972

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

[PAPER Special Section on Formal Approach

Word-Level Equivalence Checking in Bit-Level Accuracy by
Synthesizing Designs onto Identical Datapath

SUMMARY Equivalence checking is one of the most important issues
in VLSI design to guarantee that bugs do not enter designs during optimiza-
tion steps or synthesis steps. In this paper, we propose a new word-level
equivalence checking method between two models before and after high-
level synthesis or behavioral optimization. Our method converts two given
designs into RTL models which have same datapaths so that behaviors by
identical control signals become the same in the two designs. Also, func-
tional units become common to the two designs. Then word-level equiv-
alence checking techniques can be applied in bit-level accuracy. In ad-
dition, we propose a rule-based equivalence checking method which can
verify designs which have complicated control structures faster than exist-
ing symbolic simulation based methods. Experimental results with realistic
examples show that our method can verify such designs in practical peri-
ods.

key words: high-level synthesis, behavioral synthesis, formal verification,
equivalence checking

1. Introduction

System-level design methodology plays an important role to
improve VLSI design productivity and shorten design peri-
ods. C or C++ based design languages such as SpecC [1] or
SystemC [2] are uniformly used to describe both hardware
and software parts.

A typical VLSI design flow starting from system-level
is shown in Fig. 1. First, the specification of a design is
described without distinguishing the hardware and software
parts. Then, they are transformed into a software program
and an RTL design, respectively, through hardware/software
partitioning and high-level synthesis processes. In this de-
sign flow, designs are gradually refined in step-by-step.
Therefore, design bugs can be newly inserted during the re-
finements. It is important to detect such bugs in early steps
in order to prevent design modifications in later steps, since
they take much higher costs. Equivalence checking gives
a solution for that goal. When two designs are proved to
be equivalent and one of them has no bugs, the other is
also guaranteed to have no bugs. We can apply equivalence
checking to designs before and after each refinement step,
which enables us to avoid bug insertions when the original
design has been verified sufficiently.

Manuscript received July 22, 2008.
Manuscript revised November 20, 2008.
"The author is with the Department of Electronics Engineering,
The University of Tokyo, Tokyo, 113-8656 Japan.
"'The authors are with the VLSI Design and Education Center
(VDEC), The University of Tokyo, Tokyo, 113-8656 Japan.
a) E-mail: tasuku@cad.t.u-tokyo.ac.jp
DOI: 10.1587/transinf. E92.D.972

Tasuku NISHIHARA ™, Member, Takeshi MATSUMOTO",

and Masahiro FUJITA ", Nonmembers

One of the simplest equivalence checking methods is
proposed in [3]. It translates designs into Boolean formulas,
and checks the equivalence of those formulas with BDD or
SAT. However, large designs cannot be verified, since the
complexity of such a bit-level analysis increases exponen-
tially with the size of designs.

To avoid bit-level analysis as much as possible, word-
level symbolic simulation [4]-[6] which treats each variable
or operator as a symbol is applied. However, since the com-
plexity of symbolic simulation is doubled for each condi-
tional branch, it is still not applicable to entire designs. Also,
loops are not acceptable, and they must be unrolled in ad-
vance.

Therefore, only textually different parts of two designs
are compared in [5]. This method can handle large designs
when compared designs are similar. Also in [6], equiva-
lences of paths between conditional branches are checked,
and the results are gathered to prove the entire equiva-
lence. To apply this divide-and-conquer approach, corre-
spondences of intermediate variables or registers between
two designs must be known or given by users (e.g. Names
of variables or registers in two designs are same).

However, in practical refinement steps, it is usual that
the entire structure of a design is changed or correspon-
dences of intermediate variables or registers are unknown
(e.g. between two designs before and after automated high-
level synthesis). Also, since bit-width or sign are not taken
into account in symbolic simulation, bit-level accuracy is
not considered in [4]-[6].

Based on the arguments above, in this paper, we pro-
pose a new equivalence checking method between two mod-
els before and after a refinement step, such as high-level
synthesis or behavioral optimization. In this method, we
focus on a feature that designs after automated high-level
synthesis are usually composed of controllers and datapaths.
In such a design, computations of the design are executed
at the datapath, and the controller determines computations
executed at each clock cycle. In our method, two designs
are converted into RTL models which have same datapaths.
Then, we can get advantages of abstracting computations
of the datapaths, and concentrate on the verification of the
controllers. Concretely, since the datapaths are identical,
the functional units in those RTL models become the same.
Also, same control signals from the controllers represent
same behaviors, and then the behaviors are equivalent in
bit-level accuracy. Therefore, existing word-level methods,

Copyright © 2009 The Institute of Electronics, Information and Communication Engineers

NISHIHARA et al.:

WORD-LEVEL EQUIVALENCE CHECKING IN BIT-LEVEL ACCURACY

973
Equivalence Checking Equivalence Checking
Behavioral Behavioral Behavioral Behavioral RTL Optimizations/
Description . =| Description Description p» ... =] Description Description Refinements/
(Spec) (HW-+SW) (HW) (HW) (HW) Logic Synthesis
s v 4>
Optimizations/ Optimizations/ High-level
Refinements Refinements Synthesis
HW/SW Behavioral | optimizations/
Partitioning Description > Refinements/
(SW) Compilation
Fig.1 VLSI design flow from system-level.
such as symbolic simulation, can be easily applied in bit-
level accuracy.
However, since correspondences of intermediate vari-
ables or registers are not given in most cases, we have to X (¥x2) ° Q
compare entire designs in such cases. As discussed above,
symbolic simulation cannot handle designs which include
large numbers of conditional branches or loops whose num-
bers of iterations are dependent to input values or infinite.)
. Fig.2 Anexample of FSMD.
Therefore, we propose a new word-level method which
propagates equivalences of inputs to those of outputs with
pre-defined rules. Since the rules are proposed to handle where f is the symbol of a called function, ei, ..., e, are

conditional branches and loops, the proposed rule-based
method can be used as a complement of symbolic simula-
tion based methods.

The remainder of this paper is organized as follows:
Section 2 explains existing techniques used in our method.
Section 3 describes our verification flows. In Sect. 4, we ex-
plain the proposed verification algorithms used in the flows.
We report the experimental results with realistic examples
in Sect. 5. In Sect. 6, we give a conclusion of this work and
show our future directions.

2. Basic Notions

2.1 FSMD (Finite State Machine with Datapath)

FSMD [7] is a specification description of sequential RTL
design. In an FSMD, control and computation of a design
are specified separately. The control is specified as a con-
troller in FSM style, and the computation is specified as a
datapath. Though there are many different definitions of
FSMD [6]-[9], we define FSMD in our own style as follows.

Definition 1 (Finite state machine with datapath). An
FSMD is defined as a tuple M = <D,C>, where D is a
datapath with data registers, and C is a controller FSM.

A datapath is defined as a septuple:

D= <I,O,V,K,F’Fcall,A>

where [is a set of inputs, O is a set of outputs, V is a set
of data registers, K is a set of constants, F' is a set of func-
tions each of which represents a functional unit, F,y; is a set
of function calls, and A is an assignment relation. F,; is
defined as a set of vector:

Fean =1{<f,e1,...,ex>|f € F,ey,...,e, € Eg}

arguments, 7 is a number of the arguments, and Ex = [U
V U K U F, represents a set of expressions which can be
right-hand side expressions of assignments or arguments of
function calls. A is defined as:

AC(OUV)XER

and represents an assignment relation between data registers
or outputs to be updated and expressions which represent
new values.

