
918
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

PAPER Special Section on Information and Communication System Security

TinyECCK16: An Efficient Field Multiplication Algorithm on
16-bit Environment and Its Application to Tmote Sky Sensor
Motes

Seog Chung SEO†a), Student Member, Dong-Guk HAN††b), and Seokhie HONG†c), Nonmembers

SUMMARY Recently, the result of TinyECCK (Tiny Elliptic Curve
Cryptosystem with Koblitz curve) shows that both field multiplication and
reduction over GF(2m) are related to a heavy amount of duplicated mem-
ory accesses and that reducing the number of these duplications noticeably
improves the performance of elliptic curve operations such as scalar mul-
tiplications, signing and verification. However, in case that the underly-
ing word size is extended from 8-bit to 16-bit or 32-bit, the efficiency of
the techniques proposed in TinyECCK is decreased because the number
of memory accesses to load or store an element in GF(2m) is significantly
reduced. Therefore, in this paper, we propose a technique which makes
left-to-right (ltr) comb method which is widely used as an efficient multipli-
cation algorithm over GF(2m) suitable for extended word sizes and present
TinyECCK16 (Tiny Elliptic Curve Cryptosystem with Koblitz curve on 16-
bit word) which is implemented with the proposed multiplication algorithm
on 16-bit Tmote Sky mote. The proposed algorithm is faster than typical ltr
comb method by 15.06% and the 16-bit version of the algorithm proposed
in TinyECCK by 5.12% over GF(2163).
key words: wireless sensor network, elliptic curve cryptosystem, efficient
implementation

1. Introduction

Wireless sensor networks (WSNs) are comprised of hun-
dreds or thousands of resource-limited small sensor nodes.
Since they are deployed in harsh, unattended environments,
some combinations of authentication, integrity, and confi-
dentiality are required for reliable and secure network com-
munications. Due to the inherent characteristics of WSNs
such as the absence of supervisors and limited resources,
new security protocols considering these issues are required
rather than conventional protocols. Even if some symmetric
key-based security protocols have been proposed with the
consideration of limited resources on motes, they lack of
functionalities at pairwise key setup and broadcast authen-
tication phases. Thus, many researchers have tried to apply
public key cryptosystems to provide functionalities such as
key distribution and authentication, especially elliptic curve
cryptosystem (ECC), to WSNs because of its much smaller

Manuscript received August 4, 2008.
Manuscript revised December 29, 2008.
†The authors are with the Graduate School of Information

Management and Security, Korea University, Seoul, Korea.
††The author is the corresponding author of this manuscript,

and is with the Dept. of Mathematics, Kookmin University, Seoul,
Korea.

a) E-mail: seosc@cist.korea.ac.kr
b) E-mail: christa@kookmin.ac.kr
c) E-mail: hsh@cist.korea.ac.kr

DOI: 10.1587/transinf.E92.D.918

key size compared with other public key system such as
RSA and DSA [1], [4], [7]–[10], [13]–[15]. They have im-
plemented ECC on several types of motes and presented the
running time and memory consumption in order to prove
the feasibility of ECC on WSNs. Until now, implemen-
tations over GF(p) give relatively more contented perfor-
mance than those over GF(2m). However, recently the re-
sult of TinyECCK [14] shows that low performance of field
operations over GF(2m) are caused by a heavy amount of
memory accesses, thus reducing the number of these unnec-
essary operations improves the overall performance of ellip-
tic curve operations over GF(2m). Furthermore, TinyECCK
is the most efficient among ECC softwares over both GF(p)
and GF(2m) running on ATmega128L processor [24].

Both field multiplication and reduction are the most
frequent operation in elliptic curve operations. TinyECCK
has proposed some techniques which can significantly re-
duce the number of memory accesses in both operations,
thus it could achieve performance improvement. However,
the efficiency of techniques proposed in TinyECCK is de-
creased as the word size on a target platform is increased
because the required number of memory accesses are also
reduced. Actually, we have got 5.78–7.69% of improve-
ment when TinyECCK is implemented on 16-bit word en-
vironment (comp. it was 15–19% on 8-bit platform). This
result means that a new field multiplication algorithm is re-
quired with considering extended word sizes such as 16-bit
and 32-bit.

In this paper, we propose a technique which makes
left-to-right comb method which is widely used as an effi-
cient multiplication algorithm over GF(2m) suitable for ex-
tended word sizes and present TinyECCK16 which is imple-
mented with the proposed multiplication algorithm on 16-
bit Tmote Sky mote [22] using MSP430 processor [25]. The
proposed multiplication algorithm is faster than typical ltr
comb method (resp. the improved ltr comb method proposed
in TinyECCK) by 15.06% (resp. 5.12%) over GF(2163)
and with its application to TinyECCK16, 8.4–11.8% (resp.
2.82–6.93%) of running time in elliptic curve operations
is saved. Furthermore, TinyECCK16 is superior to exist-
ing ECC softwares implemented on Tmote Sky sensor mote
with regards to running times and memory requirements.
TinyECCK16 with 5TNAF can compute a scalar multiplica-
tion in 0.64 secs and it generates (resp., verifies) a signature
within 0.77 (resp., 1.27 secs) with 14,422-byte of ROM and

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

SEO et al.: TINYECCK16 ON TMOTE SKY SENSOR MOTES
919

Table 1 Description of existing ECC implementations on sensor motes using 8-bit or 16-bit CPU
(Code size are measured by bytes and timings are measured by secs, ‘-’ means that the corresponding
part is neither implemented nor known).

Implementation on 8-bit mote Implementation on 16-bit mote
Binary field Prime field Prime field Binary field

[4] [11] [12] [7] [14] [8] [1] [1] [9] [10] [13]
Code Size 34,342 11,592 8,767 75,088 13,748 - 19,308 13,520 17,823 19,251 20 K

Scalar Multiplication 34.00 13.90 4.14 - 1.14 0.81 - - - - 32.50
Sign - - - 6.88 1.37 - 2.00 1.58 3.35 1.60 -

Verify - - - 24.17 2.32 - 2.43 2.02 6.78 3.32 -

1,750-byte of RAM. Since the efficiency of the proposed
algorithm is increased as the word size on the target plat-
form is extended, it seems that our proposal is promising
technique for upcoming more improved sensor platforms.

2. Related Work

Until now, there have been several implementations of ECC
over both GF(2m) and GF(p) on sensor motes using 8-bit or
16-bit CPU. They have tried to prove the feasibility of ECC
for WSNs.

