
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009
909

PAPER Special Section on Information and Communication System Security

Efficient Implementation of Pairing-Based Cryptography on a
Sensor Node

Masaaki SHIRASE†a), Yukinori MIYAZAKI†, Tsuyoshi TAKAGI†, Members, Dong-Guk HAN††,
and Dooho CHOI†††, Nonmembers

SUMMARY Pairing-based cryptography provides us many novel cryp-
tographic applications such as ID-based cryptosystems and efficient broad-
cast encryptions. The security problems in ubiquitous sensor networks have
been discussed in many papers, and pairing-based cryptography is a crucial
technique to solve them. Due to the limited resources in the current sensor
node, it is challenged to optimize the implementation of pairings on sen-
sor nodes. In this paper we present an efficient implementation of pairing
over MICAz, which is widely used as a sensor node for ubiquitous sensor
network. We improved the speed of ηT pairing by using a new efficient mul-
tiplication specialized for ATmega128L, called the block comb method and
several optimization techniques to save the number of data load/store op-
erations. The timing of ηT pairing over GF(2239) achieves about 1.93 sec,
which is the fastest implementation of pairing over MICAz to the best of
our knowledge. From our dramatic improvement, we now have much high
possibility to make pairing-based cryptography for ubiquitous sensor net-
works practical.
key words: ηT pairing, sensor node, ATmega128L, finite field multiplica-
tion, assembly implementation

1. Introduction

The technology of wireless sensor networks (WSNs) has
been implemented in practical applications of ubiquitous so-
ciety. In general, WSN node has low physical protection
and does not have secure memory for cryptographic keys.
It is thus important to develop secure solutions to these net-
works.

Firstly, symmetric cryptosystems have been utilized to
propose secure WSNs. However, they face the key distri-
bution problem. Due to that, conventional public key such
as RSA and elliptic curve cryptosystem (ECC) are consid-
ered as alternative proposals. Public key authentication is
typically achieved by means of a public key infra-structure
(PKI), which issues certificates and requires exchange and
memory of large keys. These operations, however, cause
high overheads of memory, computation, and communica-
tion and, in consequence, are inadequate for WSNs [21].
Because WSN nodes are low power, has a limited battery,
and especially with limited resources.

Motivated by the above reasons, Identity-Based En-
cryption (IBE) [1] based on bilinear pairings comes into the

Manuscript received July 28, 2008.
†The authors are with Future University Hakodate (FUN),

Hakodate-shi, 041–8655 Japan.
††The author is with the Dept. of Mathematics, Kookmin Uni-

versity, Seoul, Korea.
†††The author is with Electronics and Telecommunications Re-

search Institute (ETRI), Korea.
a) E-mail: shirase@fun.ac.jp

DOI: 10.1587/transinf.E92.D.909

spotlight because it is an exception where a known infor-
mation that uniquely recognizes users such as email address
can be utilized as a public key and thus PKI is unnecessary.
Recently, Oliveira et al. argued that IBE is idea for WSNs
and vice versa [17], [18]. They discussed the synergy be-
tween the systems, describe how WSNs can take advantage
of IBE.

To make Pairing-Based Cryptography including IBE
become truly practical in WSNs, it is necessary to optimize
the performance of pairings which are the most significant
operation. In [17] Oliveira et al. implemented the Tate pair-
ing of a supersingular elliptic curve over GF(q) with 256-
bit q (q2 ≈ 512 bits) on MICAz, whose timing is about
30 sec. Moreover, Ishiguro et al. implemented an ηT pair-
ing over GF(3m) in 5.8 sec for m = 97 [12]. TinyPBC [18]
by Oliveira et al. and NanoECC [25] by Szczechowiak et al.
are implementations of ηT pairing over GF(2m) for m = 271.
Currently pairing implementations (TinyPBC, TinyTate) are
slower than RSA (TinyPK, [27]) and ECC (TinyECC [14],
TinyECCK [23]). Therefore, it is a good research challenge
to optimize the implementation of Pairing cryptosystems in
resource-constrained sensor nodes.

In this paper, we propose an efficient implementation of
ηT pairing over GF(2239) on MICAz with ATmega128L pro-
cessor to compare with previous works [12], [17], [18]. The
target ηT pairing consists of Addition, Multiplication, Re-
duction, Square, Inversion, which form 2.3%, 75%, 6.3%,
4.7%, 4.5% in total computation cost. Namely, multiplica-
tion is a dominant operation in the ηT pairing. Thus, we first
propose a fast multiplication, called block comb method,
which can dramatically reduce the number of load/store op-
eration. Actually, it is well known that data load and store
are very time consuming operation in sensor node. Due to
the proposed block comb method, the timing of a multipli-
cation in GF(2239) is improved 1.28 from 4.6 msec.

In addition, we improve the squaring, reduction,
and inversion. The shift operation is optimized for AT-
mega128L, which makes the reduction and squaring faster.
The degree function in the inversion is also improved. Con-
sequently, we can compute an ηT pairing over GF(2239)
on MICAz with ATmega128L processor in about 1.93 sec
which is, to the best of our knowledge, the most efficient
implementation of PBC primitives for MICAz with AT-
mega128L processor.

The remainder of this paper is organized as follows. In
Sects. 2 and 3, we discuss ηT pairings and its implementa-

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

910
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

tion, and target platform that is MICAz ATmega128L. We
propose a new block comb method in Sect. 4. The detail im-
plementation and results are presented in Sect. 5. Finally,
we conclude in Sect. 6.