A controller is defined as a sextuple:

C=<D,S,a,R,P,O>

where D is a datapath defined above, S is a set of control
states, @ € S is an initial state, R € § X S is a transition
relation, P € § X A represents a relation between states
and assignments executed at the states, and Q: R — Ey is
a function which returns the condition that a transition is
performed. Note that an executed transition from a state is
determined to only one with a given condition, which means
transition conditions of all transitions from a state are exclu-
sive.

Assignments are executed when the FSMD reaches the
states to where the assignments belong. Also, in each state,
for every register and for every output e; € VU O, there must
be one and only one assignment to ¢; such as <e;, e,> € A,
where e, € Ep.

Figure 2 shows an example of FSMD. It repeats dou-
bling an input in € I while it is smaller than 10. If it be-
comes equivalent to or greater than 10, then the number is
assigned to an output out € O. The FSMD has four states
(S ={s1,...,54}), and @ = s7 is the initial state. The other
symbols in the FSMD are as follows: I = {in, start}, V = {x},
O = {out,done}, K = {0,1,2,10}, F = {x,1,<}. A left

974

Control
Signals

Controller ~ Status Datapath
Signals

Fig.3 A typical RTL design after high-level synthesis.

arrow (<) represents an assignment which is included in
A. Assignments to keep previous values of registers, such
as x « x in sp, are omitted in the figure. Function calls
are written in Lisp-like style. When an FSMD transits to
a state, all assignments of the state are executed simulta-
neously. The expression described on each state transition
represents its transition condition.

2.2 Separation of Designs’ Equivalence to That of Con-
trollers and Datapaths

The basic idea of our method is proposed in [10]. An RTL
design generated by high-level synthesis is usually com-
posed of a controller and a datapath as shown in Fig.3. At
each clock cycle, first, the controller sends control signals
to the datapath, depending on the current state. Next, the
datapath executes operations based on the control signals.
Finally, the datapath returns status signals to the controller,
and the controller determines the next state. Then, in [10], a
behavioral design is mapped to a virtual controller and a vir-
tual datapath, so that the equivalence can be separated into
the equivalences of the (virtual) datapaths and the (virtual)
controllers.

If the two datapaths are not the same, we have to com-
pare both of the controllers and the datapaths. We must
check the equivalence of the datapath operations under each
pair of the control signals which is a candidate to be equiva-
lent. This step might be time consuming since usually we do
not know the correspondences of the control signals nor the
status signals between the two datapaths. On the other hand,
if the two datapaths are the same, we do not have to compare
the datapaths. In addition, two controllers generated from
equivalent designs can be similar since they are for the iden-
tical datapath. Then, we can apply an equivalence checking
method based on the difference of controllers which is sim-
ilar to [5] so that large designs can be verified.

Our method extends this approach, by forcibly making
the datapaths of two designs the same by generating con-
troller(s) for an identical datapath which are equivalent to
the original design(s). This method is described in Sect. 3.
Also, since only a brief approach to compare the controllers
is shown in [10], we give a concrete method in Sect. 4.

2.3 NISC (No Instruction Set Computer) Compiler

NISC[11] is a computer architecture which is composed of

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

an arbitrary datapath and its controller. Different from the
other computer architecture, NISC has no instruction set,
and a set of control signals is directly stored in a control
memory instead of a set of instructions. Those control sig-
nals are called as “control words”, and include not only sig-
nals which control the operations of the datapath, but also
next values of the program counter. This structure enables
us to use an arbitrary datapath, since we do not have to
newly define an instruction set for it. Users can give suitable
datapaths for their requirements by specifying their struc-
tures (i.e. numbers of various computation units, registers,
data memories, bus-widths, and their connections). NISC
compiler can generate a set of control words for any given
datapath from an ANSI-C code, if the datapath has suffi-
cient resources to execute the code. Thus, NISC architecture
can achieve both high-performance of custom hardware and
flexibility of software.

The aim of NISC compiler is the same as that of our
method in the point that it generates a control for a given
datapath. In NISC compiler, this process is performed by the
following steps. First, a Data Flow Graph (DFG) is created
from an input ANSI-C code. Next, the DFG is traversed
backwardly from the outputs, and each operation is assigned
to a functional unit at a cycle in the datapath with ALAP like
scheduling. Multiple operations can be mapped to a single
cycle while resources (functional units and lines of buses)
are enough. At this step, delay of the functional units is
considered. This avoids creating long paths of the functional
units for a single cycle. Finally, control words to be stored
in the control memory are generated. The control words
include:

e Signals to the multiplexers in the datapath which cor-
respond to the values of the program counter

e Next values of the program counter which can be con-
sidered as next states

o Constants used in the operations at the datapath

The above method is quite simple and reasonable.
Since we are focusing on verification and do not have to
consider the performance, we can use a similar (or simpler)
solution. The method is discussed in Sect. 3.2.

2.4 Equivalence Checking with Symbolic Simulation

As briefly explained in Sect. 1, symbolic simulation is a sim-
ulation where values of variables and meanings of opera-
tions are not interpreted. Exhaustive analyses can be per-
formed, since one symbol can express all values of a vari-
able.

In [4], [5], equivalence class based methods are pro-
posed. Equivalence class is a set where expressions in a
same class are equivalent. Equivalence class based sym-
bolic simulation is performed by allocating expressions to
equivalence classes.

[4], [5] are targeting on equivalence checking of ANSI-
C designs. Before the verification, all loops must be un-
rolled. First, each pair of corresponding inputs is assigned

NISHIHARA et al.: WORD-LEVEL EQUIVALENCE CHECKING IN BIT-LEVEL ACCURACY

to a same equivalence class. Verification is performed for
each execution path based on the equivalences of inputs. For
each assignment on the path, since its left hand side and right
hand side are equivalent, those expressions are assigned to a
same equivalence class. Finally, if each pair of correspond-
ing outputs is in a same equivalence class, the two designs
are proved to be equivalent.

We apply this method to check the equivalence of two
FSMDs. Its detail is explained in Sect. 4.5

3. Generation of RTL Designs with Identical Datapath
3.1 Verification Flow

Based on the argument in Sect. 2.2, in the proposed method,
we make datapaths of two designs identical. If they are iden-
tical, we can get the following advantages.

e Same control signals represent behaviors which are
equivalent in bit-level accuracy

e Controllers generated from equivalent designs tend to
be similar since they are generated for an identical dat-
apath.

Figure 4 shows the verification flow to check the equiv-
alence between designs before and after high-level synthe-
sis. One design is a behavioral design and the other is an
RTL design. We assume that the RTL design is composed of
a controller and a datapath, and easily separated into them.
As we have mentioned in Sect. 2.2, results of high-level syn-
thesis usually satisfy the assumption. If the assumption is
not satisfied, we have to separate them by determining its
state variables. Next, from the behavioral design, we gen-
erate a controller for the datapath in the RTL design. The
generated controller is written in RTL, and it must represent
the same behavior as the behavioral design. Details of this
step are described in Sect.3.2. Then, we can get the two
controllers for the identical datapath. Comparison methods
for those designs are described in Sect. 4.

