
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009
985

PAPER Special Section on Formal Approach

A Unified Framework for Equivalence Verification of Datapath
Oriented Applications

Bijan ALIZADEH†a), Member and Masahiro FUJITA†, Nonmember

SUMMARY In this paper, we introduce a unified framework based on
a canonical decision diagram called Horner Expansion Diagram (HED) [1]
for the purpose of equivalence checking of datapath oriented hardware de-
signs in various design stages from an algorithmic description to the gate-
level implementation. The HED is not only able to represent and manip-
ulate algorithmic specifications in terms of polynomial expressions with
modulo equivalence but also express bit level adder (BLA) description of
gate-level implementations. Our HED can support modular arithmetic op-
erations over integer rings of the form Z2n . The proposed techniques have
successfully been applied to equivalence checking on industrial bench-
marks. The experimental results on different applications have shown the
significant advantages over existing bit-level and also word-level equiva-
lence checking techniques.
key words: equivalence verification, canonical form, RTL model, gate-
level implementation, decision diagram

1. Introduction

As system on a chip (SoC) designs continue to increase in
size and complexity, more attention has been paid to design
descriptions at higher levels of abstraction due to faster de-
sign changes and higher simulation speed. In such cases,
a C-based high level (an algorithmic level) specification
is described and then refined to a Register Transfer Level
(RTL) description by adding more and more implementa-
tion details at different steps. These refinement/optimization
steps are performed manually or by using various automated
tools such as [2]. Subsequently, gate-level implementations
are synthesized using RTL synthesis tools. Therefore there
is a significant increase in the amount of verification efforts
to achieve functionally correct description at each step, if
traditional dynamic techniques such as simulation are used.
This has led to a trend away from dynamic approaches and
therefore formal equivalence checking methods have be-
come very important to reduce time-to-market as much as
possible. Although contemporary verification approaches
have proposed different modeling and manipulation meth-
ods for each stage of this complete design flow [3]–[5], there
is no total and uniform solution to perform equivalence
checking of different models in a unified representation.

Figure 1 depicts a complete design flow where algo-
rithmic specifications usually implement sequences of arith-
metic polynomial computations with integer variables of

Manuscript received July 24, 2008.
Manuscript revised October 13, 2008.
†The authors are with VLSI Design and Education Center

(VDEC), The University of Tokyo and JST CREST, Tokyo, 113–
0032 Japan.

a) E-mail: alizadeh@cad.t.u-tokyo.ac.jp
DOI: 10.1587/transinf.E92.D.985

Fig. 1 HED-based equivalence checking with a complete design flow for
different applications.

infinite bit-widths, which can be directly represented by
HED [1]. After refining algorithmic specifications to RTL
descriptions, it is evident that RTL models are implemented
with fixed-bit-width datapath architectures, so that polyno-
mial computations are carried out over n-bit integers where
the sizes of the entire datapaths are kept constant by way
of signal truncation. In this paper we provide an exten-
sion to the HED for supporting modular arithmetic poly-
nomials which can directly manipulate these RTL design
descriptions.

The final issue explored in this paper is the represen-
tation of gate level implementation. After synthesizing the
RTL models into gate-level implementations, arithmetic bit
level netlists extracted from the gate-level circuits are also
represented in HED, which gives efficient ways for equiv-
alence checking of designs in various design stages. We
use an adder-extraction technique proposed in [3] for equiv-
alence checking of arithmetic circuits based on a Bit-Level
Adder (BLA) representation in order to efficiently represent
gate-level circuits in HED. This technique benefits from
a more efficient reverse engineering process compared to
the conventional methods such as arithmetic bit-level (ABL)
description in [4]. The BLA directly maps a gate-level de-
scription to a word-level addition network, while the ABL is
an intermediate representation between gate-level and word-
level descriptions and further reverse-engineering process is
necessary to extract the word-level description from ABL
representation. Moreover, the HED is strong enough to be
used as a formal model for different levels of abstraction
during refinements from high-level specification to RTL as
well as gate-level implementation models.

The paper is organized as follows: Section 2 provides
a brief review of related works. In Sect. 3 we briefly describe

Copyright c© 2009 The Institute of Electronics, Information and Communication Engineers

986
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

the HED package as a canonical decision diagram. Section 4
presents how to implement modular polynomial as well as
arithmetic bit level in HED. In Sect. 5 we discuss about ex-
perimental results, and finally concluding remarks and fu-
ture works are shown in Sect. 6.

2. Related Work

In the literature of graph-based canonical representation,
various extensions over the classical Binary Decision Dia-
gram (BDD) introduced in [6] have been derived to reduce
the size of the graph or to speed up the construction pro-
cess. Although BDD and their variants have found wide
application in formal verification methods, they suffer from
memory explosion problems when the designs grow in size
and complexity with arithmetic operations.

To alleviate this issue, Word Level Decision Diagrams
(WLDDs) have been proposed. WLDDs are graph-based
representations for functions with a Boolean domain and
an integer range [5]. Furthermore, Binary Moment Dia-
grams (BMD), Multiplicative BMD (*BMD) and Kronecker
*BMD (K*BMD) provide representations of integer-valued
functions defined over bit-vectors and attempt to make the
decomposition more efficient in terms of the graph size [7].
However, they fail to represent Boolean functions that can
easily be represented using BDD. They still suffer from
memory explosion when dealing with wide arithmetic op-
erations due to defining functions over binary variables as
a bit vector rather than integer variables.