2. ηT Pairing and Its Implementation on ATmega128L

In this section, we explain the ηT pairing proposed by
Barreto et al. and how to compute that pairing. The ηT pair-
ing is a fast pairing, and there has been much research on
it [5], [6], [16], [22], [24], [25].

2.1 ηT Pairing over Binary Field

In this section, we explain about the ηT pairing over a binary
field. Let GF(2m) be a binary field with the extension degree
m, where m is an odd prime. Let E be a supersingular elliptic
curve defined over GF(2m),

E : Y2 = X3 + X + b, b ∈ {0, 1},
Let l be the largest odd prime with l | #E(GF(2m)). Then, the
ηT paring proposed by Barreto et al. [2] is the mapping,

ηT : E(GF(2m))[l] × E(GF(2m))[l]→ GF(24m)∗,

with the bilinearity, namely ηT (sP, tQ) = ηT (P,Q)st, satis-
fied for any P,Q ∈ E(GF(2m)) and any integers s, t. The
extension degree 4 of GF(24m) over GF(2m) is the smallest
positive integer such that l divides (2km−1). Such an integer
is called the embedding degree.

An element in the 4−th extension GF(24m) is repre-
sented as a0 + a1s + a2t + a3st for a0, a1, a2, a3 ∈ GF(2m),
where s2 + s + 1 = 0 and t2 + t + s = 0.

The ηT pairing is computed by Algorithm 1, modified
by Shu et al. [25], where M of Step 13 is defined as follows.

M =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

(22m − 1)(2m − 2(m+1)/2 + 1)2m

if (m mod 8, b) = (1, 0), (3, 1), (5, 1), (7, 0)
(22m − 1)(2m + 2(m+1)/2 + 1)2m

if (m mod 8, b) = (1, 1), (3, 0), (5, 0), (7, 1)

Note that A and C in Algorithm 1 belong to GF(24m), where
a set {1, s, t, st} is a basis of GF(24m) over GF(2m) with
t2 = t + 1, s2 = s + t. A powering by M of Step 13 is called
the final exponentiation, and is computed using multiplica-
tions, squarings, and an inversion. The final exponentiation
is efficiently computed by the following equations.

A22m
= (a0 + a2) + (a1 + a3)s + a2t + a3st,

A2m
= (a0 + a1 + a2) + (a1 + a2 + a3)s,

+ (a2 + a3)t + a3st

where A = a0 + a1s + a2t + a3st ∈ GF(24·m).
In this paper, we fix parameters (m = 239, b = 1)

of the ηT pairing. Let l be the largest odd prime with
l | #E(GF(2239)). The size of l and GF(24·239) are impor-
tant values for security. Let E′ be an elliptic curve used

Algorithm 1 Computing the ηT pairing [25]
Input: P = (α, β),Q = (x, y) ∈ E(GF(2m))
Output: ηT (P,Q) ∈ (GF(24m)∗)
1: C ← 1
2: α← α2 + 1, β← β2 + 1, u← y + b + 1, v← x + 1, θ ← αv
3: for i← 0 to m−1

2 do
4: A← β + θ + u + (α + v + 1)s + t
5: C ← C2

6: C ← C · A
7: if i < m−1

2 then
8: α← α4, β← β4, u← u + v + 1, v← v + 1, θ ← αv
9: end if

10: end for
11: A← A + (α2 + v + 1) + s
12: C ← C · A
13: C ← CM

14: return C

for the ηT pairing over GF(397), and let l′ be the largest
odd prime with l′ | #E′(GF(397)). We know that l ≈ l′ and
24·239 ≈ 36·97, which means that the security of our im-
plementation is equivalent to that of the implementation in
Ref. [5], [6], [9], [12], [13].

It is easy to see that Algorithm 1 takes 885 multiplica-
tions, 144 squarings, 1 division, and 3226 additions when
m = 239.

2.2 Previous Implementations

We report previous known implementations of pairing on
ATmega128L.

Oliveira et al. implemented the Tate pairing [17]. The
implementation is named TinyTate. TinyTate implemented
uses a finite field GF(p) (p is a 256 bit prime) and a curve
y2 = x3 + x with the embedding degree 2. It occupies
18,384 bytes of ROM for program, and 1,831 bytes of mem-
ory. The timing is about 30 sec.

Oliveira et al. implemented the ηT pairing [18]. The
implementation is named TinyPBC. TinyPBC uses a finite
field GF(2271) and a curve y2 + y = x3 + x2 with the embed-
ding degree 4, and occupies 47,948 bytes of ROM for pro-
gram, and 3,235 bytes of memory (2,867 bytes are used as
stack). A multiplication in GF(2271) is computed by look-up
table and the Karatsuba method, and takes about 4.0 msec.
The timing of pairing is about 5.5 sec.

Ishiguro et al. implemented the ηT pairing [12]. Their
implementation uses a finite field GF(397) and a curve
y2 = x3 − x + 1 with the embedding degree 6, and occupies
17,284 bytes of ROM for program, and 628 bytes of mem-
ory. A multiplication in GF(397) is computed by the comb
method, and takes about 6.2 msec by the comb method. The
timing of pairing is about 5.8 sec.

On the other hand, TinyECCK is the fastest implemen-
tation of ECC on ATmega128L by Seo et al. [23]. A multi-
plication in GF(2163) is computed by the comb method and
the window method with the width 4, and takes 2.9 msec.
This multiplication method becomes an object of compar-
ison of our proposed method because this paper also uses
binary field.

SHIRASE et al.: EFFICIENT IMPLEMENTATION OF PAIRING-BASED CRYPTOGRAPHY ON A SENSOR NODE
911

2.3 Our Initial Implementation

We initially implement ηT pairing over GF(2239) on AT-
mega128L by using Algorithm 1. The timing is 5.4 sec that
is faster than the implementation of [12].

