os-
cilloscope. Our experiment result of the differential power
trace by (1) is shown in Fig. 7. When making each differen-
tial power trace, we tuned it with simple moving average to
reduce the noise of the single power trace, and the differen-
tial trace is made from a single power trace for a randomized
exponent d′.

We can see both trace reveals us d′ =???? ∗ ∗ ∗ 1 ∗ ∗ ∗
1 ∗ ∗ ∗ 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 ∗ ∗ ∗
0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗
1 ∗ ∗ ∗ 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 ∗ ∗ ∗ 0 ∗ ∗ ∗ 1 ∗ ∗ ∗ 1 ∗ ∗ ∗ 0 . . .,†† which
perfectly matches the value of d′ used in the real experiment
as d′ = 0x71f8d6bf6b3c07a73d60187aadba6. . ..

From this result, we can see the power trace of Fig. 7
clearly shows us the partial bit information of d′.

6. Our Attack to Reveal d

In this section we describe our attack to reveal d, which are
step 3 and step 4. In step 3, all random numbers ri are re-
vealed from the partial bit value of the randomized exponent
obtained by the power attack in step 2. In step 4, lower-half
bits of d is revealed from ri and partial bit value of the ran-
domized exponent obtained in step 2. When step 4 is fin-
ished, the attacker can obtain all bits of d, because upper
half bits of d is already revealed in step 1.

6.1 Our Attack to Reveal ri

Our attack to reveal ri on RMUL is shown in Fig. 8, and
that in RDIV is shown in Fig. 9. Both of these attacks are
based on the simple idea: choose 20-bit ri by brute-force
attack, that matches the partial bit value of the randomized
exponent obtained by power attack. This attack is possible
because upper-half bit value of d′i is simulated as dH + riN
in RMUL, and d′i,1 is simulated as �d/ri� in RDIV for the
candidate of ri.

Fig. 8 Our attack algorithm to reveal ri on RMUL.

Fig. 9 Our attack algorithm to reveal ri on RDIV.

Figure 8 is the same as Fouque et al.’s attack [6]. Fig-
ure 9 is based on the same idea of Fouque et al.’s attack, but
modified for RDIV countermeasure.

Both attack fails to reveal any random number ri when
input value of k was wrong. So, these attack can be used to
check the value of k is correct. (v = 1 is enough to check
k.) This checking is unnecessary when e = 3, but necessary
when e = 65537 because k is unknown value. Since k is
small as 0 < k < e, brute-force search allows the attacker to
find correct k. But number of the candidates of the search is
large as 216 × 220 = 236, which is the largest bottle-neck of
our all attack steps on revealing d.

6.2 Our Attack to Reveal Lower-Half Bits of d

Our attack to reveal lower-half bits of d on RMUL is shown
in Fig. 10, and that on RDIV is shown in Fig. 12. Fig-
ure 10 is the almost same as the Fouque et al.’s attack [6],
and Fig. 12 is modified from Fouque et al.’s attack [6].

6.2.1 Revealing Lower-Half Bits of d on RMUL

In the attack of Fig. 10 on RMUL, right-to-left brute-force
†We implemented shorter (128) bit length of RSA due to the

resource constraint of the FPGA device. But we assumed our ex-
periment can emulate the 1024-bit or 2048-bit environment, be-
cause we suppose our collision-based power attack is not affected
by the bit length of RSA.
††Note that leftmost 4-bit of d′ cannot be detected from this dif-

ferential power trace, but the attacker doesn’t have to know these
bits because it is unnecessary for step 3 and 4 of our attack in
Sect. 4.
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Fig. 10 Our attack algorithm to reveal φ(N) on RMUL.

Fig. 11 Matching algorithm of φ(N) in Fig. 10.

search is performed for φ(N) like [6]. This is because d′i is
simulated by only φ(N) as d′i = d+riφ(N) = (1+kφ(N))/e+
riφ(N) for known ri. In our search, candidate value of φ(N)
is generated as φ(N) = eλ + (−k−1 (mod e)), for integer λ,
which is slightly modified technique from [6]. This tech-
nique is convenient because 1 + kφ(N) is always divisible
by e, which makes the right-to-left brute-force search easier
because lowest bit of d′i is perfectly simulated with the same
length of the lowest bit of λ.