2.1 Existing Implementations on 16-bit Sensor Motes

There are some ECC softwares over both GF(p) and
GF(2m) on TelosB or Tmote Sky motes using 16-bit
MSP430 processor. TinyECC which is tuned for 16-bit
Tmote Sky can generate a signature in 1.58 secs and ver-
ify it in 2.02 secs at the expense of 13,520-byte of ROM and
1,504-byte of RAM [1]. Wang et al. have implemented ECC
software over GF(p) on TelosB mote running at 8 MHz and
have applied it for their proposed access control protocol [9].
Their implementation consumes 3.35 and 6.78 secs for sign-
ing and verification, respectively at the cost of 17,823-byte
of ROM and 1,638-byte of RAM. After their early work,
they have significantly improved the performance of their
code [10]. The updated code takes 1.60 and 3.32 secs for
signing and verification, respectively. At this time, it re-
quires 19,251-byte of ROM and 1,392-byte of RAM except
for SHA-1 code more than 30-Kbyte. Arazi et al. have tuned
EccM for 16-bit TelosB mote. The modified implementation
takes 32.5 secs for a scalar multiplication with 20 K-byte of
ROM and 1,500-byte or RAM [13].

2.2 NanoECC

NanoECC [15] is based on MIRACL library [19] and sup-
ports ECC operations and pairing-based cryptographic op-
erations on both MICAz and Tmote Sky mote over both
GF(p) and GF(2m). For efficient elliptic curve operations
over GF(2m), NanoECC is based on Koblitz curve and uses
Karasutba-Ofman multiplication algorithm and fast reduc-
tion algorithm using pentanomial. NanoECC over GF(p)
makes use of hybrid multiplication algorithm and optimized
reduction algorithm using Mersenne-prime. It applies fixed-
based comb algorithm with window size 4 for fast scalar

multiplications. On a MICAz (resp. Tmote Sky) mote, it
takes NanoECC 2.16 (resp. 1.04) and 1.27 (resp. 0.72) secs
to compute a scalar multiplication over GF(2m) and GF(p),
respectively.

For extensive description of existing ECC implementa-
tions on sensor motes 8-bit or 16-bit CPU, Table 1 is pre-
sented. Since NanoECC is a kind of multi-platform imple-
mentation, we do not include it in the table.

3. Implementation Details

We have implemented TinyECCK16 on a 16-bit Tmote
Sky mote [22] using the MSP430 processor [25]. We use
the domain parameter (sect163k1) recommended by [3]
and polynomial basis to represent elements in GF(2m).
TinyECCK16 has been developed with nesc language [27]
in order to run on TinyOS [21]. We modified the original
field arithmetic algorithms using 32-bit word size which are
presented in Guide to Elliptic Curve Cryptography [5], [6]
into the forms suitable for 16-bit word environment. For
efficiency, TinyECCK16 makes use of recoding algorithms
such as wNAF and wTNAF [16] and selects the mixed coor-
dinate system [17] rather than affine coordinate.

3.1 Sensor Platform Description

Table 2 describes the features of MICAz and Tmote Sky
motes. Tmote Sky mote has more sufficient RAM size than
MICAz mote. TinyECCK running on MICAz mote uses
4TNAF recoding algorithm. Because more sufficient RAM
size is available in Tmote Sky mote, larger window size can
be used for wTNAF. Actually, TinyECCK16 makes use of
5TNAF for the maximum performance, at this time, 1,750-
byte of RAM is used. 5TNAF cannot be used by TinyECCK
running on MICAz mote since only 4-Kbyte of RAM is
available on that mote. Since a Tmote Sky has only 48-
Kbyte of ROM, the code size is more critical issue than MI-
CAz motes.

3.2 Preliminaries

Let assume word size W be 16-bit since MSP430 uses 16-
bit data bus. Following notations are used in the rest of this
paper for describing algorithms. We assume that A (= a(z))
and B (= b(z)) are elements in GF(2m).

920
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fig. 1 Left-to-right comb method using window (It scans w-bit of A from A block to D block in such
a way that each block is processed from top to bottom. Then, the precomputed result corresponding to
the scanned bit is loaded from the table and xored with the intermediate result C. A ∈ GF(2163), w = 4).

Table 2 Sensor mote specifications.

MICAz [20] Tmote Sky [22]

MCU 8-bit ATmega128L 16-bit MSP430
Flash Memory 128-Kbyte 48-Kbyte

RAM 4-Kbyte 10-Kbyte

• A ⊕ B: bitwise exclusive-or.
• A & B: bitwise AND.
• A � i: right shift of A by i positions with padding i upper bits
as 0.
• A � i: left shift of A by i positions with padding i lower bits
as 0.
•W: a 16-bit word.
• A[j] denotes j-th word of the A polynomial.
• t = �m/W� is the required number of words to store A in
memory.
• The left-to-right comb method using window w processes
the bits of a(z) from left to right direction as follows: a(z) ·
b(z)=(· · · ((ãs−1b(z)zw+ãs−2b(z))zw+ãs−3b(z))zw+· · ·+ã1b(z))zw+
ã0b(z), where ãi = (awi+w−1 . . . awi+1awi), 0 ≤ i ≤ s − 1,
s =
m

w �+1.
• Each of A, B, C, and D means a block in Fig. 1.

3.3 Field Arithmetics Over GF(2m)

3.3.1 Field Multiplication

Left-to-right (ltr) comb method [18] using window is widely
used when implementing field multiplication over GF(2m).
It is a kind of lookup table-based multiplication algorithm.
Algorithm 1 is typical ltr comb method using window (See
Fig. 1). It first builds a precomputation table about all pos-
sible results of u(z) · b(z) for all polynomials u(z) of de-
gree at most w − 1 (b(z) is multiplicand and w is window
size). Then, it scans w-bit of multiplier a(z) at a time and
takes the corresponding result from the precomputation ta-

Algorithm 1 Typical left-to-right comb multiplication
method on 16-bit word (window width w = 4)

1: INPUT: a(z) and b(z) in GF(2m)
2: OUTPUT: c(z) = a(z) · b(z)
3: Compute Tu = u(z) · b(z) for all polynomials u(z) of degree at most

w − 1.
4: C ← 0.
5: masking← 0x f 000.
6: for k ← 3 to 0 decrements k by 1 do
7: for j← 0 to t − 1 increments j by 1 do
8: u← ((a[j] & masking) � (k ∗ 4)).
9: for i← 0 to t increments i by 1 do

10: C[i + j]← C[i + j] ⊕ Tu[i].
11: end for
12: end for
13: if k � 0 then
14: C ← C · zw.
15: masking← masking � 4.
16: end if
17: end for
18: Return (c)

ble instead of computing it. Namely, this method can save
the number of XOR operations and memory accesses com-
pared with naive shift-and-xor multiplication algorithm at
the expense of more memory consumption. Considering the
tradeoff between the overhead of precomputation and its ad-
vantage during computing partial multiplications, the proper
window size of ltr comb method is known as 4. Thus, the
field multiplication algorithms discussed in this paper are all
based on window size 4.