In the implementation, multiplication is implemented
by the comb method with window of the width 3, squar-
ing is implemented by table reference, and inversion is im-
plemented by the extended Euclidean algorithm. Timings
of an addition, multiplication, squaring, reduction, and in-
version are 0.039 msec, 4.60 msec, 0.176 msec, 0.384 msec,
and 246.2 msec, respectively. And, we found multiplica-
tions, reductions, squarings, inversion, additions occupied
75%, 6.3%, 4.7%, 4.5%, and 2.3% of whole pairing timing,
respectively. Therefore, reduction of multiplication timing
is most important for fast implementation of the ηT pairing.

3. Target Platform: MICAz ATmega128L

In this section, we explain ATmega128L, which is a proces-
sor for MICAz.

3.1 Architecture of ATmega128L

ATmega128L is a processor of 8-bit word, and its clock fre-
quency is 7.38 MHz. ATmega128L consists of an arithmetic
logic unit (ALU), 32 8-bit purpose registers (R0 ∼ R31) for
intermediate results, data memory of 64 Kbyte for general
data, and a program ROM (flash memory) of 64 K locations.

TinyOS is an operating system for WSN, especially
MICAz [15] that is often used as a platform for the research
of sensor network. NesC language is extension to C lan-
guage for sensor nodes. We can implement applications on
ATmega128L by using NesC on TinyOS.

3.2 Operation on ATmega128L

In this section, we explain how ALU operates instruction.
The ALU operates between general purpose resisters,

Rd ← Rd opRr

with one cycle, where op is an operation, and 0 ≤ d, r ≤ 31.
The ALU takes 2 cycles to store one word data in register to
the memory, and takes 2 cycles to load one word date in the
memory to a register. Then, computing C = A op B takes
7 cycles for data in memory.

load Rd ← A (2 cycles)
load Rr ← B (2 cycles)
Rd ← Rd op Rr (1 cycles)
store C ← Rd (2 cycles)

In other words, 1 operation takes 6 cycles for memory ac-
cess (load/store operation). In general the compiler of AT-
mega128L generates such code.

Next, consider the multiplication of GF(2239), namely

30 words data, (A29, · · · , A0) · (B29, · · · , B0). Note that the
result is 60 words. Load/store operations to compute each
partial product Ai ·Bj takes 6 cycles. Memory access to com-
pute a multiplication in GF(2239) takes 900 (the number of
partial products) ×6 = 5,400 cycles, if each partial product
is individually computed by the above operation.

However, if the number of registers in ATmega128L is
not limited, we can write a code, with which the multiplica-
tion takes only 240 cycles for memory access, as follows:

load R0 ← A0 (2 cycles)
...

load R29 ← A29 (2 cycles)
load R30 ← B0 (2 cycles)

...
load R59 ← B29 (2 cycles)

(each computation of AiBj)

store C0 ← R60 (2 cycles)
...

store C59 ← R119 (2 cycles).

In this method, 5,160 cycles are saved per a computation of
a multiplication in GF(2239).

Of course, ATmega128L has only 32 registers, and
thus we need more than 240 cycles for a multiplication in
GF(2239). The main purpose of this paper is to propose a
multiplication method for GF(2239) in which memory ac-
cess by using 32 registers. Reducing the amount of memory
access to compute a multiplication is effective because pair-
ing computation needs many hundreds of multiplications.

4. The Proposed Block Comb Method

In this section, we propose a block comb method for multi-
plying the ηT pairing efficiently. In this method, the multi-
plier and multiplicand are divided into blocks and a partial
product in each block is performed without memory access.
In such a way, a multiplication is efficiently computed.

4.1 The Representation of Finite Field

This section explains how we represent GF(2239) suitably
for ATmega128L.

GF(2239) is represented as GF(2239)/(f (x)), with the
irreducible polynomial f (x) = x239 + x36 + 1. Then, a basis
of GF(2239)/GF(2) is

{x238, x237, · · · , x, 1}
and each element A in GF(2239) is

A = a238x238 + a237x237 + · · · + a1x + a0, ai ∈ GF(2).

(1)

For simplicity, we represent the right side of Eq. (1) as

A = (a238, a237, · · · , a1, a0)

912
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Table 1 Block multiplication of size 6.

A6
24 A6

18 A6
12 A6

6 A6
0

× B6
24 B6

18 B6
12 B6

6 B6
0

A6
24B6

0, A6
18B6

0, A6
12B6

0, A6
6B6

0, A6
0B6

0,

A6
24B6

6, A6
18B6

6, A6
12B6

6, A6
6B6

6, A6
0B6

6,

A6
24B6

12, A6
18B6

12, A6
12B6

12, A6
6B6

12, A6
0B6

12,

A6
24B6

18, A6
18B6

18, A6
12B6

18, A6
6B6

18, A6
0B6

18,

A6
24B6

24, A6
18B6

24, A6
12B6

24, A6
6B6

24, A6
0B6

24,

(C6
54,C

6
48), (C6

48,C
6
42), (C6

42,C
6
36), (C6

36,C
6
30), (C6

30,C
6
24), (C6

24,C
6
18), (C6

18,C
6
12), (C6

12,C
6
6), (C6

6 ,C
6
0)

in this paper. A can be represented as

A = (a238, · · · , a232︸�����������︷︷�����������︸
A29

, · · · , a15, · · · , a8︸�������︷︷�������︸
A1

, a7, · · · , a0︸������︷︷������︸
A0

),

by 30 words where each word is 8-bit. Moreover, we inte-
grate s-wordsize as one block. Then A is represented as

A = (A29, · · · A(t−1)s
︸�����������︷︷�����������︸

As
(t−1)s

, · · · , A2s−1, · · · , As︸����������︷︷����������︸
As

s

, As−1, · · · , A0︸���������︷︷���������︸
As

0

)

where t = �30/s�.
We call (A29, · · · , A0) the word representation, and call

(As
(t−1)s, · · · , As

0) the block representation of size s for A.