A similar method can also be applied to check the
equivalence between two designs before and after behav-
ioral optimization, and its flow is shown in Fig.5. Input
designs are both in behavioral level. The difference between
the previous flow is that we must give a new datapath to gen-
erate controllers for the datapath, since neither of the input
designs are RTL. The datapath should be as simple as possi-
ble, since same arithmetic operations in the designs should

-
- I
Behavioral E> Generation of the E> ! Data-
Description identical datapath : path
i ——— = ﬁ Identical Dapath @

Equivalence
::> Checking

=
< U

28

=R

_————— =

RTL Description

Fig.4 Proposed equivalence checking flow between a behavioral level
design and an RTL design.

975

be executed by a same set of functional units in the data-
path. If same operations are executed by different sets of
functional units, the equivalence between those sets must be
checked in bit-level.

Here we discuss about the possibility of false-positive
case (A case that two designs are proved to be equivalent,
although the two designs are actually not equivalent).

In the equivalence checking between designs before
and after high-level synthesis, such a case happens only
when differences between two designs disappear after the
conversion which generates a controller for the datapath of
the RTL design from the behavioral design. The possibil-
ity that this case happens can be dramatically decreased by
using different synthesis tools on the two conversions (high-
level synthesis and controller generation).

In the equivalence checking between designs before
and after behavioral optimization, such a case also happens
when the differences between two designs disappear after
the conversions. However, the possibility that such the case
happens is much smaller than the case that bugs are inserted
during an optimization by hand.

3.2 Generation of a Controller for a Given Datapath

As we have mentioned in Sect. 2.3, we can use a similar
method to NISC compiler to generate a controller for a given
datapath. With the following limitations, we can directly
apply the scheduling method of NISC compiler.

e Buses can only be used to transmit inputs, outputs, and
status signals to the controller

e Use of datapath memories is prohibited (since it cannot
be represented in FSMD)

e Delay of functional units can be neglected (since we do
not have to consider the performance)

As the next step, each of generated control words is divided
into signals to multiplexers and next values of the program
counter. The signals to the multiplexers correspond to the
control signals in Fig. 3, and the next values of the program
counter corresponds to next states of the controller. There-
fore, we can easily generate an RTL controller without con-
trol memory from them.

However, the above method fails in the following cases.

e Optimizations with limitations of input values, such as
bit-width reduction and table-lookup division, are ap-
plied

RTL Description 1

Behavioral ! 1
Description Data- Identical : Cont- Data- |
\-l/_ path Dapath roller path :
Nom s o Equivalence
@ ~— ‘a Checking
I
Description 1
2 1

Generation of the
J N

Behavioral

identical datapath N

RTL Description 2

Fig.5 Proposed equivalence checking flow between two behavioral level
designs.

976

e Precisions of variables or operations are different in
two designs, such as floating value and fixed-point
value.

e Operations of corresponding computations are differ-
ent in two designs, such as constant multiplication, and
bit-shift with addition

Since two designs are not logically equivalent in the
first two cases, our method cannot handle them.

For the last case, we can extend the controller gener-
ation method by giving information about equivalences of
operations. When we append such information, we must
guarantee the correctness in bit-level, since it affects the ac-
curacy of equivalence. The correctness can be checked with
decision procedure (SMT solver), such as CVC3 [12]. How-
ever, this solution is difficult to be applied when we use an
external tool such as NISC compiler, since we have to give
information about equivalences of operations internally. For
such a case, we can add circuits which perform the lacking
computations to the datapath, and re-generate a controller
for the modified datapath.

4. Equivalence Checking of RTL Models Which Have
Same Datapaths

4.1 Equivalence Checking in Bit-Level Accuracy

As shown in Figs.4 and 5, inputs of the final step of our
verification flows are RTL models which have identical dat-
apaths. Since the datapaths are identical, same control sig-
nals represent same behaviors with same sets of functional
units. Since, operations executed by those control signals
are equivalent in bit-level, we can apply word-level equiva-
lence checking methods such as symbolic simulation in bit-
level accuracy.

However, this bit-level accuracy may be too limited to
verify various designs. In such a case, we can check equiva-
lences among operations executed by different sets of func-
tional units. Some candidates to be checked are listed below.
All operations are written in Lisp-like style.

e Commutative law
eg.(+ab)y=H+ba
e Scalar multiplication executed by addition Xn
eg (xa2)=(+aa)
o Scalar multiplication executed by shift + addition
e.g. (xal) = (+ (<< a?2)a), where << represents a
shifter-left operation.

Such equations can be checked by property checkers or
equivalence checkers for combinational circuits. Operations
of a datapath are fixed with a given control signals, and we
can check the equivalence between circuit portions which
are related to the operations corresponding to an equation.
These portions must be combinational circuits.

As we described in Sect. 3.2, equivalence of operations
is considered in both the controller generation stage and this
equivalence checking stage. If much equivalence is consid-
ered in one stage, the effort of the other stage is reduced.

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

However this stage is required when there are multiple
ways to perform an operation in a datapath (e.g. both a mul-
tiplier and a shifter exist in the datapath for constant multi-
plication), since the operation can be mapped differently in
two designs with the method in Sect. 3.2. In such a case, we
can perform a verification with the method described in this
section.

4.2 Input of Equivalence Checking

We describe two RTL models which are inputs of the equiv-
alence checking stage as FSMDs. Since the RTL models
have already been separated to controllers and datapaths, we
can easily describe them in FSMD. In those FSMDs, func-
tional units in the RTL datapaths are represented as func-
tions in F. We can consider some functions as identical
functions if they are proved to be equivalent in the process
described in the previous section. Also, we assume that cor-
respondences of inputs and outputs between two FSMDs are
known. These correspondences are required to define the
equivalence of two designs. In our method, these correspon-
dences must be given by users.

4.3 Definition of Equivalence

In this section, we define some notations and equivalences.
Also, equivalences of inputs and outputs which must be
given by users are explained.

Before defining the notations or the equivalences, we
define two sets. E = ExU O is a set of expressions including
outputs. T = {t|t € R",1 < n} is a set of vector which
represents executable sequences of state transitions, where
n is the length of the sequence.

From this section, we denote a symbol X; as a symbol
X of the first design. Also, a symbol X, denotes a symbol
X of the second design. We compare two FSMDs M; and
M,. Since the datapaths of M; and M, are the same, we can
assume F; = F, and describe them as F.

First, we define symbolic values of expressions.

Definition 2 (Symbolic value at state). Let
Zs C(E; XS U(EyXS2)

denote a set of symbolic values at states, and <e, s> € Zg de-
note the symbolic value of an expression e at a state s. Since
<e, s> 1is symbolic, it represents all values of e at s. Concrete
values and a number of arrival times are abstracted.

<ey, s1> € Zg and <ey, s,> € Zg are equivalent, when
the following conditions are satisfied.

e Conditions to reach s; and s, from the initial states for
the same number of times are equivalent.

e Values of ¢; and e, are always equivalent when arriving
at s and s, for the same number of times, respectively

9

We denote the equivalence by an operator “=" as

<ep, 51> = <ep, >

NISHIHARA et al.: WORD-LEVEL EQUIVALENCE CHECKING IN BIT-LEVEL ACCURACY

a<—1 b1

a<—(+al) @Pﬂ—ﬁhl)

5 B

M, M,

Fig.6 Example for equivalence definitions.