Algorithm 2 is the 16-bit version of the ltr comb
method proposed in [14]. This algorithm is a kind of im-
proved version of Algorithm 1. Actually, step 7–12 in Al-
gorithm 1, partial multiplication, requires many duplicated

SEO et al.: TINYECCK16 ON TMOTE SKY SENSOR MOTES
921

Algorithm 2 16-bit version of left-to-right comb multipli-
cation method proposed in TinyECCK [14] (window width
w = 4)

1: INPUT: a(z) and b(z) in GF(2m)
2: OUTPUT: c(z) = a(z) · b(z)
3: Compute Tu = u(z) · b(z) for all polynomials u(z) of degree at most

w − 1.
4: C ← 0.
5: masking← 0x f 000.
6: for k ← 3 to 0 decrements k by 1 do
7: for j← 0 to t − 1 increments j by 2 do
8: u1 ← ((a[j] & masking) � (k ∗ 4)).
9: u2 ← ((a[j + 1] & masking) � (k ∗ 4)).

10: C[j]← C[j] ⊕ Tu1 [0], C[j + t + 1]← C[j + t + 1] ⊕ Tu2 [t].
11: for i← 1 to t increments i by 1 do
12: C[i + j]← C[i + j] ⊕ Tu1 [i] ⊕ Tu2 [i − 1].
13: end for
14: end for
15: if k � 0 then
16: C ← C · zw.
17: masking← masking � 4.
18: end if
19: end for
20: Return (c)

memory accesses. Thus, Algorithm 2 reduces this overhead
by combining two instances of these steps (Refer to [14] for
details) into one. This results in saving the number of du-
plicated LOAD and STORE instructions. Following is the
procedure of Algorithm 2.

1. Step 3 builds a precomputation table about u(z) · b(z)
(Since the used window size is 4, it contains the result
from 1 · b(z) to (z3 + z2 + z + 1) · b(z)).

2. Each of step 8 and 9 scans w-bit from a(z) for process-
ing two consecutive partial multiplications.

3. Step 10–13 executes two combined partial multiplica-
tions. In other words, it takes the precomputed results
corresponding to the scanned bits from the table, then
the loaded results are xored with the intermediate result
C at the propoer bit positions.

4. Step 15–18 shifts the intermediate result C because this
algorithm executes left-to-right manner. For example,
results of computing partial multiplications from A, B,
C blocks in Fig. 1 should be shifted to left as much as
12-bit, 8-bit, 4-bit, respectively.

Remark 1. The intermediate result, C, consists of 2t words
since it is the result of a(z) · b(z). Thus, 2t words should
be left-shifted three times (Step 15–18 in Algorithm 2).
Actually, 8-bit version of Algorithm 2 requires shifting 2t
words only once; this overhead is relatively small compared
with the overhead due to the redundant memory accesses.
However, on 16-bit word environment, while the number
of memory accesses during a field multiplication is reduced
in half, the number of shifting C is increased from once to
three times. Thus, the overhead from shifting C occupies
larger portion during a field multiplication than 8-bit envi-
ronment. For solving this problem, we present a promising

Algorithm 3 16-bit version fast reduction modulo f (z) =
z163 + z7 + z6 + z3 + 1 proposed in TinyECCK [14]

1: INPUT: A binary polynomial c(z) of degree at most 324
2: OUTPUT: c(z) mod f (z)
3: for i← 21 to 14 decrements i by 4 do
4: T1 ← C[i], T2 ← C[i − 1], T3 ← C[i − 2], T4 ← C[i − 3].
5: C[i − 9]← C[i − 9] ⊕ (T1 � 12) ⊕ (T1 � 13).
6: C[i−10]← C[i−10]⊕(T1 � 4)⊕(T1 � 3)⊕T1⊕(T1 � 3)⊕(T2 �

12) ⊕ (T2 � 13).
7: C[i−11]← C[i−11]⊕(T1 � 13)⊕(T2 � 4)⊕(T2 � 3)⊕T2⊕(T2 �

3) ⊕ (T3 � 12) ⊕ (T3 � 13).
8: C[i−12]← C[i−12]⊕(T2 � 13)⊕(T3 � 4)⊕(T3 � 3)⊕T3⊕(T3 �

3) ⊕ (T4 � 12) ⊕ (T4 � 13).
9: C[i−13]← C[i−13]⊕(T3 � 13)⊕(T4 � 4)⊕(T4 � 3)⊕T4⊕(T4 �

3).
10: C[i − 14]← C[i − 14] ⊕ (T4 � 13).
11: end for
12: T1 ← C[13], T2 ← C[12], T3 ← C[11], T4 ← C[10] � 3.
13: C[0]← C[0] ⊕ (T3 � 13) ⊕ (T4 � 7) ⊕ (T4 � 6) ⊕ (T4 � 3) ⊕ T4.
14: C[1] ← C[1] ⊕ (T2 � 13) ⊕ (T3 � 4) ⊕ (T3 � 3) ⊕ T3 ⊕ (T3 �

3) ⊕ (T4 � 10) ⊕ (T4 � 9).
15: C[2] ← C[2] ⊕ (T1 � 13) ⊕ (T2 � 4) ⊕ (T2 � 3) ⊕ T2 ⊕ (T2 �

3) ⊕ (T3 � 12) ⊕ (T3 � 13).
16: C[3] ← C[3] ⊕ (T1 � 4) ⊕ (T1 � 3) ⊕ T1 ⊕ (T1 � 3) ⊕ (T2 �

12) ⊕ (T2 � 13).
17: C[4]← C[4] ⊕ (T1 � 12) ⊕ (T1 � 13).
18: C[10]← C[10] & 0x0007
19: Return C[10], . . . ,C[2],C[1],C[0].

Table 3 Comparison of field operations in GF(2163) (times for both mul-
tiplication and squaring include the time for modular reduction, all timings
are measured by secs).

Field oepration Execution time Inversion/operation

Multiplication 0.00178422 23.57
Squaring 0.00023538 178.68
Inversion 0.04205775 -

technique in Sect. 4.

3.3.2 Field Reduction

The result of both field multiplication and field squaring
over GF(2m) should be reduced by irreducible polynomial
f (z). Reduction polynomials such as sparse trinomial and
pentanomial recommended by NIST [3] in FIPS 186-2 are
often used for efficient reduction. TinyECCK16 makes use
of f (z) = z163+z7+z6+z3+1. Algorithm 3 is the 16-bit ver-
sion of the fast reduction algorithm proposed in [14]. Step
3-11 conducts the reduction to C of 2t words in such a way
that redundant memory accesses are reduced. Step 12-17
is a postprocessing part for remaining words and it is more
complex than 8-bit version.

3.4 Selection of Coordinate System

Table 3 shows the ratio of inversion to multiplication and
squaring over GF(2163) on MSP430 processor. Since the
ratio of inversion to multiplication is 23.57, it is more desir-
able to eliminate the inversions during scalar multiplications

922
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

(For inversion, binary extended Euclidean algorithm [6] is
used)†. Therefore, we choose to use the López-Dahab co-
ordinate rather than affine coordinate [17]. TinyECCK16
uses the mixed coordinates for elliptic curve point addi-
tion (ECADD) since the addition of two points represented
in different coordinate system is more efficient than that of
two points using the same representation [5], [6]. Hence,
we build a precomputation table of the points represented
in affine coordinate.