In this search, λ is divided into m-bit blocks, and
brute-force search is performed for every m-bit block run-
ning from the lowest block to the higher block. (not
to the highest block, because upper-half bits of φ(N) is
known). That is, m-bit brute-force search is done for
the lowest m-bit of λ from 2m candidate values as λ =
0000, 0001 . . . , 1111. And if matched m-bit is found as
1101, next upper m-bit is searched from 2m candidate values
as λ = 00001101, 00011101, . . . 11111101, and the similar
process is repeated until all bits are obtained.

Here our concern is how to find the matched value from
candidate values. It is illustrated in Fig. 11. Matching is
done by comparing the simulated value of d′i and Leak(d′i ),
a partial bit value of d′i obtained by power attack in step 3,
for all 1 ≤ i ≤ v. Candidate values of φ(N) is generated by
setting λ = z2 jm+X for z = 0, 1, . . . , 2m+1−1, where X repre-
sents the lower bits of λ already found in the search. We call

z ‘search target’, which represents the number of candidate
values to determine m-bit in our brute-force search.

In our search on RMUL, search target has m + 1-bit
length to match simulated value of d′i to match (m j + m)-
th and m j-th bit of Leak(d′i ) as illustrated in Fig. 11. After
matching candidate is found, lower m-bit of z is selected as
next higher m-bit of λ by updating X as X := (z (mod 2m))×
2 jm + X.

Though the leaked bit Leak(d′i ) is non-consecutive, all
bits of φ(N) are determined by this search. This is because
d′i is generated by multiplying φ(N) with random number ri,
and the random number makes it possible to leak the var-
ious bit value information of φ(N). If d′i is not generated
by random number as d′i = 3φ(N), all bits of φ(N) can not
be leaked from Leak(d′i ), but it reveals us just only partial
non-consecutive bits of φ(N).

We performed an experiment on a PC to examine this
attack really reveals all bits of φ(N). We succeeded to reveal
φ(N) with high probability as 0.9, if m = 4 and v = 14. See
Sect. 7 for details.

6.2.2 Revealing Lower-Half Bits of d on RDIV

In the attack of Fig. 12 on RDIV, left-to-right brute-force
search is performed for d. The direction of the search on
RDIV is inverse to that on RMUL. This is because of the
difference between the multiplication and division. That is,
the answer is determined from lowest to highest bit in mul-
tiplication, while the answer is determined from highest to
lowest bit in division.

As similar in the search on RMUL, d is divided into
m-bit blocks, and the brute-force search is performed for ev-
ery m-bit block running from the center block to the lower
block. This search does not start from the highest block, be-
cause upper-half bits of d is known. Upper bit is initialized
with that of �dH = (1 + kN)/e� as shown X := [dH]n,hm in
Fig. 12.

Our method to match every m-bit block is illustrated in
Fig. 13. In this method, matching is done by comparing the
simulated value of d′i,1 and Leak(d′i ), a partial bit value of d′i
obtained by power attack in step 3, for all 1 ≤ i ≤ v.

This idea is similar to our matching algorithm on
RMUL, but there is a difference in selecting matched m-
bit value from candidates. In our matching on RDIV, the
selected candidate value might be wrong, because d′i,1 is
simulated by dividing the candidate value by ri. Since the
candidate value is determined from upper bit to lower bit,
the simulated value of d′i,1 is approximated value of d′i,1, but
contains error with some probability.

For example, let us assume the case d is d =

0x9876ff34. . . for m = 4. In this case, left-to-right
search goes well until the intermediate search result is d =
0x987?????. . ., but the problem is next 4-bit search. We
know the answer is 6, but the search algorithm might regard
both 6 and 7 are matched candidate value, because ‘6 f f ′ in
d = 0x9876ff34. . . is close to ‘700′, and both of them might
match the search algorithm because of the error in simulat-
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Fig. 12 Our attack algorithm to reveal d on RDIV.

Fig. 13 Matching algorithm of d in Fig. 12.

ing d′i,1.
We can’t prevent this error completely unless (almost

of) all bits of d are known, but we can reduce the proba-
bility of error. To reduce the probability of the error, we
recommend to enlarge the bit length of the search target.
This idea is included in Fig. 12, in which d′i,1 is simulated by
“ui = �y/ri�”. We note y is the candidate value of d given as
y = X + z × 2 jm by z and X, where z is the search target of
mg-bit value and X is the upper bit value of d already found
in the search. In Fig. 10, bit length of the search target z is
m + 1, but it is enlarged to mg by the parameter g to reduce
error. As parameter g is larger, the probability of error is re-
duced, but the running time becomes larger. We recommend
to set g as to mg is close or equal to 20.