In these approaches, BDD or WLDDs are utilized
to represent symbolic expressions. However, system-level
specifications such as those for digital signal processing
contain a lot of arithmetic operations that must be encoded
into bit level operations. Thus these techniques are not able
to handle these designs due to the large number of Boolean
variables. The latest word-level representation in the litera-
ture, i.e., Taylor Expansion Diagram (TED), supports mul-
tiplication and is able to represent functions with an integer
domain and range [8]. It uses the Taylor series expansion as
its decomposition method to represent a multivariate poly-
nomial expression. However, TED does not model modulo
arithmetic and therefore is not able to prove computational
equivalence of polynomials over finite integer rings.

Verification approaches for bit-vector arithmetic such
as term-rewriting, arithmetic decision procedures, polyno-
mial decision diagrams and word-level ATPG have been
studied in [9]–[11]. The authors in [11] have used integer
arithmetic in constraint satisfaction for ILP-based simula-
tion vector generation. However, these methods have tried to
solve linear congruence using modulo arithmetic concepts
and therefore are not applicable to prove polynomial equiv-
alence modulo 2n.

In [12], [13], the properties of polynomials over finite
integer ring have been used to analyze and verify polyno-
mial expressions with module 2n. These are useful tech-
niques for word-level reasoning. Their implementations are,
however, based on manipulations of symbolic expressions

and they are not applicable to bit level equivalence checking
problems.

In [4], people have proposed a normalization technique
for verifying arithmetic circuits in a bounded model check-
ing environment. Their technique operates on the arithmetic
bit level (ABL) description of a given circuit which contains
three objects: partial product generator, addition network
and comparator. These objects can always be decomposed
into a netlist of half-adders. After extracting an ABL rep-
resentation from the gate netlist, they generate the reduced
normal form by applying a complex process to keep the in-
termediate size of the ABL description as small as possible.
In this paper, however, we utilize a new technique presented
in [3] which gives a scalable implementation for large in-
dustrial benchmarks as will be discussed in Sect. 4.2.

3. Horner Expansion Diagram (HED)

The goal of this section is to introduce a graph-based
representation called HED [1] for functions with a mixed
Boolean and integer domain and an integer range to rep-
resent arithmetic operations at a high level of abstrac-
tion, while other proposed Word Level Decision Diagrams
(WLDDs) [5], [7] are graph-based representations for func-
tions with a Boolean domain and an integer range. In HED,
functions to be represented are maintained as a single graph
in canonical form. We assume that the set of variables is
totally ordered and that all of the vertices constructed obey
this ordering. Maintaining a canonical form requires obey-
ing a set of conventions for vertex creation as well as weight
manipulation.

HED is a binary graph-based representation which sup-
ports polynomial function by factorizing variables recur-
sively as shown in Eq. (1), where const is a term which is in-
dependent of variable X, while linear is another term which
is served as the coefficient of variable X.

F(X, . . .) = F(X = 0, . . .) + X ∗ [F′(X = 0, . . .) + · · ·]
= const + X ∗ linear (1)

In order to normalize the weights, any common factor is ex-
tracted by taking the greatest common divisor (gcd) of the
argument weights. Once the weights have been normalized
the hash table is searched for an existing vertex or creates
a new one. Similar to that of BDDs, each entry in the hash
table is indexed by a key formed from the variable and the
two children, i.e. const and linear parts. As long as all ver-
tices are created, the graph will remain in canonical form.
Example. Figure 2 illustrates how f (X,Y,Z) = 24 − 8 ∗ Z +
12∗Y∗Z−6∗X2−6∗X2∗Z is represented by HED. Let the or-
dering of variables be X, Y , Z. First the decomposition w.r.t.
variable X is taken into account. As shown in Fig. 2 (a), after
rewriting f (X,Y,Z) = (24 − 8Z + 12YZ) + X ∗ (−6X − 6XZ)
based on Eq. (1), const and linear parts will be 24−8∗Z+12∗
Y ∗Z and −6∗X−6∗X∗Z respectively. The linear part is de-
composed w.r.t. variable X again due to X2 term. After that,
the decomposition is performed w.r.t. variable Y and then Z

ALIZADEH and FUJITA: A UNIFIED FRAMEWORK FOR EQUIVALENCE VERIFICATION OF DATAPATH ORIENTED APPLICATIONS
987

(a) (b) (c)

Fig. 2 HED representation of 24 − 8Z + 12YZ − 6X2 − 6X2Z.

as shown in Fig. 2 (b). In order to reduce the size of an HED,
redundant nodes are removed and isomorphic sub-graphs
are merged. For this purpose the greatest common divisor
of the argument weights are taken to figure out isomorphic
sub-graphs as well as redundant nodes. In Fig. 2 (b), 24−8Z,
12Z and −6−6Z are rewritten by 8[3+Z∗(−1)], 12[0+Z∗(1)]
and −6[1 + Z ∗ (1)] respectively. In order to normalize the
weights, gcd(8, 12) = 4 and gcd(0,−6) = −6 are taken to
extract common factors. Finally, Fig. 2 (c) shows the nor-
malized graph where gcd(4,−6) = 2 is taken to extract com-
mon factor between out-going edges from X node. In this
representation, dashed and solid lines indicate const and lin-
ear parts respectively. Note that in order to have a simpler
graph; paths to 0-terminal have not been drawn in Fig. 2 (c).

4. Extensions to HED

4.1 Modular Arithmetic in HED

In this section, we present how to implement modular
multi-variate polynomials in HED by using ideas presented
in [12], [13]. In order to keep the formulas short, we use
the following multi-index notation. For k = 〈k1, k2, . . . , kd〉
as the degrees corresponding to the d variables x :=
〈x1, x2, . . . , xd〉, let

xk :=
∏d

i=1
xki

i k! :=
∏d

i=1
ki!