4. Proposed Efficient Field Multiplication on 16-bit En-
vironment

With algorithm 2 and 3, TinyECCK16 saves only 5.78–
7.69% of running time in elliptic curve operations. This
is contrastive to the result that applying 8-bit versions of
these algorithms on ATmega128 processor save 15-19% of
TinyECCK’s running time. The main reason of this result is
because, on the one hand, the use of extended word size (16-
bit word) reduces the number of memory accesses during
multiplication and reduction algorithm, on the other hand,
the number of shifting C of 2t words is increased from once
to three times. This section describes a proposal which can
make algorithm 2 use only one of shifting C of 2t words.

4.1 Proposed Left-to-Right Comb Method on 16-bit Word

The number of shifting C can be reduced from three to one
by rearranging the sequence of processing blocks in Fig. 1.
Namely, new ltr comb method operates in such a manner
that A→ C→ B→ D blocks instead of A→ B→ C→ D
blocks.

4.1.1 Main Idea and How to Implement

A (=
∑43

i=0 ãi ·z4·i, where ã41, ã42, ã43 are set to zero) in Fig. 1
can be expressed as follows.

(z12∑10
i=0(ã4i+3 · z4i)) + (z8∑10

i=0(ã4i+2 · z4i))

+(z4∑10
i=0(ã4i+1 · z4i)) + (

∑10
i=0(ã4i · z4i)).

At this time, A, B, C and D blocks can be expressed as
(z12∑10

i=0(ã4i+3 ·z4i)), (z8∑10
i=0(ã4i+2 ·z4i)), (z4∑10

i=0(ã4i+1 ·z4i)),
and (

∑10
i=0(ã4i · z4i)), respectively. According to above equa-

tions,A (resp.B) block is left-shifted as 8-bit compared with
C (resp. D) block. A · B = a(z) · b(z) can be expressed as

(z12∑10
i=0(ã4i+3 · z4i · b(z)) + (z8∑10

i=0(ã4i+2 · z4i · b(z))

+(z4∑10
i=0(ã4i+1 · z4i · b(z)) + (

∑10
i=0(ã4i · z4i · b(z))

Thus, the partial products ofA block and b(z) are stored at 8-
bit left-shifted position from where those ofC block and b(z)
are stored. Now, two shift operations are replaced by storing
the results of A (resp. B) block at 8-bit incremented address
from where the results of C (resp. D) block are stored. Con-
sequently, the results of partial multiplications in A, B and

Algorithm 4 Proposed left-to-right comb method com-
bined with the technique in [14]

1: INPUT: a(z) and b(z) in GF(2m)
2: OUTPUT: c(z) = a(z) · b(z)
3: Compute Tu = u(z) · b(z) for all polynomials u(z) of degree at most

w − 1.
4: C ← 0.
5: PTRC ← &C+1. // assigning 1-byte incremented address of C
6: masking← 0x f 000.
7: // Processing A, C blocks
8: for k ← 3 to 1 decrements k by 2 do
9: for j← 0 to t − 1 increments j by 2 do

10: u1 ← ((a[j] & masking) � (k ∗ 4)).
11: u2 ← ((a[j + 1] & masking) � (k ∗ 4)).
12: ∗(PTRC + j)← ∗(PTRC + j) ⊕ Tu1 [0].
13: ∗(PTRC + j + t + 1)← ∗(PTRC + j + t + 1) ⊕ Tu2 [t].
14: for i← 1 to t increments i by 1 do
15: ∗(PTRC + i + j)← ∗(PTRC + i + j) ⊕ Tu1 [i] ⊕ Tu2 [i − 1].
16: end for
17: end for
18: masking← masking � 8.
19: PTRC ← &C. // assigning C’s original address
20: end for
21: C ← C · zw.
22: PTRC ← &C+1. // assigning 1-byte incremented address of C
23: masking← 0x0 f 00.
24: // Processing B, D blocks
25: for k ← 2 to 0 decrements k by 2 do
26: for j← 0 to t − 1 increments j by 2 do
27: u1 ← ((a[j] & masking) � (k ∗ 4)).
28: u2 ← ((a[j + 1] & masking) � (k ∗ 4)).
29: ∗(PTRC + j)← ∗(PTRC + j) ⊕ Tu1 [0].
30: ∗(PTRC + j + t + 1)← ∗(PTRC + j + t + 1) ⊕ Tu2 [t].
31: for i← 1 to t increments i by 1 do
32: ∗(PTRC + i + j)← ∗(PTRC + i + j) ⊕ Tu1 [i] ⊕ Tu2 [i − 1].
33: end for
34: end for
35: masking← masking � 8.
36: PTRC ← &C. // assigning C’s original address
37: end for
38: Return (c)

C blocks are left-shifted as 12-bit, 8-bit, and 4-bit, respec-
tively, like what Algorithm 2 does.

To implement our proposal, the results of A and B
blocks should be stored at 8-bit incremented address from
where C and D blocks are stored. This can be possible with
following codes written in C language.

BYTE16 C[DOUBLENUMWORDS]; // arrary storing the run-
ning result C
BYTE8* ptrC8 =(BYTE8*)C; // assigning the base ad-
dress of C at, an 8-bit pointer, ptrC8
BYTE16* ptrC16 = ptrC8+1; // incrementing the address
of ptrC8 as 8-bit and storing it at, a 16-bit pointer, ptrC16

The results of A and B blocks are stored from the ptrC16
address. With this manner, the results of partial multiplica-

†Even if the running time of a inversion is significantly reduced
by using 16-bit word, it is still much bigger than that of field mul-
tiplication.

SEO et al.: TINYECCK16 ON TMOTE SKY SENSOR MOTES
923

tions of both A and B blocks equivalent to be left-shifted by
8-bit.

Algorithm 4 is the improved version of Algorithm 2
by reducing the number of shifting the running result C of
2t words from three to one on 16-bit environment. Step 5
and 22 of Algorithm 4 increments the address of running
result C and stores it at the PTRc, a 16-bit pointer. In this
manner, step 12–16 and step 29–33 are equivalent to shift-
ing and storing the results of partial multiplications in A
and B blocks to 8-bit left direction compared with C and D
blocks’ results. The base address is restored at step 19 and
36 because the results of C and D blocks should be stored at
the original address of C. The proposed algorithm requires
only one shifting operation of 2t words compared with Al-
gorithm 2.

4.1.2 Theoretical Analysis

We can count how many instructions are saved with the pro-
posed method.

Theorem 1. Typical ltr comb method using window 4 re-
quires [(8t2+52t−4)L+(4t2+35t+3)S +(4t2+11t)X+(30t−
4)S H] instructions for computing a(z) ·b(z) over GF(2m) (L,
S , X, and S H mean LOAD, STORE, XOR, and SHIFT in-
struction, respectively, t = m

W , W = 16).

Proof. The computation of ltr comb method using window
can be divided into three parts; precomputation, computing
partial multiplications and shifting the intermediate result C.
Thus, the cost of Algorithm 1 can be computed as follows.

• Precomputation
[(28t − 7)L + (21t)S + (7t)X + (14t − 7)S H].