Unlike our search on RMUL, plurality of the matched
candidate can be found in our search on RDIV, no matter
how g is large. Hence, our search in RDIV picks up plu-
rality of matched candidate values. It is noted as ‘XC, j’ in
Fig. 12, which is a set of m-bit matched candidate values.
For example, if both of 0x6ff and 0x700 are matched for

m = 4, XC, j becomes XC, j = {6, 7}. The operation to the set
XC, j is noted by ‘←’ (e.g. XC, j ← XC, j ∪ [z]mg−1,mg−m;), to
distinguish it from the operation to other variables. Number
of the set of XC, j is stored in τ j of Fig. 12.

Due to the error in simulating d′i,1, this search algorithm
does ‘roll-back’ when no matched candidate is found. The
‘F’ flag in Fig. 12 holds the result whether matched candi-
date value is found or not. If some candidate is found, F is
1. But if no candidate is found, F is 0. And the ‘roll-back’
routine is performed if F is 0 after all search for 0 ≤ z < 2mg

is finished. By the ‘roll-back’ routine, brute-force search
of d temporary goes back to upper m bit. For example,
if the intermediate search result of d is ‘d = 0x986?. . .’
or ‘d = 0x987?. . .’, and no candidate value is matched in
searching ‘?’ of ‘0x987?’, it is eliminated from the candi-
date of value of d, then the search goes back to find ‘?’ of
‘0x986?’ to continue the left-to-right search.

After the search of Fig. 12 is finished, the output
value X is approximated value of d which satisfies |X −
d| < MAX(220, 2mg), where MAX(a, b) represents the larger
value of a and b. The rest bits of d can be revealed by the
similar search by comparing the simulated value of d′i,2 = d
(mod ri) and Leak(d′i,2). If few candidates still remains after
this search is finished, final value of d is easily determined
by confirming the decrypting operation succeeds for some
pair of the ciphertext and the plaintext, where the pair of the
ciphertext and the plaintext is easily obtained by only public
key (e,N).

We performed an experiment on a PC to examine this
attack really reveals all bits of d. We succeeded to reveal d
with high probability 0.91, if m = 4 and v = 14, which is
similar result on RMUL. See Sect. 7 for details.

7. Experimental Result to Reveal d

In this section, we report the experiment result to reveal d
for validating our attack. As described in Sect. 4, our attack
consists of four steps. The attack method of step 2 is power
attack, and the attack method of other steps is the program-
ming code runs on a PC. This section reports the experi-
mental result of step1, 3 and 4 ran on a PC. Experimental
result of the step 2 is reported in Sect. 5.

In the experiment, we performed our attack on RMUL
and RDIV. In both attack, we set RSA the key parameter
as e = 3, 65537 and n = 1024, 2048. Parameter of m-ary is
fixed to m = 4, bit length of the random number s is set to
s = 20, the number of the random exponent attacked in step
2 is fixed to v = 14, and the bit length of the search target of
our attack on RDIV is set to mg = 20(g = 5).

We implemented our attack with the Shoup’s NTL li-
brary [17], and ran it on a Fedora 7 PC with Core2-Quad
3.6 GHz CPU.

In the experiment, we measured the running time and
the success ratio of our attack in the experiment. All of re-
sults are summarized in Table 2.

In all cases, our attack succeeded with high probability
(from 0.8 to 0.95) even when v is not so large (v = 14). From
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Table 2 Experimental Results to Reveal d using our attack.
(v = 14,m = 4, NTL library [17] on Fedora 7 with Core2Quad-3.6 GHz CPU)

Countermeasure n Running time Success ratio Bit length of
e = 3 e = 65537 e = 3 e = 65537 search target (= mg)

RMUL 1024 3 seconds 3.5 hour 18/20 17/20 N/A
2048 3 seconds 4 hour 18/20 19/20 N/A

RDIV 1024 16 minutes 4.6 hour 19/20 19/20 20
2048 51 minutes 7 hour 16/20 19/20 20

the result of the attack on RDIV, we can see that g = 5 gives
enough high probability to reveal correct d.