(
x
k

)
:=

∏d

i=1

(
xi

ki

)

The Smarandache function S (m) in number theory is de-
fined for a given positive integer m as the smallest positive
integer such that its factorial S (m)! is dividable by m. For
example, the number 8 does not divide 1!, 2!, 3!, but does
divide 4!, so that S (8) = 4. Generally, in the ring of inter-
est, Z2n , let S (2n) = k, such that k is the smallest number
satisfying 2n | k!. For example, S (8 = 23) = 4 as 8 divides
4! = 4 ∗ 3 ∗ 2 ∗ 1 = 23 ∗ 3. This property can be used to find
out shrinking polynomials from the original one.
Theorem 1: The polynomial g(x) =

∏S (m)
i=1 (x + i) is equiva-

lent to 0 in Zm and it is called vanishing polynomial. Here
S (m) denotes the Smarandache function. The proof is avail-
able in [14].

This theory indicates that if we can factorize a polyno-
mial function g(x) into a product of S (m) consecutive num-
bers, then g(x) can be reduced to 0 in Zm. For example,

consider polynomial f (x) = x6 + 21x5 + 175x4 + 735x3 +

1624x2+1764x+720 over Z24 , where S (24) = 6. Since f (x)
can be described as a product of 6 consecutive numbers, i.e.
(x+6)(x+5)(x+4)(x+3)(x+2)(x+1), then f (x) mod 24 ≡ 0.
Lemma 1: If 2n | ak!, then axk is reducible modulo 2n. The
reduced polynomial is axk − a ∗ ∏d

j=1
∏k j

i=1(x j + i), where
d is the number of variables and k j denotes the degree of jth

variable in the monomial xk.
For example consider the monomial f (x1, x2, x3) =

2x1
3x2

2x3 in Z2
3. Here a = 2 and k! = k1!.k2!.k3! =

3!.2!.1! = 12. Since 23 | 2 ∗ 12, therefore this monomial
is reducible. On the other hand, based on a generalization
of theorem 1 to multi-variate polynomials, we know that
V(x1, x2, x3) =

∏3
j=1

∏k j

i=1(x j + i) is a vanishing polynomial
in Z2

3. Therefore, we can rewrite fREDUCED(x1, x2, x3) =
f (x1, x2, x3) − a ∗ V(x1, x2, x3) = 2x1

3x2
2x3 − 2(x1)(x1 + 1)

(x1 + 2)(x2)(x2+1)(x3) to obtain a reduced polynomial func-
tion where the monomial 2x1

3x2
2x3 has been removed.

If ak! is not dividable by 2n, although it is not possible
to reduce the degrees of monomials, it might be possible to
reduce the coefficient of the term of maximal degree. The
following theorem helps us to do so, while the proof of this
theorem is provided in [13].
Theorem 2: Every polynomial f ∈ Zd

2n has a unique rep-
resentation of the form f (x) =

∑
k∈N dαk.xk, where αk ∈

{0, 1, . . . , 2n−v2(k!) − 1} and v2(k!) < n. v2(k!) is defined
as the maximum degree x such that 2x divides k!. In other
words, v2(k!) gives the number of factors 2 in k!.

Now, let us consider those monomials in the func-
tion where ak! is not dividable by 2n. In this case, if
a > 2n−v2(k!) − 1, it means that a � αk (from theorem 2)
and therefore the coefficient a is reducible. We write the
coefficient a = q.2n−v2(k!) + r, where q is the quotient and
r is the remainder. Therefore axk = q.2n−v2(k!).xk + r.xk.
It should be noted that the term q.2n−v2(k!).xk is again re-
ducible from lemma 1. The second term, i.e. r.xk, is al-
ready in reduced form since r < 2n−v2(k!). For example,
consider the monomial 3x1

3x2
2x3 in Z2

3, where a = 3 and
v2(k!) = 2 (3! 2! 1! is dividable by 22). Since 23 does not
divide 3.(3! 2!), and 3 > 23−2 − 1 (a > 2n−v2(k!) − 1), we
represent 3x1

3x2
2x3 = q.23−2.x1

3x2
2x3 + r.x1

3x2
2x3, where

q = 1 and r = 1. The monomial 2.x1
3x2

2x3 can be re-
duced to a lower total degree, as shown before, but x1

3x2
2x3

is already in reduced form and further reduction is not
possible.

Figure 3 depicts the algorithm for reducing a given
polynomial into a unique form based on HED manipula-
tions. If 2n divides a×k!, the monomial is reduced as shown
in line 11. Otherwise, if a > αk, any monomial ax k is writ-

ten as q×(αk+1)x k
+r×x k, where q×(αk+1)x k is reducible

from Lemma 1 (line 14), while r × x k is not reducible any
more since r < αk. Hence we consider the later term as
a part of final result in another HED (result in line 15). If
a ≤ αk, we say the monomial is neither degree-reducible
nor coefficient-reducible and the monomial is added to the

988
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Fig. 3 Modular arithmetic in HED.