• Computing partial multiplications
[(8t2 + 12t)L + (4t2 + 8t)S + (4t2 + 4t)X + (4t)S H] †.

• Shifting the running result C
3[(4t + 1)L + (2t + 1)S + (4t + 1)S H].

The precomputation for u(z) · b(z) with window size 4
requires seven XOR additions and seven 1-bit left shifting
operations on arrays of t words. We optimize this precom-
putation process by reducing the number of loops. Namely,
we combine XOR addition and 1-bit left shift operation. For
example, z · b(z) and (z + 1) · b(z), z2 · b(z) and (z2 + 1) · b(z)
can be consecutively calculated. In our implementation,
the cost of combined XOR addition and 1-bit shifting is
[(4t − 1)L + (3t)S + (t)X + (2t − 1)S H].

The following is the pseudo code for shifting the inter-
mediate result C as 4-bit to the left direction.

for(i = 2t; i > 0; i--)

{ C[i] = (C[i] << 4) | (C[i-1] >> 12); }
C[0] = C[0] << 4;

Since C[i] and C[i − 1] are loaded and two shift opera-
tions are used at each iteration, the cost for a shifting the C
is [(4t + 1)L + (2t + 1)S + (4t + 1)S H].

Thus, total cost of Algorithm 1 is [(8t2 + 52t − 4)L +
(4t2 + 35t + 3)S + (4t2 + 11t)X + (30t − 4)S H] by summing
the cost of each part. �

Theorem 2. Algorithm 4 requires [(6t2 + 44t − 6)L + (2t2 +

31t + 1)S + (4t2 + 11t)X + (22t − 6)S H] instructions.

Proof. Since the precomputation step of Algorithm 4 is same
as Algorithm 1, the cost is identical. However, the costs for
computing partial multiplications and shifting the C are re-
duced in Algorithm 4. The costs for two parts are described
as follows.

• Computing partial multiplications
[(6t2 + 12t)L + (2t2 + 8t)S + (4t2 + 4t)X + (4t)S H] ††.

• Shifting the running result C
[(4t + 1)L + (2t + 1)S + (4t + 1)S H].

According to the above analysis, the total cost of Al-
gorithm 4 are [(6t2 + 44t − 6)L + (2t2 + 31t + 1)S + (4t2 +

11t)X + (22t − 6)S H]. �

Since the difference between Algorithm 2 and Algo-
rithm 4 is the number of shifting the C, we can easily com-
pute the cost of Algorithm 2; [(6t2 + 52t− 4)L+ (2t2 + 35t+
3)S + (4t2 + 11t)X + (30t − 4)S H].

On the ground of Theorem 1 and Theorem 2, we can
count the number of saved instructions with Algorithm 4 in-
stead of Algorithm 1 and Algorithm 2. In other words, Al-
gorithm 4 saves [(2t2+8t+2)L+(2t2+4t+2)S +(8t+2)S H]
and [(8t + 2)L + (4t + 2)S + (8t + 2)S H] instructions com-
pared with Algorithm 1 and Algorithm 2, respectively. Since
GF(2163) and 16-bit word are used, t is equal to 11 (=� 163

16 �).
Therefore, Algorithm 4 saves (332L + 288S + 90S H) (resp.
(90L+46S +90S H)) instructions in comparison with Algo-
rithm 1 (resp. Algorithm 2).

Because each of Algorithm 1 and Algorithm 2 requires
(1536L+872S +605X+326S H) and (1294L+630S +605X+
326S H), Algorithm 4 contributes to 21.26% (resp. 7.91%)
of saving instead of Algorithm 1 (resp. Algorithm 2) †††.

4.2 Application to More Extended Word Size

The proposed technique can be applied for more extended
word size such as 32-bit word. Actually, Imote2 [23],
a state-of-art sensor mote, uses 32-bit PXA271 proces-
sor [26].

4.2.1 How to Apply

Typical ltr comb multiplication algorithm on 32-bit word
†In Algoritm 1, step 8 and step 9–11 require (1L + 1S + 1S H)

and (t + 1)(2L + 1S + 1X), respectively.
††Step 10–13 and Step 14–16 in Algorithm 4, the combined par-

tial multiplication, requires (6L+ 4S + 2X + 2S H) and t(3L+ 1S +
2X), respectively.
†††Because one instruction requires different number of cycles

according to addressing modes, we assume that LOAD, STORE,
XOR and SHIFT operation use same number of clock cycles

924
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fig. 2 Left-to-right comb method on 32-bit word (If typical ltr comb method using window size 4 is
implemented on a 32-bit processor, A is divided into 8 blocks. Thus, 7 times of shifting C of 2t words
are necessary).

operates as Fig. 2. In this case, the word is divided into eight
blocks. Each block is scanned from top to bottom and the
corresponding result is loaded from a precomputation table
and xored with the intermediate result C. a(z) · b(z) can be
expressed as

(z28∑5
i=0(ã4i+7 · z4i · b(z))) + (z24∑5

i=0(ã4i+6 · z4i · b(z)))

+(z20∑5
i=0(ã4i+5 · z4i · b(z))) + (z16∑5

i=0(ã4i+4 · z4i · b(z)))

+(z12∑5
i=0(ã4i+3 · z4i · b(z))) + (z8∑5

i=0(ã4i+2 · z4i) · b(z))

+(z4∑5
i=0(ã4i+1 · z4i) · b(z)) + (

∑5
i=0(ã4i · z4i) · b(z)).

Thus, Algorithm 1 and Algorithm 2 using window size 4 on
32-bit word require seven shifting of the C. However, this
overhead can be reduced into only one shifting operation
by rearranging the sequence of processing blocks and the
position where the partial multiplications to be stored. The
sequence of processing blocks are A → C → E → G → B
→ D→ F→ H. Details are as follows.

1. The results of partial multiplications on A block are
stored from the 3-byte incremented address than the
base address of C.

2. The results of partial multiplications on C block are
stored from the 2-byte incremented address than the
base address of C.

3. The results of partial multiplications on E block are
stored from the 1-byte incremented address than the
base address of C.

4. The results of partial multiplications on G block are
stored from the base address of C.

5. Shift the intermediate result C to left direction as 4-
bit. Through this operation, results of block A, C, E,
and G are left-shifted as 28-bit, 20-bit, 12-bit and 4-bit,
respectively.

6. The results of partial multiplications on B block are
stored from the 3-byte incremented address than the
base address of C.

7. The results of partial multiplications on D block are
stored from the 2-byte incremented address than the
base address of C.

8. The results of partial multiplications on F block are
stored from the 1-byte incremented address than the
base address of C.

9. The results of partial multiplications on H block are
stored at the base address of C.

10. As a result, the results of blocks A, B, C, D, E, F and
G are shifted to left direction as 28-bit, 24-bit, 20-bit,
16-bit, 12-bit, 8-bit, and 4-bit, respectively.