4.2 Block Multiplication

In this section, we propose the block multiplication in
GF(2239) on ATmega128L.

In order to compute a multiplication AB for A, B ∈
GF(2239), first, we compute AB as polynomial, next, we
compute a reduction AB modulo f (x), where f (x) = x239 +

x36 + 1. The polynomial multiplication is an dominant time
consuming operation in computing the ηT pairing. We fo-
cus on the polynomial multiplication because reduction is
already fast.

Let s be the block size. A = (As
(t−1)s, · · · , As

s, A
s
0), B =

(Bs
(t−1)s, · · · , Bs

s, B
s
0), where t = �30/s�. The result C consists

of 2t blocks.

C = (Cs
(2t−1)s, · · · ,Cs

s,C
s
0)

Table 1 shows the block multiplication of size 6.
Note that there are many orders of computation of par-

tial products A6
isB6

js, and there are many choice of the block
size s. Indeed, choice of the order of partial products and
their block size affect the number of memory access. To
sum up, there are two important issues to save the overhead
of memory access time:

(1) order of the computation of partial product A6
isB6

js
(2) the block size of s

4.2.1 The Order of Computation of Partial Product A6
isB6

js

Here, we provide the best order for computations of partial

product A6
isB6

js, that is an answer of the important issue (1).
Let us consider the following order in the case of s = 6:

A6
0B6

0 ⇒
A6

6B6
0 → A6

0B6
6 ⇒

A6
12B6

0 → A6
6B6

6 → A6
0B6

12 ⇒
A6

18B6
0 → A6

12B6
6 → A6

6B6
12 → A6

0B6
18 ⇒

A6
24B6

0 → A6
18B6

6 → A6
12B6

12 → A6
6B6

18 → A6
12B6

18 ⇒
A6

24B6
6 → A6

18B6
12 → A6

12B6
18 → A6

12B6
24 ⇒

A6
24B6

12 → A6
18B6

18 → A6
12B6

24 ⇒
A6

24B6
18 → A6

18B6
24 ⇒

A6
24B6

24,

where → needs no store operation, ⇒ needs 6-word store
operation, and 12-word store operation is needed in the last
product. If we choose any different order, then the num-
ber of operation “⇒” increases. Therefore, the above or-
der for implementing a multiplication AB in GF(2239) has
the least number of store operations. In this case, the num-
ber of memory accesses to compute AB are 8 6-word store
operations, one 12-word store operation and 16 12-word
load operations. The whole memory accesses takes 720 cy-
cles because one load/store operation takes 2 cycles on AT-
mega128L.

Next we consider the case of general s. We assume
that there are enough registers in a processor to compute
each partial product (Cs

(i+ j+1)s,C
s
(i+ j)s) = As

isBs
js without

memory accesses after As
is and Bs

js are loaded to the reg-
isters. Note that in some cases the store operations to
(Cs

(i+ j+1)s,C
s
(i+ j)s) are omitted or reduced. Suppose that we

compute A(i′+1)s
i′ s B(j′+1)s

j′ s after A(i+1)s
is B(j+1)s

js . If i + j = i′ + j′,
then the store operation is omitted. If (i′, j′) = (i + 1, j)
or (i, j + 1), then only low s registers are stored to memory
corresponding to (Cs

(i+ j)s). From the above observation, the
least number of memory accesses to compute AB require
(2t − 2) s-word store operations, one 2s-word store opera-
tion and (t − 1)2 2s-word load operations. Then, the whole
memory accesses takes

(4st2 − 4st + 4s) cycles

to compute a multiplication AB in GF(2239).

SHIRASE et al.: EFFICIENT IMPLEMENTATION OF PAIRING-BASED CRYPTOGRAPHY ON A SENSOR NODE
913

4.2.2 The Choice of Block Size

In this section, we provide the best block size s that is an
answer of the important issue (2).

If there are unlimited registers, we know that the larger
the block size s is, the less memory access cost is.

(s, t) the cost of memory accesses (cycles)
(1, 30) 3,484
(2, 15) 1,688
(3, 10) 1,092
(5, 6) 620
(6, 5) 504

(10, 3) 280
(15, 2) 180
(30, 1) 120

However, ATmega128L has only 32 registers. More-
over, 6 registers are used for A, B, and C pointers to compute
C = AB. Thus, only 26 registers are available.

We implement each partial product A6
6iB

6
6 j by the comb

method for efficiency. Note that the window method and
Karatsuba method waste registers for precomputation or in-
termediate data; in these methods the block size is small.

In the case where A(i+1)s
is Bs

js is computed by the comb
method, we need 4s + 1 registers (s, s, 2s, 1) for As

is, Bs
is,

(Cs
(i+ j+1)s,C

s
(i+ j)s) and as a temporary register. We then

choose s such that 4s + 1 ≤ 26, and thus the block size
s = 6 is best.