result (line 16). Finally the polynomial is updated with the
reduced mon (line 18). This concept of monomial reduc-
tion is iteratively applied to a given polynomial, in order
to reduce it to a unique form in HED according to Theo-
rem 2. In the worst case, in each iteration, the mon com-
putation requires O(d ∗ m) multiplications, where m is the
maximum degree of each variable and d is the number of
variables. Therefore, the worst case complexity of the algo-
rithm is O(d ∗ md+1).
Example: Let us consider the following polynomial which
has 2 variables and 9 monomials and suppose variables’ bit-
width is 4 (n = 4):

poly = 4x3y3 + 17x3y2 + 12x3y + 14x2y3 + 48x2y2

+ 36x2y + 13xy3 + 32xy2 + 24xy

Iteration 1. mon = 4x3y3 is taken into account since its vari-
ables have the largest degree w.r.t. those of other monomials
and a = 4; k1 = 3; k2 = 3; k! = k1!∗k2! = 3!∗3! = 36. Since
a ∗k!/2n = 4 ∗ 36/24 = 9, the monomial is degree-reducible
which means this monomial can be removed. The reduced
monomial is computed as follows (line 11 in Fig. 3):

reducedQ = 4x3y3 − 4(x)(x+ 1)(x+ 2)(y)(y+ 1)(y+ 2)

= −12x3y2 − 8x3y− 12x2y3 − 36x2y2

− 24x2y− 8xy3 − 24xy2 − 16xy

updated poly = poly−mon+ reducedQ

= 5x3y2 + 4x3y+ 2x2y3 + 12x2y2 + 12x2y

+ 5xy3 + 8xy2 + 8xy

Iteration 2. poly = updated poly and mon = 5x3y2 are
taken into account, where a = 5; k1 = 3; k2 = 2; k! =
k1! ∗ k2! = 3! ∗ 2! = 12; v2(k!) = 2; αk = 2n−v2(k!) − 1 =
24−2 − 1 = 3. Since a ∗ k!/2n = 5 ∗ 12/24 = 15/4, the
monomial is not degree-reducible, however it is coefficient
reducible because a > αk (5 > 3). Therefore we rewrite
5x3y2 = q ∗ (αk + 1) ∗ x3y2 + r ∗ x3y2, where q = r = 1. The
second term r ∗ x3y2 = x3y2 is not reducible, while the first
term q ∗ (αk + 1) ∗ x3y2 = 4x3y2 can be removed as follows
(lines 13–15 in Fig. 3):

reducedQ = 4[x3y2 − x(x+ 1)(x+ 2)(y)(y+ 1)]

= −4x3y− 12x2y2 − 12x2y− 8xy2 − 8xy

result = result+ r ∗ x3y2 = 0+ x3y2 = x3y2

updated poly = poly−mon+ reducedQ = 2x2y3 + 5xy3

Iteration 3. poly = updated poly and mon = 2x2y3 are
taken into account, where a = 2; k1 = 2; k2 = 3; k! =
k1!∗k2! = 2!∗3! = 12; v2(k!) = 2; αk = 24−2−1 = 3. Since
a∗k!/2n = 2∗12/24 = 3/2 and a < αk (2 < 3) the monomial
is neither degree-reducible nor coefficient reducible. There-
fore this monomial can not be reduced (line 16 in Fig. 3):

reducedQ = 0

result = result + mon = x3y2 + 2x2y3

updated poly = poly − mon + reducedQ = 5xy3

Iteration 4. poly = updated poly and mon = 5xy3 are
taken into account, where a = 5; k1 = 1; k2 = 3; k! =
k1! ∗ k2! = 1! ∗ 3! = 6; v2(k!) = 1; αk = 24−1 − 1 = 7. Since
a∗k!/2n = 5∗6/24 = 15/8 and a < αk (5 < 7) the monomial
is neither degree-reducible nor coefficient reducible. There-
fore the final polynomial is as follows:

result = result + mon = x3y2 + 2x2y3 + 5xy3

4.2 Bit-Level Adder Extraction

Arithmetic functions in digital circuits are almost always
implemented using addition as the base function. For in-
stance, multiplication is based on addition where two stages
are required. In the first stage, the partial products are gen-
erated which are the inputs to the second stage that is a col-
lection of addition circuits. The question is which pairs of
vectors have been added with each other in the addition
network. The proposed method consists of an initializa-
tion phase, which will be followed by a stepwise word-level
adder-extraction process. The adder-extraction approach
maps the logic-optimized gate net-list to a global Bit-Level
Adder (BLA) representation.

4.2.1 Definitions

In this section, we are going to present a compatible repre-
sentation to cover all possible addition processes for a mul-
tiplier without exhaustively checking all of them. For this

ALIZADEH and FUJITA: A UNIFIED FRAMEWORK FOR EQUIVALENCE VERIFICATION OF DATAPATH ORIENTED APPLICATIONS
989

purpose, the following definitions are used.
Definition1 (ADD SET): ADD SET is the set of word-level
results obtained from extracted adders. In the initialization,
this set consists of initial partial product vectors. Then after
extracting each word-level adder, this set will be updated by
merging the two added partial product vectors.
Definition2 (LSB POS(X)): The function: LSB POS(X)
gives the Least-Significant Bit (LSB) position of X, which
is a member of ADD SET . In the initialization phase of an
n-bit multiplier, where the members of ADD SET are par-
tial product vectors (Pi), the LSB POS for a Pi can easily be
calculated. If the partial product vectors are initially placed
in ADD SET in an ascending order in terms of their LSB
positions, then the LSB position of Pi will be equal to i:

LSB POS(Pi) = i (2)

Definition3 (MSB POS(X)): The same function can be de-
fined to determine the position of the Most-Significant Bit
(MSB) of a member in ADD SET . In the initialization phase
of an n-bit multiplier, if the partial product vectors are sorted
in an ascending order in terms of their LSB positions, we
have:

MSB POS(Pi) = i + n − 1 (3)

Definition2 and Definition3 determine the range of bits in
a vector, which can be either “1” or “0”. Calculating the
MSB POS and LSB POS functions for all the ADD SET
members makes it possible to evaluate the ABL representa-
tion of all the possible adder-extractions from the ADD SET
members.