When a field multiplication algorithm over GF(2m) (m
is fixed) is implemented on 32-bit word, the number of
memory accesses to load and store an element is more re-
duced compared with using 8-bit or 16-bit word. Thus, the
performance gain from the techniques, proposed in [14], re-
ducing memory accesses become less effective on 32-bit en-
vironment. However, the proposed method will be more
promising since it reduces the number of shifting 2t words
from seven to one.

4.2.2 Estimation of Performance Gain

We can count the saved number of instructions on 32-bit
word when the proposed algorithm is used instead of Algo-
rithm 1 and Algorithm 2.

Theorem 3. Algorithm 1 on 32-bit word requires [(16t̄2 +

80t̄)L + (8t̄2 + 51t̄ + 7)S + (8t̄2 + 15t̄)X + (50t̄)S H], where
t̄ = m

W̄
, W̄ = 32.

SEO et al.: TINYECCK16 ON TMOTE SKY SENSOR MOTES
925

Table 4 Comparison the running times among three field multiplication algorithms over GF(2163).
The improvement ratio in second row is for Algorithm 1 and the ratio in third row is for Algorithm 2
(all times are measured by secs).

Field operations Algorithm 1 Algorithm 2 Algorithm 4 Improvement (%)

Multiplication 0.00210057 0.00188060 0.00178422 15.06%
5.12%

Proof. The cost of Algorithm 1 can be easily computed from
Theorem 1.

• Computing partial multiplications
[(16t̄2 + 24t̄)L + (8t̄2 + 16t̄)S + (8t̄2 + 8t̄)X + (8t̄)S H].

• Shifting the running result C
7[(4t̄ + 1)L + (2t̄ + 1)S + (4t̄ + 1)S H].

The total number of required instructions in Algo-
rithm 1 is [(16t̄2 + 80t̄)L + (8t̄2 + 51t̄ + 7)S + (8t̄2 + 15t̄)X +
(50t̄)S H] including the cost of precomputation. �

Theorem 4. Algorithm 4 on 32-bit word requires [(12t̄2 +

56t̄ − 6)L + (4t̄2 + 39t̄ + 1)S + (8t̄2 + 15t̄)X + (26t̄ − 6)S H]
instructions.

Proof. The cost of Algorithm 4 can be derived from Theo-
rem 2 as follows.

• Computing partial multiplications
[(12t̄2 + 24t̄)L + (4t̄2 + 16t̄)S + (8t̄2 + 8t̄)X + (8t̄)S H].

• Shifting the running result C
[(4t̄ + 1)L + (2t̄ + 1)S + (4t̄ + 1)S H].

By summing the cost of each part in Algorithm 4, it re-
quires [(12t̄2+56t̄−6)L+(4t̄2+39t̄+1)S +(8t̄2+15t̄)X+(26t̄−
6)S H] instructions for computing a field multiplication. �

By the same manner, the cost of Algorithm 2 can be com-
puted as [(12t̄2 + 80t̄)L + (4t̄2 + 51t̄ + 7)S + (8t̄2 + 15t̄)X +
(50t̄)S H].

On the basis of Theorem 3 and Theorem 4, Algorithm 4
saves [(4t̄2 + 24t̄ + 6)L + (4t̄2 + 12t̄ + 6)S + (24t̄ + 6)S H]
and [(24t̄ + 6)L + (12t̄ + 6)S + (24t̄ + 6)S H] compared
with Algorithm 1 and Algorithm 2. Since 32-bit word size
and GF(2163) are used, t̄ is equal to 6 (= � 163

32 �). There-
fore, Algorithm 4 saves (294L + 222S + 150S H) (resp.
150L + 78S + 150S H) instructions compared with Algo-
rithm 1 (resp. Algorithm 2). These savings from Algo-
rithm 4 contributes to 28.53% (18.47%) of reduced running
time in comparison with Algorithm 1 (resp. Algorithm 2).

On the grounds of this counting, we expect that the pro-
posed method is more promising as the used word size is
increased. Thus, it can be efficiently used for more powerful
state-of-art sensor motes.

5. Experimental Results and Analysis

5.1 Analysis of Field Operations

Table 4 compares Algorithm 1, Algorithm 2 and Algo-
rithm 4. The proposed algorithm saves 15.06% and 5.12%

of running times compared with Algorithm 1 and Algo-
rithm 2. In section 4.1.2, we estimate that the proposed Al-
gorithm 4 contributes to round 21.26% (resp. 7.91%) of im-
provement as compared to Algorithm 1 (resp. Algorithm 2).
However, we got 15.06% (resp. 5.12%) of saving. There
are some gaps between high level estimation and actual
implementation. For example, we did not count the loop
counter and function call overhead. In addition, each in-
struction may consume different clock cycles according to
address mode, the number of involved operands, etc. Above
all things, there is an important reason. This is originated
from the limitation of Tmote Sky sensor mote. Namely,
MSP430 processor does not support word-level instructions
at odd address. It supports word-level instructions for data
on even address (For data on odd address, only byte-level
instructions are operated). For this reason, we can not im-
plement the proposed algorithm with sorely C language. In
other words, after incrementing the address of the C as 8-bit,
word-level instruction is not properly operated. In our ex-
perience, when the word-level instruction is applied for odd
address, the address is automatically converted into even ad-
dress. Therefore, we use inline assembly code for imple-
menting partial multiplications. For example, partial multi-
plications in A and B blocks are implemented as byte-level
instructions, because the address of C is incremented when
processing A and B blocks. The partial multiplications in
A and B block are implemented with byte-level instruc-
tions while those in C and D blocks are implemented with
word-level instructions (These fined-grained control is pos-
sible with only inline assembly code). With this limitation
of MSP430 processor, the efficiency of the proposed tech-
nique is attenuated. Therefore, with these reasons, we got
15.06% (resp. 5.12%) of actual performance gain instead of
21.26% (resp. 7.91 %) from theoretic analysis. Furthermore,
we think that the comparisons between Algorithm 4 partly
implemented with inline assembly code and Algorithm 1, 2
sorely implemented with C langulage are fair, because of the
limited address manipulation of MSP430 processor.

5.2 Performance Confirmation

We can confirm the data in Table 5 from the running times
of multiplication and squaring. Let assume the used win-
dow size is 4, namely 4TNAF is used †. Since TinyECCK16
uses the mixed coordinate system for (ECADD), operations of
(8M + 3S) is required for a ECADD (Each of M and S mean

†Here, the window size means the used window for comput-
ing scalar multiplication such as using wNAF and wTNAF. It is
different from the window used in ltr comb method.

926
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Table 5 The Performance of TinyECCK16. Init and SM means times consumed for the initialization
time including building precomputation tables and scalar multiplication, respectively. Field reduction
is conducted using Algorithm 3. Computation time and memory are measured by secs and bytes, sepa-
rately.