For example, in Fig. 6, <a, s,> = <b, 55> is true when
inputs in; and in, are corresponding. Here, we represent the
values of in; and in; at k-th cycle as in’f and ing, respectively.
Conditions to reach s, and s, for n times are /\?z_ll(in"l) and
/\?j(iné), respectively. Then the first condition of the def-
inition is satisfied. The values of a and b on nth arrivals at
s, and sp, respectively, are both n. Therefore, the second
condition is satisfied, and the equivalence is valid.

Definition 3 (Symbolic value on transition). Let
Zr C(E1 xT) U(E; X T?)

denote a set of symbolic values on sequences of state tran-
sitions, and a pair <e,t> € Zr denote the symbolic value
of an expression e on a sequence of state transition ¢t =
<ri,ra,...,r,>, where r, = <si, si1> € R. Since <e,t>
is symbolic, it represents all values of e at s,+; € S when
M or M, transits through ¢. Concrete values and a number
of transition times are abstracted.

<ey|,t1> € Zr and <ep, > € Zy are equivalent, when
the following conditions are satisfied.

e Conditions to transit through #; and #, from the initial
states for the same number of times are equivalent.

e When t; = <ryy,72,...,71,>, Where ri; = <sig,
Sige1>, and B = <ryy,72),...,12,>, Where ry; =
<$2j, $2j41>, values of e; and e; are always equal when
arriving at §y,,.1, S2,,+1 for the same number of times,
respectively.

We denote the equivalence by an operator “=" as
<ey, 11> = <ep, 1>

For example, in Fig. 6, <a, <s;, so>> = <b, <sp, 5p>>
is true when in; and in, are corresponding. Conditions to
transit through the transitions <s», s,> and <s, 5> for n
times are /\f:l(in’i) and /\l'f:l(iné), respectively. Then the
first condition of the definition is satisfied. The values of a
and b on nth arrivals at s, and s, respectively, are both n.
Therefore, the second condition is satisfied, and the equiva-
lence is valid.

Any function can be applied to those symbolic expres-
sions, <ej, s1> € Zg and <e,t> € Zy. If all argument ex-
pressions of a function are at a same state or on a same tran-
sition, such a function can be considered as a function at the
state or on the transition. This can be represented with the
next equations.

(f <e1,s><ey, s> ..)=<(ferer ...),s>

977

(f <ep,t><ep,t> ..)=<(ferex ...), >

where f € F, e, ey,...€ E, s € §,t €T, and functions are
represented in Lisp-like style.

Also, when two symbolic values z;,z, € Zg U Zy are
equivalent and a part of a symbolic value z3 € Zg U Zr cor-
responds to z;, we can substitute the part as the substitu-
tion of z; with z,. z3s before and after the substitution are
equivalent. For example, when <ey, s1> = <ey, 55> is true,
<(f e1), s1> = <(f e2), so>, where f € F, becomes true by
substituting e; at s; with e; at s,.

Next, we define equivalence classes each of which rep-
resents a set of equivalent symbolic values.

Definition 4 (Equivalence class). Equivalence class of
states is a set Zg; C Zg that all contained elements are equiv-
alent. Similarly, equivalence class of sequences of state tran-
sitions is a set Zy; C Zy where all contained elements are
equivalent. If same elements are contained in more than one
equivalence classes, we can merge them into a single equiv-
alence class.

Then, correspondences of inputs and outputs which are
given by users are described by sets of equivalence classes
as follows.

{{<iniy, $1in,>, <ingj, 824>}
|1 <i,iny; € 1y,iny; € 12,51,',,,. €S,
$2in; € S2}
H<out s, $10u,>, <outaj, $20u,>}
|1 <i,outy; € Oy,o0uty; € 02,S1,,m1 €S,
S20ut; € S}
S1in, and s7;,, are states where the ith inputs are valid, re-
spectively. Si,,, and s;,,, are states where the ith outputs
are valid, respectively.

Here, the equivalence of two designs (FSMDs) is de-
fined as follows.

Definition 5 (Equivalence of FSMDs). Two FSMDs M,
and M, are equivalent, when

/\(<in1i’slin,> = <inyj, $2in,>)
i

== /\(<0utli, Slout,-> = <outy;, S20uti>)
i
is true, where in;; € I} and out;; € O; are the i th input and
output of M, respectively, and iny; € I, and outy; € O, are
the i th input and output of M5, respectively.

Therefore, in our method, equivalences between all
corresponding outputs of two designs are checked with an
assumption that all corresponding inputs of the two designs
are equivalent.

4.4 Equivalence Checking of Symbolic Expressions

To apply the equivalence checking method explained in the

978

latter two sections, equivalences of the symbolic expressions
are checked. This section explains how to check the equiva-
lence of the symbolic expressions for states or sequences of
state transitions defined in the previous section.

A symbolic expression consists of an expression (e €
E), and a state (s € ') or a sequence of state transition (¢ €
T), and an expression consists of a combination of variables,
inputs, outputs (V; € I U O U V), and functions (F; C F).

With the relation described in the previous section, a
function at a state or on a sequence of state transitions,
such as <(f e; e ...),s> or <(f e; ex ...),t>, where
f € F, e,er... € E, s € §,t € T, can be converted
into (f <ey, s> <ep, s> ...) or (f <ej,t> <ey,t> ...), re-
spectively. We repeat applying this conversion to symbolic
expressions while it can be applied.

Then, the expressions are represented only with vari-
ables at states, variables on sequences of state transitions
(we denote them as symbolic variables), and functions
which are applied to those symbolic variables. Here, we
treat a symbolic variable as an unit, and same symbolic vari-
ables (same variables at same states or on same sequences
of state transitions) are equivalent.

With a conversion that each unit into a variable and
each function into an Uninterpreted Function (UF), we can
apply methods of Logic of Equality with Uninterpreted
Function (EUF) [13] to check the equivalence. If an EUF
formula that says two symbolic expressions are equivalent is
valid, the two symbolic expressions are proved to be equiv-
alent.

Here, to improve the possibility to prove such equiva-
lences, it is important to make as much functions as same
UFs. As explained in Sect.3, by the conversion which
makes two designs have identical datapaths, computations
with same control signals from controllers can be converted
into same UFs. Also, expressions which are proved to be
equivalent in Sect. 4.1 can be converted into the same UFs.

Symbolic expressions in an equivalence class are also
assumed to be equivalent when we check the validity of the
EUF formulas. Practically, this step is performed with deci-
sion procedures (SMT solvers) which can handle EUF, such
as CVC3[12].

4.5 Equivalence Checking of FSMDs by Symbolic Simu-
lation

In this section, we explain how to apply equivalence class
based symbolic simulation introduced in Sect.2.4 to check
the equivalence of FSMDs defined in Sect. 4.3.

Before the verification, we must unroll all loops. The
verification is performed as follows.

1. From the initial states, transitions are traversed for-
wardly with getting equivalences of left-hand sides and
right-hand sides of assignments. The left-hand side
value at the next state is equivalent to the right-hand
side value at the current state.