4.2.2 ADD SET Initialization

For each multiplier, there are two possible ADD SETs in the
initialization. Exchanging the input vectors: A and B results
in two different partial product vector initializations. Con-
sider we have all the bit-level partial products of A and B as
inputs: AiBj (i = 1, 2, . . . , n and j = 1, 2, . . . , n). It means
that for an n-bit multiplier, there are n2 numbers of avail-
able bit-level partial products. The initial word-level partial
products can be arranged in two ways leading to two sepa-
rate initial ADD SETs. The two possible initial ADD SETs
are listed below, where a vector Pi has been expressed by
a 1 × n matrix.

ADD SET#1=
{
P̂i

∣∣∣ P̂i= [AiBn, AiBn−1, . . . , AiB1]
}

(4)

ADD SET#2=
{
Pi

∣∣∣ Pi= [AnBi, An−1Bi, . . . , A1Bi]
}

(5)

(i=1, 2, . . . , n)

Our algorithm starts with the above two possible initial
ADD SETs. Then it will search for word-level adders us-
ing an efficient bit-level representation of adders. As soon
as the first adder is extracted, one of the above ADD SETs,
which does not match the extracted adder, will be eliminated
and the algorithm carries on with the other ADD SET.

4.2.3 Example

Consider F = A×B+3×C = P1+P2+P3+P4+C+2×C,
where A, B and C are 4-bit unsigned integer vectors and
Pi is a partial product vector, i.e., Pi = Ai ∗ Bi. The algo-
rithm starts with a set of vectors for the addition network,
called ADD SET. In this example the initial ADD SET is
{P1, P2, P3, P4,C, 2C}. Then a first-level XOR search will
be executed to extract all the XOR terms, while their in-
put signals are from the ADD SET . Each extracted XOR
term may refer to a word-level adder with respect to its in-
put signals. In this way the extracted XOR terms will be
categorized into some groups, in which each group refers
to a specific word-level adder. Generally we can represent
each word-level addition in an ADD SET by the Bit-Level
Adder (BLA) schematic in Fig. 4. If X1 and X2 are unsigned
integers, we have:

k = LSB POS(X2) − LSB POS(X1) (6)

FA NUM = MSB POS(X1) − LSB POS(X2) (7)

HA NUM = MSB POS(X2) −MSB POS(X1) (8)

Where HA NUM and FA NUM are the number of half-
adders and full-adders in the BLA representation of X1 + X2

and LSB/MSB POS(Xi) gives the Least/Most-significant bit
position of Xi. Also we have:

LSB POS(X1 + X2)

= min{LSB POS(X1),LSB POS(X2)} (9)

MSB POS(X1 + X2)

= max{MSB POS(X1),MSB POS(X2)} + ε (10)

If adding X1 and X2, results in a carry overflow, ε in (10)
will be equal to “1”, otherwise it would be zero.

After the first-level XOR extraction and categoriz-
ing them based on their references adder representation in
Fig. 4, the number of XOR terms in each category must be
equal to FA NUM + 1. Therefore, if this condition is true,

Fig. 4 BLA representation.

990
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

the equivalence checking of next-level XOR terms and carry
signals will be executed to map the net-list to a dynamically
built reference adder. If this process fails the whole net-list
is not equivalent to the high-level description. This issue
provides a fast convergence for the proposed method. Oth-
erwise, if the XOR category does not include FA NUM + 1
number of XOR terms, the category will be rejected and they
will be merged with the new extracted XOR terms in the
next adder-extraction iterations to complete the new XOR
categories. This verification process succeeds if the whole
net-list is mapped to the high-level description.

As an example consider the addition network of P1 +

P2 + P3 + P4 in Fig. 5, which refers to a 4-bit unsigned in-
teger multiplier. In the first iteration five first-level XOR
gates will be extracted. These XOR terms are labeled by
Xi, j, which refers to the jth first-level XOR gate extracted in
the ith iteration. The non-labeled XOR gates in the net-list
are the next-level XORs. The other parameter Pi(j) is the
jth MSB of the ith partial product vector in ADD SET . The
XOR terms can be divided into three categories. The algo-
rithm starts evaluating each category by assigning it a refer-
ence adder. The first category is {X1,1}, which refers to the
word-level addition of P1 + 2P2. The evaluation of this cat-
egory easily results in its rejection as FA NUM + 1 = 3 � 1
based on (7) above.

Then the algorithm evaluates the second XOR cate-
gory: {X1,2, X1,3, X1,4}, which refers to P2 + 2P3 and satisfies

Fig. 5 Mapping the word-level adders to a 4-bit unsigned multiplier.

the condition, i.e. FA NUM + 1 = 3. Therefore, the next-
level XORs will be extracted after performing the equiva-
lence checking between each carry signal in the BLA model
and the original circuit from LSB to MSB. After mapping
the reference adder to the original circuit, ADD SET will be
updated to {P1, P2 3, P4}, in which we have:

P2 3 = P2 + P3 = [P2 3(6), . . . , P2 3(1)]

MSB POS(P2 3) = max{n + 1, n + 2} + 1 = 7

LSB POS(P2 3) = min{2, 3} = 2, k(P2 3) = 3 − 2 = 1

The same process will be applied for the third category:
{X1,5}, and the second adder will be extracted. The second
extracted adder calculates P1 + 8P4. As a result the next up-
dated ADD SET will be equal to {P1 4, P2 3}. After evaluat-
ing the first iteration’s XOR terms, the second iteration be-
gins and extracts five first-level XOR terms, which are also
shown in Fig. 5. All these XOR terms are mapped to one
category, which refers to P1 4 + 2P2 3. It is interesting that
the value of FA NUM+1 for the equivalent adder of this cat-
egory is 6 and the previously rejected XOR term: X1,1, will
complete the category. After mapping the carry signals, the
final adder will be extracted from the net-list and the final
ADD SET equal to {P1 2 3 4} will be obtained. Note that for
an n-bit booth-encoded multiplier, i.e, A × B, we have the
following initial product vectors for the addition network:

ADD SET = {Pm | Pm = (−2Ai+Ai−1+Ai−2)×B} (11)

(i=2m + 1≤n), (A−1=0, m=0, 1, 2, . . .)