2TNAF 3TNAF 4TNAF 5TNAF

Algorithm 1

Init 0.000412 0.052207 0.157923 0.359093
SM 1.200966 0.966194 0.79755 0.711424
Sign 1.367621 1.105864 0.933709 0.844602

Verify 2.39366 1.914131 1.594994 1.411898
ROM Size 12,356 12,676 12,896 13,492
RAM Size 406 598 982 1,750

Algorithm 2

Init 0.000413 0.051515 0.156613 0.352845
SM 1.108494 0.898171 0.743177 0.664932
Sign 1.315236 1.030500 0.873858 0.795766

Verify 2.21161 1.784629 1.482887 1.317995
ROM Size 12,586 12,922 13,126 13,722
RAM Size 406 598 982 1,750

Algorithm 4

Init 0.000412 0.051515 0.155908 0.350419
SM 1.059872 0.863076 0.714164 0.640614
Sign 1.224091 0.997892 0.848927 0.773319

Verify 2.112158 1.699456 1.423765 1.268273
ROM Size 13,286 13,606 13,826 14,422
RAM Size 406 598 982 1,750

(Alg. 1 - Alg. 4)/(Alg. 1) (%)
SM 11.75 10.67 10.46 9.95
Sign 10.49 9.76 9.08 8.44

Verify 11.76 11.22 10.74 10.17

(Alg. 2 - Alg. 4)/(Alg. 2) (%)
SM 4.39 3.91 3.90 3.66
Sign 6.93 3.16 2.85 2.82

Verify 4.50 4.77 3.99 3.77

Table 6 Comparison the running time of existing software implementations (TinyECCK16, [1], [10]
and [15])) (w under TinyECCK16 means the window size during wTNAF-scalar multiplication, all times
are measured by secs).

TinyECCK16 TinyECCK16 TinyECC [1] [10] NanoECC [15] NanoECC [15]
(w = 4) (w = 5) (GF(2m)) (GF(p))

SM 0.71 0.64 1.48 1.44 1.04 0.72
Sign 0.85 0.77 1.58 1.60 - -

Verify 1.42 1.27 2.02 3.32 - -
ROM Size 13,826 14,422 14,708 57,754 32,870 32,051
RAM Size 982 1,750 1,602 1,741 2,867 2,969

field multiplication and field squaring). With this knowl-
edge, we can count the cost of a scalar multiplication as
[33·(8M+3S)+162·3S] = (264M+585S) (33 = � 163

5 �, ellip-
tic curve point doubling (ECDBL) operation is replaced with
3 squarings in wTNAF representation). Thus, the running
time of a scalar multiplication using 4TNAF is computed
as (264 · 0.00178422 + 585 · 0.00023538) = (0.6087)sec.
The estimated result is almost 0.1 secs less than real data
(0.7141 secs), however, this result can be admitted consider-
ing the overhead of function calls and loop countings.

Table 5 shows the running time of TinyECCK16 and its
improvement ratio when Algorithm 4 is used instead of Al-
gorithm 1 and Algorithm 2. Algorithm 4 saves 2.82–6.93%
(8.44–11.76%) of running times in elliptic curve operations
compared with Algorithm 2 (resp. Algorithm 1). Because
elliptic curve operations using larger window sized-TNAF
representation require less ECADD and ECDBL, namely less
field multiplications, the efficiency of the proposed algo-
rithm is attenuated.

5.3 Performance Comparisons

The code size of softwares is crucial because RAM and
ROM size on sensor motes are very limited (see Table 2).
Table 6 shows the existing ECC softwares in regards of exe-
cution time and memory requirement. TinyECC, and [10]
are based on GF(p). NanoECC provides the implemen-
tation of ECC over both GF(p) and GF(2m). TinyECC,
[10] and NanoECC over GF(p) utilize many optimization
techniques such as hybrid multiplication algorithm, pseudo-
Mersenne prime, Jacobian coordinate, and sliding window
scalar multiplication (fixed-based comb method in case of
NanoECC). NanoECC over GF(2m) is based on Koblitz
curve and uses Karasutba-Ofman multiplication algorithm
and fast reduction algorithm using pentanomial. Because
NanoECC uses MIRACL [19] for cryptographic operations,
it is not optimized for sensor platform with respect to code
size. In case of [10], since the code size of SHA-1 is 30-
Kbyte, it requires much larger code size compared with

SEO et al.: TINYECCK16 ON TMOTE SKY SENSOR MOTES
927

TinyECCK16 and TinyECC. TinyECCK16 is implemented
with considering the limited memory of sensor motes. Thus,
it requires less code size compared with other implementa-
tions. Since TinyECCK16 uses wTNAF-based scalar mul-
tiplication, it requires 982-byte and 1,750-byte of RAM
when 4TNAF and 5TNAF are applied, respectively. Be-
cause TinyECCK16 stores additional negative points such
as {−P,−3P, . . . ,−((2w−1)−1)P} for efficient scalar multipli-
cation, it can be further optimized by storing only positive
points at the expense of little performance degrade.

TinyECCK16 is the fastest implementation of ECC on
the Tmote Sky sensor mote compared with other implemen-
tations over both GF(p) and GF(2m). It takes 0.64 secs to
compute a scalar multiplication when 5TNAF is applied.
NanoECC over GF(p) provides comparable performance,
however it requires much larger memory. Actually, the per-
formance in [10] is measured when it run on 4 MHz clock.
Since Tmote Sky mote can run on both 4 MHz and 8 MHz,
we can expect that the running time when [10] operates on
8 MHz is going to be half of the time measured on 4 MHz.
However, TinyECCK16 is more efficient than [10] with re-
spect to running time and memory consumption even though
[10] runs on 8 MHz.

6. Concluding Remarks

In this paper, we show the technique proposed in [14] be-
come less efficient on extended word size such as 16-bit and
32-bit and describe how to improve the performance of ltr
comb method on this environment. The proposed method
can make the number of shifting the intermediate result C of
2t words only one time. It saves two times and six times of
shifting the C when 16-bit and 32-bit word is used, respec-
tively. The proposed technique saves 15.06% (resp. 5.12%)
of running time compared with typical ltr comb method
(resp. the algorithm proposed in TinyECCK). This improve-
ment contributes to saving of 8.4–11.8% (resp. 2.82–6.93%)
of the running times of elliptic curve operations such as a
scalar multiplication, a signing and verification compared
with typical ltr comb method (resp. TinyECCK’s multipli-
cation algorithm).

We have shown that the proposed algorithm will be
more promising when it is implemented on more ex-
tended word size such as 32-bit through theoretic analysis.
TinyECCK16 using 5TNAF computes a scalar multiplica-
tion within 0.64 secs and it generates (resp., verifies) a sig-
nature within 0.77 (resp., 1.26 secs) within 14,422-byte of
ROM and 1,750-byte of RAM. This result is better in re-
gard of execution time and memory requirement than exist-
ing ECC softwares implemented on 16-bit Tmote Sky sen-
sor mote.

Acknowledgement

This work was supported by the second stage of the Brain
Korea 21 Project. And this work was supported by the
new faculty research program 2009 of Kookmin Universtiy

in Korea.