2. When there are more than one next states, the current

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

@x*—(*in12) pr<—in2

@()Utl —(+x1) out2 —H+Fy2) 1)

M, M,

Fig.7 Example 1.

checking process forks.
3. FSMDs are equivalent when in all checking paths the
equivalence of FSMDs (Definition 5) is satisfied.

Here, we show an example of the verification with two
FSMDs in Fig.7. s1,5,83 € S1 and s4, 55,5 € S, are
states, x € V| and y € V, are variables, in; € I} and in, €
I, are corresponding inputs, out; € O; and out, € O, are
corresponding outputs, 1,2 € K; N K, are constants, and
+,* € F denotes addition and multiplication, respectively.
A given initial equivalence class is

{<iny, 51>, <ing, s,>}
The output equivalence to be proved is
<outy, s3> = <outy, ;>

First, from the assignments in s; and s,, the following equa-
tions becomes true:
<X, $> = <(xing 2), 51>

<y, §p> = <ing, §4>
Then, with substitutions, the equivalence classes become:

{{<iny, s1>, <iny, s,>, <y, >},
{<x, so>, <(* ing 2), 51>,
<(xy2), s>}
Next, from the assignments in s, and s, we get the follow-
ing equations:
<outy, s3> = <(+ x 1), 55>

<outy, s> = <(+ (xy2) 1), sp>
Then, with substitutions, the equivalence classes become:

{{<iny, s1>, <iny, 4>, <y, Sp>},
{<x, 55>, <(x ing 2), 51>,
<(xy2), s>}
{<outy, s3>, <(+ x 1), 52>,
<(+ (xy2) 1), sp>},
{<outy, s.>,<(+ (x y 2) 1), s,>}}
Since the third and forth equivalence classes include the
same entry, we can merge them. The new equivalence class
includes both <out, s3> and <out,, s.>, then M; and M,
are proved to be equivalent.

As we mentioned in Sect. 1, this method is fast and
reasonable only when there are a small number of control

NISHIHARA et al.: WORD-LEVEL EQUIVALENCE CHECKING IN BIT-LEVEL ACCURACY

branches and loops whose numbers of iterations are small.
Also, if there are infinite loops, we can get only limited re-
sults. For such cases, we propose a rule-based method ex-
plained in the next section.

4.6 Rule-Based Equivalence Propagation

In this section, we explain our rule-based equivalence
checking method. This method can be applied to FSMDs
directly, and four rules explained below propagate equiva-
lences of inputs to those of outputs.

4.6.1 Rules of Equivalence

Rule 1. Ifr = <s1, 52> € R satisfies:

(V(sq # 52)(<51,5,> € R) A
(V(sp # 51)(<Sp, 52> € R)),

then the next equation becomes true:

V(<si,a> € Pla = <ey,er>)

(<e1, §y> = <ey, S1>)

Proof. ris the only transition from sy, and it is also the only
transition to s,. Therefore, when M, or M, reaches to sy, it
always reaches to s, by the next transition. Then, the tran-
sition condition to reach s; and s, for the same number of
times from the initial state must be equivalent. Also, the
values of the left-hand sides of the assignments are always
updated to the values of the right-hand sides after the transi-
tion. Therefore, the value of e; at s, is always equivalent to
that of e; at 51, when arriving at s, and s, for the same num-
ber of times, respectively. Since the two conditions in Defi-
nition 2 are satisfied, <ej, so> = <e,, 51> becomes true. O

This rule corresponds to symbolic simulation explained
in the previous section, and returns the same results when
there are no conditional branches in FSMDs. Figure 7 shows
an example where this rule can be applied, and the results
are the same as described in the previous section.

Rule 2. Let t; and t, be sequences of state transitions such
that:

I = <<S11, 812>, -+ <81, Sipe1>> € T

fh = <<821, 822> -+ <825 $2441>> € T
Also, let c1; and cy; be transition conditions for each of the
transitions in t| and t,, respectively, such that:

c1; = (<15, 81341>) [1 i< m

c2i = (<825, $2i11>) |1 < i<

When we assume that t; and t, are executed, Rule 1 can
be applied for all transitions in them, since there are no joins

and branches. Under the assumption, for each <ey,er> €
EXE,if

(N (<eipsi>) =)\ (<ea) A

1<i<m 1<i<n

979
|
by
Gy D
a<—(+x 1)
b—(+b 1
>x 1 ﬁ
A part of M, A part of M,

Fig.8 Example 2.

(<er, S1me1> = <e€2, 52441>)

is true, <ey,t;> = <ej, 1> becomes true, where)\ repre-
sents AND.

Proof. 1f the second half part of the equation is true, from
Definition 2, transition conditions to reach the last states in
t; and t, for the same number of times from the initial states
must be equivalent. Also, from this part, the second condi-
tion in Definition 3 is satisfied. In addition, from the first
half part of the equation, transition conditions between t
and 1, are equivalent. Then, with taking conjunction of those
transition conditions, respectively, the conditions to transit
t; and t, for the same number of times from the initial states
become equivalent. Then, the first condition in Definition 3
is satisfied. Since the two conditions in Definition 3 are sat-
isfied, <ey, t;> = <e,, t,> becomes true. O

Figure 8 shows an example where Rule 2 can be ap-
plied. s, 52 € S and s, sp, S € S, are states. a, x € V| and
y,b € V, are variables. +,> € F denote addition and less
than operation, respectively. 1 € K; N K is a constant. We
give an initial equivalence class as follows:

{<x, 51>, <y, 54>}

First, we assume that M; transits through #; = <<s, $5>>,
and M, transits through #, = <<s,, s>, <8, s.>>. Then,
with applying Rule 1, we get the following equivalence
classes.

{<x, 51>, <y, 4>, <b, 5p>},
{<a, s>, <(+ x 1), 51>}
{<b, s>, <(+ b 1), sp>}}

Since <(> x 1),s;> = <(> y 1),s,> becomes true
from the first equivalence class, the transition conditions are
equivalent. Also, from a substitution and a merger, we get
the following equivalence class.

{<a, s>, <(+ x 1), 81>, <b, s.>,

<(+b1),s,>}

Then, <a, s> = <b,s.> becomes true.
Rule 2, we can prove <a, t;> = <b, t,>.

Finally, from

Rule 3. Let T, C T be a set of sequences of state transitions,
St, €S be a set of states included in the transitions of T,
s € § be a state. If there is no sequence of state transitions
t € T, where its first state is s and the states in t are not

980

included in S t,, T, covers all paths to s.
Let T,y and T,, denote sets of sequence of states tran-
sitions such that

To={ti;|1<i<mty; €T}
Ty ={t|1<i<nt; €T}

which reach states s, € S| and s, € S, with covering all
paths to s| and s,, respectively.
Then the next formula becomes true.

m
m=m A N(<er, 1> = <es,10>)
i=1
= <1, 51> =<ey, 5> e € Ey,e € Ey

This rule shows that if all paths to s; and s, have cor-
responding paths where e¢; and e, are equivalent, then the
values of e| at s; and e, at s, are always equivalent. In this
rule, the number of corresponding paths in the two FSMDs
must be same. It means FSMDs which have the same struc-
tures of conditional branches can be verified with this rule.
This condition is also valid in Rule 4, since Rule 3 is per-
formed to apply Rule 4.