With the formula above, we can extract and map adders in
a similar way as shown above.

5. Experimental Results

In this section, we report two types of experiments that show
the superiority of the HED compared to other approaches.
In the first experiment, we have run Modular HED on some
benchmarks in order to compare the results with those of
proposed method in [12] as well as BDD, *BMD, SAT-
miniSat [15] and MILP [11]. In another experiment, we
have tried to represent BLA descriptions in HED. We im-
plemented the HED package in C++ and carried out on an
Intel 1.8 GHz Core 2 and 1 GByte of main memory running
Windows XP.

5.1 Comparison with Other Technique

In this experiment, we follow up on comparing our approach
with CUDD-BDD, *BMD, SAT-miniSat and MILP by em-
ploying phase-shift keying (PSK) used in digital commu-
nication, anti-aliasing functions (AAF), digital image re-
jection unit (DIRU), Degree-4 Filter (D4F) Savitzky Golay
(SG) filter, MIBENCH (MI) polynomial used in automotive
applications, Chebyshev (CHEB) polynomial and Quartic
Spline (QS) benchmarks [12]. For each test-case, we are
given two descriptions to be verified whether or not they are
equivalent. Some of these designs were available as RTL

ALIZADEH and FUJITA: A UNIFIED FRAMEWORK FOR EQUIVALENCE VERIFICATION OF DATAPATH ORIENTED APPLICATIONS
991

Table 1 Modular HED versus contemporary approaches.

code, while the others were available as high-level descrip-
tion in C code. The related RTL codes for these high-level
descriptions were automatically generated using high-level
synthesis tools. After that, two descriptions are represented
in HED and reduction procedure has been applied simulta-
neously in order to find out whether or not two descriptions
are equivalent.

It was found that BDD could solve the problem for
AAF, D4F, MI and CHEB benchmarks, but it failed for
PSK, DIRU, SG and QS test-cases. For all benchmarks
in Table 1, miniSat, *BMD and MILP could not solve the
problem within the time-limit of 500 or 1000 seconds. The
*BMD is a word-level decision diagram which is able to rep-
resent functions with Boolean domain and an integer range,
while HED is capable to represent functions with hybrid
Boolean/integer domains and integer ranges. Therefore,
when the degree (k) of a polynomial increases, *BMDs are
not satisfactory due to the fact that their size increases O(nk),
where n is the bit-vector size. In our benchmarks the bit-
vector size is 16. For instance consider F = A ∗ B where A
and B are 16-bits wide. To construct *BMD, we have to take
into account A = 215∗a15+· · ·+a0 and B = 215∗b15+· · ·+b0

and then compute A ∗ B w.r.t. bit-level variables (ai and bi

for i = 0 to 15). It is clear that the number of nodes will
be increased rapidly due to bit-level variables. However in
HED, we just need to represent for example A∗B, instead of
(2n−1 ∗ an−1 + · · ·+ a0) ∗ (2n−1 ∗ bn−1 + · · ·+ b0), where A and
B are taken into account as word-level variables. Obviously,
increasing the number of bits (bit-width) only increases the
amount of computations needed to reduce polynomials as
mentioned in Sect. 4.1.

Moreover, our approach is not only faster than BDDs,
*BMDs, miniSat and MILP based equivalence checking
techniques, but also reports better performance in compar-
ison with the method in [12] which is based on symbolic
algebra tools such as MAPLE. For instance, consider DIRU
benchmark. In Modular-HED, the CPU time required to
check the equivalence of the given designs is 0.016 s which
is much less than 14.4 s of the proposed method in [12]. Ob-
viously, the performance differences are multiple orders of
magnitude due to the differences between bit-wise analysis

and word-wise analysis. Also the proposed method in [12]
needs to call MAPLE for each computation while in our
approach all computations are carried out internally. In
addition, after reducing the polynomials in Modular-HED,
equivalent polynomials are automatically detected where
the computation time is O(1). If two polynomials F1 and F2

are not equivalent, F1 −F2 in HED, symbolically represents
the difference between two functions which is directly re-
lated to the source of bugs. It may not be easy to find out
bugs if symbolic algebra tools have been employed. In or-
der to prove our claim we need to give more experimental
results. However, we leave it as a future work to extend our
approach for arithmetic circuit debugging.