4.3 The Proposed Block Comb Method

Algorithm 2 presents the proposed block comb method for
computing C = AB for A, B ∈ GF(2239). Notations in Algo-
rithm 2 denote the following:

load: transfer of a data in memory to a register
store: transfer of a data in a register to memory
move: transfer of a data in a register to another register
� 1: left-shift operation
⊕: bitwise exclusive-or

First, we allocate registers (R0 to R31) on ATmega128L
to perform the block comb method as follows: the 12 regis-
ters R0, · · ·R11 are used for the result C = AB, register R12

is used for a temporary register of the comb method, the 6
registers R13, · · · ,R18 are used for the multiplier A, and the
6 registers R19, · · ·R24 are used for the multiplicand B.

Next, we explain each Step in Algorithm 2. Steps 1 to
7 initialize the 12 registers corresponding to C. Steps 8 to
30 correspond to the comb method to compute

(A6 j+5, · · · , A6 j)
︸��������������︷︷��������������︸

A6
6 j

· (B6k+5, · · · , B6k)
︸��������������︷︷��������������︸

B6
6k

. (2)

In Step 12 (A6 j+5, · · · , A6 j) in memory are loaded to
R13, · · · ,R19, and (B6k+5, · · · , B6k) in memory are loaded to

Algorithm 2 Block comb method for computing C = AB
with block size 6 (A,B in GF(2239))
Input: Binary polynomials A = (A29, · · · , A0), B = (B29, · · · , B0) (in

memory), where A,B in GF(2239)
Output: (C59, · · · ,C0) = AB (to memory)
1: for i = 0 to 5 do
2: Ri ← 0
3: end for
4: for i = 0 to 8 do
5: for j = 6 to 11 do
6: R j ← 0
7: end for
8: for j = 0 to 4 do
9: k = i − j

10: if 0 ≤ k and k ≤ 4 then
11: for l = 0 to 5 do
12: load R13+l ← A6 j+l

13: load R19+l ← B6k+l

14: end for
15: R12 ← 0
16: for l = 7 downto 0 do
17: (R12, · · · ,R0)← (R12, · · · ,R0) � 1
18: for m = 6 downto 1 do
19: for n = 0 to 5 do
20: if (the l-th bit of R18+m) = 1 then
21: Rm+n ← Rm+n ⊕ R13+n

22: end if
23: end for
24: end for
25: end for
26: for l = 0 to 11 do
27: Rn ← Rn+1

28: end for
29: end if
30: end for
31: for k = 0 to 5 do
32: store C6i+k ← Rk

33: Rk ← Rk+6
34: end for
35: end for
36: for i = 0 to 6 do
37: store C54+i ← R6+i

38: end for

R20, · · · ,R25.
Steps 16 to 25 are the body of the comb method. Note

that the result of Eq. (2) is registered in (R12, · · · ,R1) (not
(R11, · · · ,R0)) due to shift operations at Step 17. Then, we
need Steps 26 to 28 to make R11 (the most significant word),
and R0 (the least significant bit)†.

In Steps 32, the lowest 6 words (R5, · · · ,R0) of the re-
sult of the partial product are stored. Recall that the highest
6 words (R11, · · · ,R6) can be reused in the next iteration, as
explained in Sect. 4.2. Last, the highest 6 words are also
stored (Steps 36 to 38).

In the following we estimate the efficiency of the pro-
posed comb method. A multiplication of the block comb
method with block size 6 takes 504 cycles for memory ac-
cess. Recall that a straight-forward multiplication, which
calls each partial product AiBj individually, takes 5,400 cy-

†We may omit Steps 22 to 24 in Algorithm 2 if we allow the
movement of the most/least significant word of (R12, · · · ,R0) and
modify Algorithm 2.

914
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Table 2 Instructions of ATmega128L used in this paper.

Description Syntax Operation Operand Program counter #Clock

Load to Y ld Rd ,Y Rd ← (Y) 0 ≤ d ≤ 31 PC ← PC + 1 2
ld Rd ,Y+ Rd ← (Y), Y ← Y + 1 0 ≤ d ≤ 31 PC ← PC + 1 2
ldd Rd ,Y + q Rd ← (Y + q) 0 ≤ d ≤ 31, 0 ≤ q ≤ 63 PC ← PC + 1 2

Store to X st X,Rr (X)← Rr 0 ≤ r ≤ 31 PC ← PC + 1 2
st X+,Rr (X)← Rr , X ← X + 1 0 ≤ r ≤ 31 PC ← PC + 1 2

Logical Shift Left lsl Rd Rd(n + 1)← Rd(n) (1 ≤ n ≤ 6), 0 ≤ r ≤ 31 PC ← PC + 1 1
Rd(0)← 0,C ← Rd(7)

Rotate Left rol Rd Rd(0)← C,Rd(n + 1)← Rd(n) 0 ≤ r ≤ 31 PC ← PC + 1 1
Through Carry (1 ≤ n ≤ 6), C ← Rd(7)
Skip if Bit in sbrs Rr , b if (Rr(b) = 1)PC ← PC + 2 0 ≤ r ≤ 31, 0 ≤ b ≤ 7 PC ← PC + 2 (T) 2 (T)
Register Set else PC ← PC + 1 PC ← PC + 1 (F) 1 (F)
Relative Jump rjmp k PC ← k + 1 PC ← k + 1 (T) 2
Copy Register mov Rd ,Rr Rd ← Rr 0 ≤ d, r ≤ 31 PC ← PC + 1 1
Copy Register Word movw Rd ,Rr Rd+1 : Rd ← Rr+1 : Rr d, r ∈ {0, 2, · · · , 30} PC ← PC + 1 1
AND immediate andi Rd ,K Rd ← Rd and K 16 ≤ d ≤ 31, 0 ≤ K ≤ 255 PC ← PC + 1 1
Exclusive OR eor Rd ,Rr Rd ← Rd ⊕ Rr 0 ≤ d, r ≤ 31 PC ← PC + 1 1
Swap Nibbles swap Rd R(7 : 4)← Rd(3 : 0) 0 ≤ d, r ≤ 31 PC ← PC + 1 1