Proof. Each equivalence of corresponding sequences of
state transitions shows that, transition conditions to transit
through those transitions from the initial states are equiva-
lent, respectively. Therefore, the orders to reach s; and s,
among those corresponding transitions are fixed, and com-
pletely equivalent in each pair of corresponding transitions.
Then, the first condition in Definition 2 is satisfied. Also,
the second condition in Definition 2 is clearly satisfied by
the equivalences of e; and e, on corresponding sequences
of state transitions. Therefore, both the conditions in Defi-
nition 2 are satisfied, and <e;, s;> = <ey, so> is proved to
be true. O

Figure 9 shows an example where Rule 3 can be ap-
plied. s1,5$2,53,€ S and s4, 85, 5. € S, are states, and
a € Vyand b € V, are variables.

1 = <<81,83>>, [=<<8,53>>

t, = <<Sg, S>>, I = <<Sp, S>>

are sequences of state transitions. Here, we can see that
T, = {t1,t} and T,y = {t,, 1} covers all paths to s3 and s,
respectively. Assume that the following equivalence classes
have already been proved.

{{<av t1>7 <b’ ta>}’ {<a7 t2>9 <b’ th>}7

Avpartof M,

A part of M,

Fig.9 Example 3.

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

{<a,t3>,<b,1:>}}

Then, all the paths to s3 and s, have corresponding paths
where a and b are equivalent. From Rule 3, <a, s3> =
<b, s.> becomes true.

The last rule is for FSMDs which have loops such as
M, and M, in Fig. 10. The equivalence of such FSMDs can-
not be proved only with Rule 1 ~ 3, since previous results
of the computation are used in each iteration. In such the
case, the next rule can be applied.

Rule 4. Let s; € S| and s, € S, denote one of the states
in different loops, respectively. Let T1; = {tl.lll <i <
1, tl.l eTi}and Ty, = {tl.zll <i<m, tl.z € T,} denote sets
of sequences of state transitions reaching s, and s, which
cover all paths from the inside of the loops to s| and s, re-
spectively. Also, Let T3 = {ti3|1 <i<n, tl.3 € T} and
T4 = {t;1 |1 <i<k, t;‘ € T,} denote sets of sequences of
state transitions reaching s, and s, which cover all paths

from the outside of the loops to s| and s,, respectively.

Then, <ey, s1> = <ea, so>, where e| € E|, e; € E,, be-
comes true when the following two conditions are satisfied.

o The next equation is true

n=kA (<€1,l‘,-3> = <e2,t?>)

n
i=1

e Under an assumption that <ei, s1> = <ey, §3> is true,
the next equation becomes true with Rule 1 ~ 3.

1
(L =m) A A(<e1,t}> = <ey, 2>)

i=1

Proof. We prove this rule with unrolling the loops as shown
in Fig. 11, and the following induction. Let ‘s1, s, denote
ith s; and s, after the loops are unrolled, respectively. Also,
let it}, "t? denote ith t} and tjz.. The first condition in Rule 4
is the basic case which proves <ej,'s;> = <ey, 's,> with
Rule 3. The second condition is the inductive step which

a < in; b < (*in, 2)
out, < in, out, < in,

a‘—(+aa)
O“t! —a <®;u}—z‘(—*5 2)

M, M,

Example 4.

3 3
hy
Htll
4
4 4

I]
iy

-2

m m

Fig.11 Loop unrolling for the proof of Rule 4.

NISHIHARA et al.: WORD-LEVEL EQUIVALENCE CHECKING IN BIT-LEVEL ACCURACY

+1 +1

proves <ej, tls;> = <e;,*!s,> with Rule 3 under the as-
sumption <ej,'s|> = <ep,'sp>. Therefore, the next equa-
tion is inductively proved.

0

/\<€1, l.S'1> = <€2,l_5‘2>
i=1

This is equivalent to <ej, 51> = <ep, $2>. O

As written in the proof, in the inductive step, equiva-
lences are propagated from the assumption to apply Rule 3
for the state s; and s,. This propagation is performed by
applying Rule 1 ~ 3 multiple times. Here, we only have
to finally prove the assumption, and do not have to consider
how to apply Rule 1 ~ 3. Then, only the final step where
Rule 3 is applied is defined in the rule. Therefore, the first
states of til and ti2 in the rule can be arbitrary states in the
insides of the loops.

With this rule, the equivalence of M and M, in Fig. 10
can be proved. s, 52,53 € S| and s,, Sp, S. € S are states.
in; € I, and in, € I, are corresponding inputs. out; € O
and out, € O, are corresponding outputs. a € Vi and b € V,
are variables. 2 € K;NK, is a constant. +, x € F are addition
and multiplication, where (+ x x) = (* x 2) for x € V has
already been proved to be equivalent.

Initial equivalence classes are

{{<il’l1, 51> = <ing, Sa>}}

The goal is to prove <out;, s,> = <outy, Sp>.
First, from Rule 2, the following equations are proved.

(1) <outy, <<s1, 52>> = <outy, <<Sg4, Sp>>
2) <a,<<s1,$>,<87, 83>> = <b, <<S,, 55>, <Sp, S>>

Next, we apply Rule 4 to prove (3) <a, s3> = <b, s.>.

Basic Case
(2) satisfies the first condition of Rule 4.

Inductive Step
(3) is assumed. Then, from Rule 2, the next equation is
proved

@) <a,<<s3,5>,<87,53>> = <b,<<S,, sp>, <Sp,
S>>

With (4), the second condition of Rule 4 is satisfied.

Then, (3) is proved to be true. Next, from Rule 2 and (4),
the following equation is proved.

(5) <outy, <<s3, 5o>> = <outy, <<Sc, S>>

Finally, from Rule 3, (1), and (5), the following equation is
proved.

(6) <outy, sr> = <outy, Sp>

Now, the equivalence of outputs is proved and M; and
M, are proved to be equivalent.

This rule can handle nested loop by recursively apply-
ing the rule to inner loops under the assumption of the in-
ductive step.

981

4.6.2 Algorithm to Apply the Rules

In this section, we explain an algorithm to apply the pro-
posed four rules to designs. Also, we discuss about designs
which can be verified by this rule-based method.

Figure 12 shows a simple algorithm to apply the four
rules proposed in Sect.4.6.1. This algorithm consists of the
following four steps:

1. Equivalences of inputs given by users are added to the
equivalence classes.

2. Rule 1 is applied to all transitions.

3. Rule 2 and 3 are applied to each state

4. Rule 4 is applied to prove the equivalence of loops.

Rule 4 is recursively applied to handle nested loops. As-
sumptions of the second step of Rule 4 are incrementally
made from outer loops to inner loops, and those assump-
tions are guaranteed from that of the inner loops to that of
the outer loops. L is a parameter which defines the maxi-
mum length of sequences of state transitions when applying
Rule 2. If L becomes larger, the number of target sequences
of state transitions becomes large, and the complexity be-
comes higher. Then, L should be started from 1 and incre-
mented until the equivalence is proved.

The termination of this algorithm is proved as follows.
There are two infinite loops by while(true) in the algorithm
shown in Fig. 12. Both of them break when no more equiv-
alence classes are generated in the loops. The number of
equivalence classes is finite, since the number of equiva-
lence candidates is finite. Also, the recursive call of sub2
eventually stops, since the levels of multiple loops are finite.
Therefore, this algorithm must terminate.