5.2 Scalability of Our Approach

In the second experiment, we have generated various poly-
nomials which differ from each other in terms of the max-
imum degrees and the number of variables. We are given
a description according to Eq. (12), where d is the number
of variables which varies from 2 to 8, while Deg indicates
degree of different polynomials. Similar to the first experi-
ment, for all benchmarks the bit-length n is 16. For example
if d = 2 and Deg = 4 we will have (x1)(x1+1)(x1+2)(x1 + 3)
(x2)(x2 + 1)(x2 + 2)(x2 + 3).

polynomial =
∏d

j=1

∏Deg−1

i=0
(x j + i) (12)

After representing each polynomial in HED and then ap-
plying Modular HED (Fig. 3), the experimental results are
summarized in Table 2 in comparison with those of sym-
bolic algebra tools like MAPLE. For most benchmarks in
Table 2, the method presented in [12] could not solve the
problem within the time-limit of 1200 seconds. In this ta-
ble, the CPU time (Time) in seconds, memory usage (Mem)
in MBytes and the number of HED nodes (Nodes) are re-
ported for different polynomials, where d and Deg give the
number of variables and degree of polynomials respectively.
It should be noted that the number of nodes for symbolic al-
gebra tools is not applicable (NA) and we could not report
the memory usage. For instance, consider the last row in this

992
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Table 2 Scalability of Modular-HED for different number of variables and degrees in comparison
with symbolic algebra techniques.

table, where Time, Mem and Nodes for a polynomial of de-
gree 20 have been provided. In this case,

∏d
j=1

∏Deg−1
i=0 (x j+i)

is given where the number of variables (d) varies from 2 to 8,
while Deg is 20. The results show that symbolic algebra ap-
proach [12] is only capable to solve the problem when the
number of variables (d) is 2.

It is obvious that in our approach equivalent polyno-
mials are automatically detected due to canonical represen-
tation of HED. However symbolic algebra tools such as
MAPLE need to check the equivalence polynomials through
some computations which spend lots of time and therefore
will not be efficient. Furthermore, the HED package can
be encapsulated into any design flow in order to check the
equivalence between different levels of abstractions, specif-
ically when we follow up a refinement-based design flow.

5.3 HED for Gate-Level Implementation

In order to have a practical comparison between the pro-
posed algorithm and the method in [4], we have synthesized
the speed-optimized multipliers using the Xilinx ISE-9 syn-
thesis tool on the XC95288XV CPLD device. The Xilinx
tool applies a CLA-adder structure to speed-optimized mul-
tipliers. On the other hand the area- optimization process
with ripple-carry adders has been applied to c6288 from
ISCAS-85 benchmark using the Synopsys Design Com-
piler tool. Table 3 tabulates the experimental results, where
m-bit-ripple is the m-bit area-optimized multiplier, while
the m-bit-CLA is the m-bit speed-optimized multiplier. The
method in [4] performs the XOR search within all the inter-
nal nodes and therefore it has to search the XOR gates within
the carry-signal logic blocks as well as equivalent XOR
blocks. This process can become really time-consuming in
large multipliers, due to the carry look-ahead logic block
expansions. On the other hand the proposed method per-
forms the first-level XOR search and does not proceed in
the carry look-ahead logic. It means that the XOR search
process in the proposed algorithm is almost similar for CLA
and ripple-carry adders in terms of speed. The “#evaluated
gates” column in Table 3 addresses the above issue.

The method in [4] evaluates all the logic gates in the

Table 3 Our approach versus ABL in [4].

net-list during XOR search and as a result “#evaluated
gates” for this method is equal to total number of logic
gates in the multiplier net-list. However, the proposed al-
gorithm evaluates much lower number of gates during the
XOR search, specifically, in large multipliers. Therefore,
the XOR search process is much faster in the proposed
method. Another factor, which makes the proposed algo-
rithm much faster than the counterparts, is the process of
categorizing XOR gates as explained in Sect. 4.2. By the
time the algorithm fails to extract a word-level adder from
an accepted XOR category, some bugs take place and there-
fore it stops the arithmetic verification process and reports
the location of bugs. Therefore, the proposed algorithm con-
verges really fast, even if it could not extract the equivalent
arithmetic circuit from the gate net-list.

The equivalence checking of carry signals takes place
for both methods. However, the method in [4] has to ex-
haustively check all the possible non-fulladder carries, hid-
den carries and full-adder carry signals for each extracted
XOR gate. Our method can observe if two cascaded XOR
terms should be taken into account as two half-adders or
a single full-adder needs to be extracted. The other inef-
ficiency of the ABL method in [4] was the unmapped OR
gates. In the BLA, we represent each product vector by LSB
and MSB functions and therefore each addition process can

ALIZADEH and FUJITA: A UNIFIED FRAMEWORK FOR EQUIVALENCE VERIFICATION OF DATAPATH ORIENTED APPLICATIONS
993

Table 4 Multipliers in HED versus ABL [4].

be evaluated whether or not it leads to a carry overflow. In
this way for each adder while evaluating the final half-adder
stage in the net-list, we do know that if the OR gate, instead
of XOR, is possible for the realization or not. Table 3 also
addresses these problems by the three columns, the number
of hidden-carry signals (#HC), the number of non-full-adder
carry misses (#NFAC) and the number of unmapped OR
gates (#ORMiss). As the multiplier becomes larger, these
issues become more troublesome and the method in [4] has
to exhaustively check different types of carry signals. The
number of unmapped OR gates will also be increased in
larger multipliers.

Furthermore, we have utilized the HED in order to ver-
ify the gate-level implementation of n ∗ n multiplier, where
n varies from 8 to 64. The experimental results of equiva-
lence checking between the gate-level description and a high
level specification are summarized in Table 4. In this ta-
ble, the number of bits, the number of HED nodes, CPU
time and memory usage (during processing the gate level
netlist) are reported in columns #Bits, #NN, Time (in sec-
ond) and Mem (in MByte) respectively. Although the row
WithoutEC tabulates those information just for representing
high level specification A*B in HED, the row With EC re-
ports them for equivalence verification of two descriptions.
The last column in this table reports the CPU time required
to run the ABL method which proves our claim that this
method is time-consuming in large multipliers. In Table 4,
column #Gate reports the number of gates to be processed
in ABL method [4] which similar to #of Evaluated Gates
column in Table 3 when m-bit CLA structures are consid-
ered. For instance, consider the last two rows in Table 4,
where 64-bit multiplier was verified. The ABL requires
124.2 s (With EC row) to check the equivalence between
the two descriptions. The HED package consumes 3.05 MB
memory and spends 7.1 s run time to represent A*B high
level description, where A =

∑63
i=0 2i ∗ ai; B =

∑63
i=0 2i ∗ bi.