R(3 : 0)← Rd(7 : 4)
Clear Register clr Rd Rd ← Rd ⊕ Rd 0 ≤ d ≤ 31 PC ← PC + 1 1

Rd: Destination register
Rr: Source register
k: Constant address
K: Constant data
b: Bit in the register
X,Y: Indirect Address Register

(X = R27 : R26 and Y = R29 : R28)
q: Displacement for direct addressing (6-bit)
C: Carry flag
PC: Program Counter

cles for memory access, as described in Sect. 3.2. There-
fore, the proposed block comb method for a multiplication
AB in GF(2239) is about 10 times faster than the multipli-
cation with the slowest memory access. In the real imple-
mentation, a compiler does not usually gives us a code of
multiplication with the slowest memory access, and thus the
improvement by the proposed scheme becomes smaller —
it strongly depends on the underlying compiler. We will
demonstrate the effectiveness of the block comb method ap-
plied to ATmega128L in Sect. 5.1.

5. Our Implementation

In this section, we explain about the details of our imple-
mentation of the ηT pairing over GF(2239) on ATmega128L.
Refer Table 2 for each instruction used in this section of AT-
mega128L in details.

5.1 Implementation of Proposed Block Comb Method

We implemented the proposed block comb method (Algo-
rithm 2) by assembly. In the following we explain main
three improvements: memory access (Step 8, Step 31, Step
36), if-statement (Step 20), and left-shift (Step 17), where
their timing is more than 80% of the whole multiplication
of GF(2239).

The proposed block comb method with the three im-
provements below can compute a multiplication in GF(2239)
in 1.29 msec. The comb method of width 3 in Sect. 2.3 re-

quires 4.60 msec, and thus our implementation of the pro-
posed block comb method is about 3.6 times faster.

5.1.1 Memory Access

Note that 16-bit registers are required for indicating mem-
ory address in ATmega128L because the size of the memory
is 216 bytes and hence 16-bit indirect address registers are
needed for memory addressing. Six registers can be used as
3 16-bit registers, X-register (R26 and R27), Y-register (R28

and R29), and Z-register (R30 and R31). We use registers X,
Y , and Z for pointers C, A, and B, respectively. We can write
load operations by “ldd” instructions. For example, we can
implement the load instruction at Step 8 as follows.

ldd R13+l, X + (6 j + l)

Note that X + (6 j + l) denotes the address of A6 j+1. The ldd
instruction takes 2 cycles.

We can write store operations by “st” instructions.
Note that store operations are sequentially performed to
C0,C1, · · · ,C59 at Steps 31 and 36. We can implement a
store operation as follows† .

st X+,R13+k

†An std instruction corresponding to ldd is prepared in AT-
mega128L. However, the std instruction does not support the X
register. Therefore, we must use the st instruction for store opera-
tions in Algorithm 2.

SHIRASE et al.: EFFICIENT IMPLEMENTATION OF PAIRING-BASED CRYPTOGRAPHY ON A SENSOR NODE
915

Table 3 Comparison of timing of pairing on ATmega128L.

TinyTate [17] TinyPBC [18] Ishiguro et al. [12] Ours

Language NesC NesC NesC Assem, NesC

Pairing Tate (GF(q)) ηT (GF(2271)) ηT (GF(397)) ηT (GF(2239))
q2 ≈ 512 bits

ROM (byte) 18,384 47,948 17,284 35,012
memory (byte) 1,831 368 628 568

Timing of pairing (sec) 30.21 5.45 5.79 1.93

5.1.2 If-Statement

We can implement the if-statement at Step 20 by using
“sbrs” and “rjmp” instructions as follows.

sbrs R19+ j, l
rjmp Label
eor R0,R13

eor R1,R14
...

eor R5,R18

Label:
...

In the case of an lth bit of R19+ j = 1, rjmp is not ex-
ecuted and eor (exclusive or) operations are executed. The
sbrs instruction takes two cycles. If the lth bit of R19+ j = 0
and rjmp is executed, the eor operations are not executed.
The sbrs instruction takes one cycle, and the rjmp instruc-
tion takes two cycles. The if-statement takes 2.5 cycles on
average because the probability of R19+ j = 1 is 0.5.

5.1.3 Block Left-Shift

We can implement the block left-shift at Step 17 by using
“lsl” and “rol” instructions as follows.

lsl R1

rol R2

rol R3
...

rol R12

Instructions lsl and rol each take one cycle. Thus, the
block left-shift takes only 12 cycles in the implementation.

5.2 Other Improvements

The shift operation is often used in the squaring, reduction,
and inversion. We implemented the shift operation opti-
mized for ATmega128L.