Here, we have to mention that our rule-based verifica-
tion method (including the four rules and the algorithm) is
not complete. It just says “equivalent” in particular cases
when the rules can prove equivalences. In other cases, our
method just says “indeterminable”. However, our method is
fast, and when a result is equivalent, the result is guaranteed
to be true.

By the proposed four rules to propagate equivalences,
as mentioned in the explanation of Rule 3, FSMDs which
have same structures of conditional branches can be verified.
Note that lengths of transitions can be different between two
FSMDs under verification unless there are no branches in
the transitions. Also, outsides and insides of correspond-
ing loops in two FSMDs must be equivalent, respectively.
Therefore, the method can verify the designs before and af-
ter scheduling, retiming, or some optimizations like com-
mon sub-expression elimination, unless such optimizations
are applied beyond loops.

5. Experimental Results

We applied the verification flows shown in Sect. 3.1 to real-
istic examples.

982

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

// Main procedure
bool main(){
ZS zs =empty; //A set of equivalence classes for states
zs += Init(); // Add initial equivalence class
//For each assignment in each state, apply Rule 1
foreach((s, a) in (S1*A1)+(S2%A2))
zs += Rulel(s, a);
/* Check that the output equivalence is included
in the equivalence class which have already been proved */
if (CheckResult(zs))
return true;
// Apply Rule2 and Rule 3 with the sub-procedure subl
zs += subl(zs);
if (CheckResult(zs)) return true;
zs += sub2(zs); // Apply Rule4 with the sub-procedure sub2
if (CheckResult(zs, null)) return true;
return false;
}
/* Check equivalences with Rule 2 and 3 and
return newly proved equivalence classes */
ZS subl(Zs zs){
while(true){
//A local set of equivalence classes for states
ZS zs_local = empty;
foreach(<s1l, s2> in S1%382){
/* Collect sequences of state transitions reach to s1 and
whose length is equal to or less than L */
tl = {t| t in T1, size(t)<=L, last_state(t)==s1};
/* Collect sequences of state transitions reach to s2 and
whose length is equal to or less than L */
t2 = {t| t in T2, size(t)<=L, last_state(t)==s2};
// For each pair of expressions
foreach(<el, e2> in E1*E2){
/* A set of equivalence class for
sequences of state transitions */
ZT zt = empty;
/* For each pair of sequence of state transitions
apply Rule 2 */
foreach(<ta, tb> in t1%t2)
if (Rule2(zs+zs_local, el, ta, e2, tb))
zt += {{<el, ta>, <e2, tb>}};
// If some elements are added to zt, apply Rule3
if(zt !'= empty)
if (Rule3(zt, el, si, e2, s2))
zs_local += {{<el, sl1>, <e2, s2>}}
}
Y

// If no equivalences of states are newly proved

if (zs_local == empty)
return zs_local;
}
}
/* Check equivalences with Rule 4 and
return newly proved equivalence classes */
ZS sub2(ZS zs, Loop current_loop){
/* Get the set of loops which are one level inner from
current_loop when it is not null.

Get the most outside loops when current_loop is null */
Loops inner_loops = getInnerLoops(current_loop);
while(true){

//A local set of equivalence classes for states
ZS zs_local = empty;
foreach(inner_loop in inner_loops){
foreach(<sl, s2> in inner_loop){
//Apply Rule 2 to prove the basic case
t1 = {t| t in T1, size(t)<=L, last_state(t)==s1,
first_state(t) is not in inner_loop};
t2 = {t| t in T2, size(t)<=L, last_state(t)==s2,
first_state(t) is not in inner_loop};
foreach(<el, e2> in E1*E2){
ZT zt = empty;
foreach(<ta, tb> in t1xt2)
if (Rule2(zs+zs_local, el, ta, e2, tb))
zt += {{<el, t1>, <e2, t2>}};

if (zt == empty) continue;

//Check the equivalence of states when entering the loop

if ('Rule3(zt, el, s1, e2, s2)) continue;

// Check the inductive step

ZS zs_assumed = {{(el, s1), (e2, s2)}};

// Apply Rule2 and Rule 3 with the assumption

7S zs_guaranteed = subl(zs+zs_assume) ;

/* If the assumption is not proved, apply Rule 4
incrementally to prove equivalences about the inner
loops */

if (zs_assumed is not a subset of zs_guaranteed)

zs_guaranteed += sub2(zs_guaranteed+zs_assume,
inner_loop) ;

// If the assumption is proved, Rule4 is satisfied

if (zs_assumed is a subset of zs_guaranteed)

zs_local += zs_guaranteed;

}
}
}
// If no equivalences of states are newly proved
if (zs_local == empty) return zs_local;
}

}

Fig.12 An algorithm to apply rules.

5.1 Tool Implementations

To generate a controller for a given datapath (explained in
Sect.3.2), we used an on-line NISC complier demo [14].
Separation of controllers and datapaths of the designs, and
translation from RTL description into FSMD were done by
hand.

Also, we implemented two tools to check the equiv-
alence of FSMDs with C and C++. One is a symbolic
simulator in which the method described in Sect. 4.5 is im-
plemented. The other is a rule-based verifier in which the
method explained in Sect. 4.6 is implemented. Both tools
run on a PC with a 3 GHz processor (dual core) and 1 GB
memory.

5.2 Examples
We used three examples, DCT (Discrete Cosine Transform),

IDCT (Inverse Discrete Cosine Transform), and Ellip (Ellip-
tical Filter). All examples are originally written in C, and the

details are in Table 1.

We applied optimizations and high-level synthesis to
those examples by hand. Therefore, there are three ver-
sions for each example such as, (1) original design, (2) de-
sign after behavioral optimization, (3) design after high-
level synthesis. The optimizations are removal of temporal
variables, refinement of operations, and others. All synthe-
sized designs use the same datapath which is about 1000
lines in Verilog, and those designs are pipelined. In all ex-
amples, variable names are not corresponding. The numbers
of states, inputs, outputs, variables in translated FSMDs are
also shown in Table 1.

5.3 Verification Results

For each example, it took about 10 seconds to synthesize the
controller by NISC compiler.

The verification time of equivalence checking between
the FSMDs are shown in Table 2. All results were equiv-
alent, and they were correct. Since all examples include
loops, symbolic simulation could be applied only after un-

NISHIHARA et al.: WORD-LEVEL EQUIVALENCE CHECKING IN BIT-LEVEL ACCURACY

983
Table1 Information of examples.
Example | Version | LOCin C | Control structure | Num. of states | Num. of inputs | Num. of outputs | Num. of variables
(1) 54 Trilaminar 14 64 64 68
DCT 2) 52 structure of 13 64 64 66
3) - 8-iterations 11 64 64 66
(1) 134 Two large 98 64 64 83
IDCT 2) 120 8-iterations 95 64 64 83
3) - 90 64 64 75
(1) 74 One large 36 1 1 37
Ellip 2) 67 infinite 33 1 1 35
€] - loop 20 1 1 31
Table 2 Verification time of rule-based equivalence propagation. to real designs.
Example Target Symbolic | Symbolic simu- | Rule-based e Verification time of rule-based verification is not
simula- | lation WII]‘h verifi- strongly affected from numbers of conditional branches
Ber T v D tion o0P :nlr: e Catlozn R e Rule-based verification can directly verify designs
@vs 3)) <1s 3l which include loops without unrolling the loops.
IDCT (1) vs (2) - >24h 2435
2)vs (3) - >24h 30.8s .
Ellip Mvs) - <1s 75s 6. Conclusion
2)vs (3) - <ls 79s

rolling the loops. Also, since Ellip examples include infi-
nite loops, they are unrolled for only 1-iteration. Then the
results are not complete. Rule-based verification could be
successfully applied to all examples directly. In these exper-
iments, we set the parameter L of the algorithm in Fig. 12
to 1. Also, since the methods explained in Sects.4.1 and
4.4 were not implemented, equivalences of symbolic ex-
pressions were checked only with simple replacements of
equivalent expressions in equivalent classes.