While it requires 18.9 MB memory and 41.2 s CPU time to
check the equivalence between the bit level adder descrip-
tion extracted from the gate level net-list using our proposed
method and a high level description, i.e., A*B. Obviously,
the HED package spends some time to figure out isomorphic
sub-graphs and redundant nodes which is 41.2−7.1 = 34.1 s

for 64-bit multiplier.

6. Conclusion and Future Work

In this paper we have proposed a unified framework to ver-
ify the equivalence between different levels of abstractions
from a high level specification to a gate level implementa-
tion. We introduced the HED as a canonical decision di-
agram that not only supports modular polynomial compu-
tations over ring Z2n , but also is able to express ABL de-
scription of gate level implementations. We are interested
in applying HED to the verification of arithmetic datapath
computations over bit-vectors that have different bit-widths.
Another future work is to diagnose and locate the source of
bugs when the equivalence checking fails.

References

[1] B. Alizadeh and M. Fujita, “A canonical and compact hybrid word-
Boolean representation as a formal model for hardware/software co-
designs,” Fourth Workshop on Constraints in Formal Verification
(CFV), pp.15–29, 2007.

[2] I.A. Groute and K. Keane, “M(VH)DL: A MATLAB to VHDL
conversion toolbox for digital control,” IFAC Symp. on Computer-
Aided Control System Design, Sept. 2000.

[3] O. Sarbishei, B. Alizadeh, and M. Fujita, “Arithmetic circuit ver-
ification without looking for internal equivalences,” IEEE Interna-
tional Conference on Formal Methods and Models for Co-Design
(MEMOCODE), June 2008.

[4] M. Wedler, D. Stoffel, R. Brinkmann, and W. Kunz, “A normal-
ization method for arithmetic datapath verification,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.26, no.11, pp.1909–
1922, Nov. 2007.

[5] S. Horeth and R. Drechsler, “Formal verification of word-level spec-
ifications,” Proc. Design Automation and Test in Europe (DATE),
pp.52–58, 1999.

[6] R. Bryant, “Graph-based algorithms for Boolean function manipu-
lation,” IEEE Trans. Comput., vol.35, no.8, pp.677–691, 1986.

[7] R. Drechsler, B. Becher, and S. Ruppertz, “The K*BMD: A verifi-
cation data structure,” IEEE Des. Test Comput., vol.14, pp.51–59,
1997.

[8] M. Ciesielski, P. Kalla, and S. Askar, “Taylor expansion diagrams: A
canonical representation for verification of data flow designs,” IEEE
Trans. Comput., vol.55, no.9, pp.1188–1201, 2006.

[9] B. Alizadeh and M. Fujita, “Automatic merge-point detection for
sequential equivalence checking of system-level and RTL descrip-
tions,” International Symposium on Automated Technology for Ver-
ification and Analysis (ATVA), LNCS 4762, pp.129–144, 2007.

[10] C.-Y. Huang and K.-T. Cheng, “Using word-level ATPG and mod-
ular arithmetic constraint solving techniques for assertion property
checking,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol.20, no.3, pp.381–391, 2001.

[11] R. Brinkmann and R. Drechsler, “RTL-datapath verification using
integer linear programming,” Proc. ASP-DAC, pp.741–747, 2002.

[12] N. Shekhar, P. Kalla, and F. Enescu, “Equivalence verification of
polynomial datapaths using ideal membership testing,” IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst., vol.26, no.7, pp.1320–
1330, 2007.

[13] N. Hungerbuhler and E. Specker, “A generalization of the smaran-
dache function to several variables,” Electronic Journal of Combina-
torial Number Theory, vol.6, pp.A23, 1–11, 2006.

[14] L. Halbeisen, N. HungerBuhler, and H. Lauchli, “Powers and poly-
nomials in Zm,” Elem. Math, vol.54, pp.118–129, 1999.

[15] http://minisat.se/

994
IEICE TRANS. INF. & SYST., VOL.E92–D, NO.5 MAY 2009

Bijan Alizadeh received his B.S., M.S. and
PhD. degrees in computer engineering from the
University of Tehran, Iran in 1995, 1998 and
2004, respectively. From 2004 to 2006 he was
an adjunct Professor of Electrical Engineering
Department at the Sharif University of Technol-
ogy. In Fall 2006, he was a postdoctoral fel-
low at the VLSI Design and Education Center
(VDEC) in the University of Tokyo in Japan.
His research interests are in fundamental CAD
techniques for verification, synthesis, optimiza-

tion as well as test generation of digital VLSI circuits and systems.

Masahiro Fujita received his Ph.D. degree
in Engineering from the University of Tokyo in
1985 and shortly after joined Fujitsu Laborato-
ries Ltd. From 1993 to 2000 he had been as-
signed to Fujitsu’s US research office and di-
rected the CAD research group. In March 2000,
he joined the department of Electronic Engi-
neering in the University of Tokyo as a profes-
sor, and now a professor at VLSI Design & Ed-
ucation Center in the University of Tokyo. He
has been involved in many research projects on

various aspects of formal verification.