Let A0 = (a7, a6, a5, a4, a3, a2, a1, a0) be an 8-bit regis-
ter. “(a3, a2, a1, a0, 0, 0, 0, 0) = A0 � 4” (left 4-bit shift) is
complied by NesC as follows.

ldd R20,Z ;; R20 = A0

mov R22,R20 ;; R22 = A0

clr R23, ;; R23 = 0
movw R24,R22 ;; R24 = A0,R25 = 0
swap R24 ;; R24 = (a3, a2, a1, a0, a7, a6, a5, a4)
swap R25 ;; R25 = 0
andi R25, 0x f 0 ;; R25 = 0 & 0x f 0 = 0
eor R25,R24 ;; R25 = R25 ∧ R24 = R24

andi R24, 0x f 0 ;; R24 = A0 � 4

We can optimize it as follows.

ldd R20,Z + 15 ;; R20 = A0

mov R22,R20 ;; R22 = A0

mov R24,R22 ;; R24 = A0

swap R24 ;; R24 = (a3, a2, a1, a0, a7, a6, a5, a4)
andi R24, 0x f 0 ;; R24 = A0 � 4

From this we reduce to 6 clocks from 10 clocks. Sim-
ilarly we can perform the same improvements for left i-bit
sift or right i-bit sifts for i = 1 to 7.

As a result, the timings of squaring, reduction, and
inversion are improved to 0.129 msec, 0.0304 msec, and
166.8 msec from 0.176 msec, 0.0384 msec, and 246.2 msec
of our initial implementation in Sect. 2.3, respectively.

5.3 Comparison with Other Works

In Table 3, we show a comparison of implementation
of pairing on ATmega128L with previous works. Ours
is 3 times faster than the implementation of ηT pair-
ing over GF(397) which has the same security level (see
Sect. 2.1), but we used twice larger ROM due to assem-
bly code. TinyPBC has a larger parameter size, and the
weighted speed of their implementation over GF(2239) is
5.45(239/271)2 = 4.24 sec., which is still twice slower than
ours. The ROM size of TinyPBC is larger than that of ours
because they used a table look-up for Karatuba multiplica-
tion in GF(2271). TinyTate uses finite field GF(p) with a
large prime characteristic, and it is currently much slower
than other implementation of pairing on ATmega128L.

Remark 1: The timing of implementation only by NesC
(without assembly) can also be improved by the proposed
block comb method. The improvement by assembly merely
aims at achieving the top timing of pairing implementation
at ATmega128L. For example, the block comb method en-
hances the speed of Ishiguro et al. [12] or TinyECCK [23],
because it uses the comb method.

916
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

6. Conclusion

In this paper we presented an efficient implementation of
pairing over a sensor node. We implemented the ηT pairing
over GF(2239) using MICAz platform with ATmega128L.
In order to accelerate the speed of the pairing, we proposed
the block comb method that is particularly optimized for AT-
mega128L. Combining with other optimizations for squar-
ing, reduction, and inversion, the timing of the ηT pairing
becomes 1.93 sec. This is currently the fastest timing com-
paring with the previously known implementations of pair-
ing over sensor nodes. Ubiquitous sensor networks now use
the pairing-based cryptography in a reasonable time.

Acknowledgements

The work reported in this paper was supported by the IT
R&D program of MIC/IITA. [2005-S088-04, Development
of Security technology for Secure RFID/USN Service].

References

[1] D. Boneh and M. Franklin, “Identity-based encryption from the weil
pairing,” SIAM J. Comput., vol.32, no.3, pp.586–614, 2003.

[2] P. Barreto, S. Galbraith, C. Ó hÉigeartaigh, and M. Scott, “Efficient
pairing computation on supersingular abelian varieties,” Des. Codes
Cryptogr., vol.42, no.3, pp.239–271, 2007.

[3] P. Barreto, H. Kim, B. Lynn, and M. Scott, “Efficient algorithms
for pairing-based cryptosystems,” CRYPTO 2002, LNCS 2442,
pp.354–368, 2002.

[4] D. Boneh, C. Gentry, and B. Waters, “Collusion resistant broadcast
encryption with short ciphertexts and private keys,” CRYPTO 2005,
LNCS 3621, pp.258–275, 2005.

[5] J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, “An algo-
rithm for the ηT pairing calculation in characteristic three and its
hardware implementation,” 18th IEEE International Symposium on
Computer Arithmetic, ARITH-18, pp.97–104, 2007.

[6] J.-L. Beuchat, M. Shirase, T. Takagi, and E. Okamoto, “A refined al-
gorithm for the ηT pairing calculation in characteristic three,” Cryp-
tology ePrint Archive, Report 2007/311, 2007.

[7] I. Duursma and H. Lee, “Tate pairing implementation for hyperel-
liptic curves y2 = xp − x + d,” ASIACRYPT 2003, LNCS 2894,
pp.111–123, 2003.

[8] E. Gorla, C. Puttmann, and J. Shokrollahi, “Explicit formulas for
efficient multiplication in F36m ,” SAC 2007, LNCS 4876, pp.173–
183, 2007.

[9] R. Granger, D. Page, and M. Stam, “On small characteristic alge-
braic tori in pairing-cased cryptography,” LMS Journal of Computa-
tion and Mathematics, vol.9, pp.64–85, 2006.

[10] D. Hankerson, A. Menezes, and S. Vanstone, Guide to elliptic curve
cryptography, Springer-Verlag, 2004.

[11] IEEE P1363.3, Available at
http://grouper.ieee.org/groups/1363/IBC/index.html

[12] T. Ishiguro, M. Shirase, and T. Takagi, “Efficient implementation of
pairing on sensor nodes,” Applications of pairing-based cryptogra-
phy, NIST, pp.96–106, 2008.

[13] T. Kerins, W. Marnane, E. Popovici, and P. Barreto, “Efficient hard-
ware for the Tate pairing calculation in characteristic three,” CHES
2005, LNCS 3659, pp.412–426, 2005.

[14] A. Liu, P. Kampanakis, and P. Ning, “TinyECC: Elliptic curve cryp-
tography for sensor networks (version 0.3),”
http://discovery.csc.csu.edu/software/TinyECC/, 2007.