If we compare the running time of e = 3 and e =
65537, the case e = 65537 is much longer than the case
e = 3. This difference come from the running time is
O(2se), that is, brute-force attack of k is required in the at-
tack e = 65537, while it is not required in e = 3. The step
to find correct k takes the longest time in these parameter
settings, but we can see the running time practically short
because all attacks finished within 10 hours.

From these results, we can see the validness of our at-
tacks, which can reveal d within short time (at most few
days even when using middle-range PC) and high probabil-
ity (around 0.9).

8. Impact of Our Attack on the Other Window-Based
Countermeasure

In this section, we discuss the impact of our attack on other
window-based countermeasures for RSA.

8.1 Window Method Version of BRIP [14], [16]

In this countermeasure, the exponent is not randomized. By
using our attack in step 2, d can be obtained for every m-th
bit, but information of other bit position of d is not leaked.
Hence it is difficult to reveal d from these information.

8.2 Ciet-Joye Countermeasure [2]

This is variant of RDIV, where the randomized exponent
�d/ri� and d (mod ri) are calculated for random number ri

whose bit length is large as (log2d)/2. If such a large bit
length is used, it is difficult to reveal random number ri by
brute-force search as step 3. So this countermeasure is diffi-
cult to attack.

8.3 MIST Countermeasure [20]

In this countermeasure, random addition chain is con-
structed by repeating to divide the exponent d by small ran-
dom numbers. Similar as Ciet-Joye’s countermeasure [2],
such a long sequences of random number looks like to be
difficult to attack by brute-force attack, but further discus-
sion be needed to prove its security.

8.4 Randomized Window Method [12]

In this method, all window data are randomized as w[ j] =

c j220+ri for 0 ≤ j < 2m and 20-bit random number ri. Such a
short random number might be a good target by brute-force
search in step 3, but this search is impossible because the
attacker can not get any partial information in step 2. In this
countermeasure, the table data is calculated as w[ j] = c j220+ri

and all table data hold the same data when inputting c = −1
(mod N). This cannot satisfy the assumption of the attack
in step 2. So this countermeasure is difficult to attack.

9. Countermeasures against Our Attack when Using
RMUL or RDIV

This section discusses how to resist our attack by using
RMUL or RDIV countermeasure with small public expo-
nent.

The simplest method is to avoid non-CRT decryption.
If CRT decryption is used, our attack does not work because
the attacker can’t calculate dH to obtain upper-half of d in
step 1, dH will be dH = �(1 + kp)/e� or dH = �(1 + kq)/e�
in the CRT decryption, but this value can not be calculated
without p or q. Without the information obtained in step 1,
the attacker can not proceed to next steps.

If non-CRT decryption must be used, most effective
protection is a message filtering shown in the presentation of
[8]. That is, if c = −1 (mod N) is input, the device returns
the RSA decryption as cd (mod 2) (mod N). If the device is
used for RSA only (not used as DH or DSA engine), the last
bit of d is always 1. So the decryption result is calculated
as c. Otherwise, combining with RMOD or RMES is also
good countermeasure, but the overhead of the processing
time will be larger.

Extending the bit length of random number is also ef-
fective, because it is obtained by brute-force attack in step
3. So if its bit length is large enough to be unbreakable by
brute-force search, the attacker can not obtain d. When us-
ing this method, we recommend to use 80-bit or longer bit
of random number. Problem of this method is the overhead
of the processing time will be larger.

In case of using RDIV, our attack is avoided by adding
two limitations. The first is to force the random number
to be even, and the second is to calculate modular expo-
nentiation (cri ) (mod N) and (cri )�d/ri� (mod N) in this or-
der. These limitations prevent the attack in step 2, because
the partial information of �d/ri� is not obtained since cri

(mod N) is always 1.

10. Conclusion

In this paper, we have proposed a new attack RSA imple-
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mentation using RMUL and RDIV countermeasure com-
bined with m-ary method, which was supposed to be secure
combination. To attack the implementation with this com-
bination, we have proposed a collision-based power attack
using only a chosen message to leak every m-th bit of the
exponent on m-ary implementation. This attack is very ef-
fective even when the exponent is randomized for every exe-
cution of the modular exponentiation because of using only
a single power trace. We have attempted the experiment us-
ing only a single power trace, and revealed every m-th bit
of the exponent. We have also proposed technique to reveal
d from these partial bits of the randomized exponent, and
showed our attack can really reveal d by the experiment ran
on a PC within 10 hours.
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