The results show that symbolic simulation could ver-
ify the DCT and Ellip examples faster, since there are no
conditional branches. Rule-based verification checks all
candidates of equivalence exhaustively. Moreover, when
an equivalence of a candidate is proved, all other candi-
dates are checked again, since their equivalences can be
proved with the information of the newly proved equiva-
lence. Then, each candidate of equivalence may be checked
multiple times. However, since symbolic simulation checks
the equivalences of expressions at states from the initial state
only once for each execution path, it is basically faster to
verify designs without many conditional branches than rule-
based verification. Also, if there are loops in target designs,
we have to apply Rule 4 for “number of states in loops X
number of expressions” times in the worst case. Then rule-
based verification becomes much slower. However, even
there are a lot of conditional branches in the IDCT exam-
ples, rule-based verification could verify them within rela-
tively short times which are not so much different from the
other examples. Symbolic simulation could not verify them
within 24 hours. This is because the complexity is square
to the number of conditional branches in rule-based verifi-
cation, and exponential in symbolic simulation.

From these experimental results, we could confirm the
following facts.

e The overall proposed method can successfully applied

In this paper, we proposed a word-level equivalence check-
ing method in bit-level accuracy with synthesizing two de-
signs with the same datapath. We also proposed a new word-
level rule-based comparison method, and the experimental
results show that our method is fast and it can verify some
designs which cannot be verified by symbolic simulation.
Since our method is a rule-based method, we can extend the
range of verifiable designs by introducing additional rules.
We are planning the following future works.

e Utilizing potentially equivalent states or sequences
of state transitions
In the current implementation, the explorations of the
four rules are done exhaustively. If we can determine
potentially equivalent states or sequences of state tran-
sitions by some sort of simulations, then the search do-
mains can be reduced drastically.

¢ Internal equivalent point
Utilizing internal equivalent points can improve the
verification speed. In [15], a cut-point insertion method
for equivalence checking between designs before and
after high-level synthesis is proposed. We are also
planning to utilize such kind of techniques to optimize
the search of equivalent candidates.

References

[1] D. Gajski, J. Zhu, R. Doemer, A. Gerstlauer, and S. Zhao, SpecC:
Specification Language and Methodology, Kluwer Academic Pub-
lisher, 2000.

[2] “SystemC,” http://www.systemc.org/

[3] E. Clarke, D. Kroening, and K. Yorav, “Behavioral consistency of ¢
and verilog programs using bounded model checking,” Proc. Design
Automation Conference, pp.368-371, June 2003.

[4] H. Saito, T. Ogawa, T. Sakunkonchak, M. Fujita, and T. Nanya, “An
equivalence checking methodology for hardware oriented c-based
specification,” Proc. International Workshop on High Level Design
Varidation and Test, pp.139-144, Oct. 2002.

[5] T. Matsumoto, H. Saito, and M. Fujita, “Equivalence checking of ¢
programs by locally performing symbolic simulation on dependence
graphs,” Proc. International Symposium on Quality Electronic De-

984

(6]

(71

(8]

[9]

[10]

[11]

[12]
[13]

[14]

[15]

sign, pp.370-375, March 2006.

C. Karfa, M. Mandal, D. Sarkar, S.R. Pentakota, and C. Reade,
“A formal verification method of scheduling in high-level synthe-
sis,” Proc. International Symposium on Quality Electronic Design,
pp-110-115, March 2006.

D. Gajski, N. Dutt, A. Wu, and S. Lin, High-Level Synthesis: In-
troduction to Chip and System Design, Kluwer Academic Publisher,
1992.

A.W. Group, “RTL semantics draft specification,”
http://www.eda.org/alc-cwg/cwg-open.pdf

P. Schaumont, S. Shukla, and I. Verbauwhede, “Design with race-
free hardware semantics,” Proc. Conference on Design, Automation
and Test in Europe, pp.571-576, April 2006.

M. Fujita, “Equivalence checking between behavioral and RTL de-
scriptions with virtual controllers and datapaths,” ACM Trans. Des.
Autom. Electron. Syst., vol.10, no.4, pp.610-626, Oct. 2005.

M. Reshadi and D. Gajski, “A cycle-accurate compilation algo-
rithm for custom pipelined datapaths,” Proc. International Confer-
ence on Hardware/Software Codesign and System Synthesis, pp.21—
26, Sept. 2005.

“CVC3,” http://www.cs.nyu.edu/acsys/cve3/

J. Burch and D. Dill, “Automated verification of pipelined micropro-
cessor control,” Proc. International Conference on Computer-Aided
Verification, pp.68—80, June 1994.

“University of California, Irvine. NISC technology,”
http://www.cecs.uci.edu/ nisc/

X. Feng and A.J. Hu, “Early cutpoint insertion for high-level soft-
ware vs. RTL formal combinational equivalence verification,” Proc.
Desing Automation Conference, pp.1063-1068, July 2006.

Tasuku Nishihara received the B.S. and
M.S. degrees in electronic engineering from
University of Tokyo, Tokyo, Japan, in 2005 and
2007, respectively. He is currently a Ph.D. stu-
dent in the Department of Electronics Engineer-
ing, University of Tokyo. His research interests
include formal verification and design analysis
for high-level designs of digital systems.

Takeshi Matsumoto received the B.S.,
M.S., and Ph.D in electronic engineering from
University of Tokyo, Tokyo, Japan, in 2003,
2005, and 2008, respectively. He has been a
memeber of VLSI Design and Education Cen-
ter in University of Tokyo since 2008. His re-
search interests include computer-aided design
and formal verification, especially for high-level
designs of digital systems.

/

IEICE TRANS. INF. & SYST., VOL.E92-D, NO.5 MAY 2009

Masahiro Fujita received the B.S. degree in
electrical engineering in 1980, and the M.S. and
Ph.D. degrees in information engineering from
the University of Tokyo, Tokyo, Japan, in 1982
and 1985, respectively. From 1985 to 1993, he
was a Research Scientist with Fujitsu Labora-
tories, Kawasaki, Japan. From 1994 to 1999,
he was the Director of the Advanced Computer-
Aided Design Research Group, Fujitsu Labora-
tories of America, Sunnyvale, CA. He is cur-
rently a Professor in VLSI Design and Educa-

tion Center, University of Tokyo, Tokyo, Japan. He has been on program
committees for many conferences dealing with digital design and is an As-
sociate Editor of Formal Methods on Systems Design. His primary research
interest is in the computer-aided design of digital systems. Dr. Fujita re-
ceived the Sakai Award from the Information Processing Society of Japan

in 1984.