[15] MICAz Hardware Description, Available at http://www.xbow.jp/
[16] T. Nakajima, T. Izu, and T. Takagi, “Reduction optimal trinomials

for efficient software implementation of the ηT pairing,” IWSEC
2007, LNCS 4752, pp.44–57, 2007.

[17] L. Oliveira, D. Aranha, E. Morais, F. Daguano, J. López, and R,
Dahab, “TinyTate: Identity-based encryption for sensor networks,”
Cryptology ePrint Archive, Report 2007/020, 2007.

[18] L. Oliveira, M. Scott, J. López, and R. Dahab, “TinyPBC: Pair-
ings for authenticated identity-based non-interactive key distribution
in sensor networks,” Cryptology ePrint Archive, Report 2007/482,
2007.

[19] RFC 5091, Available at http://www3.tools.ietf.org/html/rfc5091
[20] A. Ramachandran, Z. Zhou, and D. Huang, Computing cryp-

tographic algorithms in portable and embedded devices, IEEE
Portable, 2007.

[21] A. Perrig, J. Stankovic, and D. Wagner, “Security in wireless sensor
networks,” Commun. ACM, vol.47, no.6, pp.53–57, 2004.

[22] R. Ronan, C. Ó hÉigeartaigh, C. Murphy, T. Kerins, and P. Barreto,
“Hardware implementation of the ηT pairing in characteristic 3,”
Cryptology ePrint Archive, Report 2006/371, 2006.

[23] S. Seo, D-G. Han, H. Kim, and S. Hong, “TinyECCK: Efficient ellip-
tic curve cryptography implementation over GF(2m) on 8-bit micaz
mote,” IEICE Trans. Inf. & Syst., vol.E91-D, no.5, pp.1338–1347,
May 2008.

[24] M. Shirase, T. Takagi, and E. Okamoto, “Some efficient algorithms
for the final exponentiation of ηT pairing,” ISPEC 2007, LNCS
4464, pp.254–268, 2007.

[25] C. Shu, S. Kwon, and K. Gaj, “FPGA accelerated Tate pairing based
cryptosystems over binary fields,” Cryptology ePrint Archive, Re-
port 2006/179, 2006.

[26] P. Szczechowiak, L. Oliveira, M. Scott, M. Collier, and R. Dahab,
“NanoECC: Testing the limits of elliptic curve cryptography in Sen-
sor Networks,” EWSN 2008, LNCS 4913, pp.305–320, 2008.

[27] R. Watro, D. Kong, S. Cuti, C. Lynn, and P. Knuus, “TinyPK: Se-
curing sensor networks with public key technology,” SASN 2004,
pp.59–64, 2004.

Masaaki Shirase received the B.Sc. in
mathematics from Ibaraki University in 1994,
and M.I.S. and Dr.I.S degrees from JAIST
(Japan Advanced Institute of Science and Tech-
nology) in 2003 and 2006, respectively. He is
currently a Postdoctoral in the School of Sys-
tem Science Information at Future University-
Hakodate. His research interests are algorithm
and implementation of cryptography.

Yukinori Miyazaki received the Bache-
lor of Media Architecture from School of Sys-
tems Information Science at Future University-
Hakodate in 2009. He is currently a master stu-
dent in Graduate School of Systems Information
Science at Future University-Hakodate. He is a
student member of IPSJ.

SHIRASE et al.: EFFICIENT IMPLEMENTATION OF PAIRING-BASED CRYPTOGRAPHY ON A SENSOR NODE
917

Tsuyoshi Takagi received the B.Sc. and
M.Sc. degrees in mathematics from Nagoya
University in 1993 and 1995, respectively. He
had engaged in the research on network secu-
rity at NTT Laboratories from 1995 to 2001.
He received the Dr.rer.nat degree from Technis-
che Universität Darmstadt in 2001. He was an
Assistant Professor in the Department of Com-
puter Science at Technische Universität Darm-
stadt until 2005. He is currently a Professor
in the School of Systems Infomation Science at

Future University-Hakodate. His current research interests are information
security and cryptography. Dr. Takagi is a member of International Asso-
ciation for Cryptologic Research (IACR).

Dong-Guk Han received his B.S. degree
in mathematics from Korea University in 1999,
and his M.S. degrees in mathematics from Ko-
rea University in 2002, respectively. He re-
ceived Ph.D. of engineering in Information Se-
curity from Korea University in 2005. He
was a Post.Doc. in Future University-Hakodate,
Japan. After finishing the doctor course, he
had been an exchange student in Dep. of Com-
puter Science and Communication Engineering
in Kyushu University in Japan from Apr. 2004

to Mar. 2005. He was a senior researcher in Electronics and Telecommuni-
cations Research Institute (ETRI), Daejeon, Rep. of Korea. He is currently
working as an assistant professor with the Department of Mathematics of
Kookmin University, Seoul, Rep. of Korea. He is a member of KIISC,
IEEK, and IACR.

Dooho Choi received his B.S. degree in
mathematics from Sungkyunkwan University,
Seoul, Korea in 1994, and the M.S. and Ph.D.
degrees in mathematics from Korea Advanced
Institute of Science and Technology (KAIST),
Daejeon, Korea in 1996, 2002, respectively.
He is currently a senior researcher in Electron-
ics and Telecommunications Research Institute
(ETRI), Daejeon, Korea from Jan. 2002. His re-
search interests include security technologies of
RFID and wireless sensor network. He is an ed-

itor of the ITU-T X.1171 (X.nidsec-1).