References

[1] A. Liu, P. Kampanakis, and P. Ning, “TinyECC: Elliptic curve
cryptography for sensor networks (Version 1.0),” available at
“http://discovery.csc.ncsu.edu/software/TinyECC/,” Nov. 2007.

[2] C. Karlof, N. Sastry, and D. Wagner, “TinySec: Link layer security
architecture for wireless sensor networks,” Proc. 2nd International
Conference on Embedded Networked Sensor Systems (SenSys’04),
pp.162–175, 2004.

[3] Certicom Research, SEC 2: Recommended Elliptic Curve Domain
Parameters, Standards for Effcient Cryptography, Version 1.0, Sept.
2000.

[4] D.J. Malan, M. Welsh, and M.D. Smith, “A public-key infrastructure
for key distribution in TinyOS based on elliptic curve cryptography,”
First IEEE International Conference on Sensor and Adhoc Commu-
nications and Networks (SECON04), pp.71–80, 2004.

[5] D. Hankerson, J. López, and A. Menezes, “Software implementa-
tion of elliptic curve cryptography over binary fields,” Workshop
on Cryptographic Hardware and Embedded Systems (CHES 2000),
LNCS 1965, pp.1–24, 2000.

[6] D. Hankerson, A.J. Menezes, and S. Vanstone, Guide to Elliptic
Curve Cryptography, Springer-Verlag, 2004.

[7] E.O. Blaß and M. Zitterbart, “Towards acceptable public-key en-
cryption in sensor networks,” ACM 2nd International Workshop on
Ubiquitous Computing, pp.88–93, INSTICC Press, Miami, USA,
May 2005.

[8] N. Gura, A. Patel, A. Wander, H. Eberle, and S. Chang-Shantz,
“Comparing elliptic curve cryptography and RSA on 8-bit CPUs,”
Workshop on Cryptographic Hardware and Embedded Systems
(CHES 2004), LNCS 3156, pp.119–132, 2004.

[9] H. Wang, B. Sheng, and Q. Li, “Elliptic curve cryptography-based
access control in sensor networks,” International Journal of Security
and Networks (IJSN), vol.1, no.3/4, pp.127–137, 2006.

[10] H. Wang and Q. Li, “Efficient implementation of pulbic key cryp-
tosystems on mote sensors,” ICICS 2006, LNCS 4307, pp.519–528,
2006.

[11] H. Yan and Z. Shi, “Studying software implementations of elliptic
curve cryptography,” Third International Conference on Information
Technology: New Generations (ITNG 2006), pp.78–83, 2006.

[12] H. Eberle, A. Wander, N. Gura, S.C. Shantz, and V. Gupta,
“Architectural extensions for elliptic curve cryptography over
GF(2m) on 8-bit microprocessors,” 16th International Conference on
Application-Specific Systems, Architecture and Processors (ASAP
2005), pp.343–349, 2005.

[13] O. Arazi and H. Qi, “Load-balanced key establishment methodolo-
gies in wireless sensor networks,” International Journal of Security
and Networks (IJSN). Special Issue on Security Issues on Sensor
Networks 1, no.3/4, pp.158–166, 2006.

[14] S.C. Seo, D.-G. Han, H.C. Kim, and S. Hong, “TinyECCK: Efficient
elliptic curve cryptography implementation over GF(2m) on 8-bit
micaz mote,” IEICE Trans. Inf. & Syst., vol.E91-D, no.5, pp.1338–
1347, May 2008.

[15] P. Szczechowiak, L.B. Oliveira, M. Scott, M. Collier, and R. Dahab,
“NanoECC: Testing the limits of elliptic curve cryptography in sen-
sor networks,” European Wireless Sensor Networks (EWSN 2008),
LNCS 4913, pp.305–320, 2008.

[16] J. Solinas, “Efficient arithmetic on koblitz curves,” Des. Codes Cryp-
togr., vol.19, pp.195–249, 2000.

[17] J. López and R. Dahab, “Improved algorithms for elliptic curve
arithmetic in GF(2n),” Selected Areas in Cryptography (SAC’98),
LNCS 1556, pp.201–212, 1999.

[18] J. López and R. Dahab, “High-speed software multiplication in F2m ,”
Progress in Cryptology – INDOCRYPT 2000, LNCS 1977, pp.203–
212, 2000.

[19] M. Scott, “MIRACL — A multiprecision integer and rational arith-

928
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

metic C/C++ library,” Shamus Software Ltd, Dublin, Ireland (2003),
available at “http://www.shamus.ie”

[20] MICAz Hardware Description, available at
“http://www.xbow.com/Products”

[21] TinyOS Forum, available at “http://www.tinyos.net/”
[22] Tmote Sky Hardware Description, available at

“http://www.sentilla.com/pdf/eol/tmote-sky-datasheet.pdf”
[23] Imote2 Datasheet, available at “http://www.xbow.jp/imote2.pdf”
[24] ATmega128L Processor Datasheet, available at

“http://www.ortodoxism.ro/datasheets/2467S.pdf”
[25] TI MSP430 Processor Datasheet, available at

“http://www.chipdocs.com/pndecoder/datasheets/
TI/MSP430.html”

[26] Intel PXA27x Processor Family Datasheet, available at
“http://www.xscale.jp/XSDoc/PXA27X/28000304.pdf”

[27] nesC language reference manual, available at
“www.tinyos.net/api/nesc/doc/ref.pdf”

Seog Chung Seo received the B.S. in In-
formation & Computer Engineering from Ajou
University, Suwon, Korea and the M.S. in In-
formation and Communications from Gwangju
Institute of Science and Technology (GIST),
Gwangju, Korea in 2005 and 2007, respectively.
He is working toward the Ph.D. degree in Grad-
uate School of Information Management and
Security. His research interests include cryptog-
raphy and its efficient implementations.

Dong-Guk Han received his B.S. degree
in mathematics from Korea University in 1999,
and his M.S. degrees in mathematics from Ko-
rea University in 2002, respectively. He re-
ceived Ph.D. of engineering in Information Se-
curity from Korea University in 2005. He
was a Post.Doc. in Future University-Hakodate,
Japan. After finishing the doctor course, he
had been an exchange student in Dep. of Com-
puter Science and Communication Engineering
in Kyushu University in Japan from Apr. 2004

to Mar. 2005. He was a senior researcher in Electronics and Telecommuni-
cations Research Institute (ETRI), Daejeon, Rep. of Korea. He is currently
working as an assistant professor with the Department of Mathematics of
Kookmin University, Seoul, Rep. of Korea. He is a member of KIISC,
IEEK, and IACR.

Seokhie Hong received Master’s and Doc-
toral degrees from Korea University, Korea, in
1998 and 2000, respectively. He was also work-
ing as a postdoctoral researcher of Katholieke
Universiteit Levuen, Belgium from April 2004
to February 2005. He is now an associate pro-
fessor of Graduate School of Information Man-
agement and Security at Korea University and
as an editorial staff of Journal of Korea Institute
of Information Security and Cryptology. His re-
search interests include digital forensic, cryp-

tography, public and symmetric cryptosystems.

