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SUMMARY This paper presents effective and efficient implementation
techniques for DMA buffer overflow elimination on the Cell Broadband
EngineTM (Cell/B.E.) processor. In the Cell/B.E. programming model, ap-
plication developers manually issue DMA commands to transfer data from
the system memory to the local memories of the Cell/B.E. cores. Although
this allows us to eliminate cache misses or cache invalidation overhead,
it requires careful management of the buffer arrays for DMA in the ap-
plication programs to prevent DMA buffer overflows. To guard against
DMA buffer overflows, we introduced safe DMA handling functions for
the applications to use. To improve and minimize the performance over-
head of buffer overflow prevention, we used three different optimization
techniques that take advantage of SIMD operations: branch-hint-based op-
timizations, jump-table-based optimizations and self-modifying-based op-
timizations. Our optimized implementation prevents all DMA buffer over-
flows with minimal performance overhead, only 2.93% average slowdown
in comparison to code without the buffer overflow protection.
key words: DMA buffer overflow, DMA buffer overrun, Cell Broadband
EngineTM

1. Introduction

The buffer overflow or overrun attack has been a computer
security headache even before the famous Morris worm ap-
peared in the 1980s. This problematic vulnerability comes
from the lack of a data integrity model in the C and C++ pro-
gramming languages. Due to the lack of automatic bounds-
checking in C programs, unexpectedly large inputs can over-
flow buffer arrays and corrupt the stack or heap areas. In the
worst case, a system can be taken over by inserting mali-
cious code with a buffer-overflow attack.

To cope with this problem, several countermeasures
have been proposed and implemented. One of the solutions
is to develop applications with programming languages that
support run-time bounds checking, such as Java. Such pro-
gramming languages can stop the application’s execution
when they detect overflows or underflows of buffer arrays.
Safe compiler technologies [1], [2] allow us to generate a
safe executable that detects overflows without modifying the
source. For example, it is possible to detect stack smashing
buffer overflows by placing a ‘canary’ word before the re-
turn address on the stack. In the function prologue of the
callee, a random ‘canary’ is stored and the canary is veri-
fied by the function epilogue before returning to the caller.
PaX [3] or Exec Shield [4] use a different approach to pro-
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tect against buffer overflows. Their approach prevents arbi-
trary malicious code execution by using memory protection
mechanisms in the hardware or the operating system instead
of detecting buffer overflows.

Such countermeasures are effective in commodity PC
systems, but it is hard to apply them to specialized proces-
sors like the Cell Broadband EngineTM (Cell/B.E.) proces-
sor [5] because of differences in the processor architectures.
The Cell/B.E. processor is a heterogeneous multi-core pro-
cessor with 9 cores: one PowerPC Processor Element (PPE)
and 8 Synergistic Processor Elements (SPEs). It is possible
to apply the prior work against for PPE-side buffer over-
flows, because the PPE is a PowerPC-compatible chip and
hosts a traditional software stack where the operating sys-
tem or the hypervisor manages applications. On the SPE
side, however, there are no system-level protection mecha-
nisms against buffer overflows caused by an SPE program.

One of the special programming features of the
Cell/B.E. processor is that users are required to manually
copy data between the system memory and the local store
(LS) attached to each SPE. This is because programmer-
managed data copies can avoid cache misses and cache in-
validation overhead, which enhances the application perfor-
mance. Application programmers implement SPE code that
explicitly issues direct memory access (DMA) commands to
access the system memory.

From the security perspective, however, this Cell/B.E.-
specific programming requirement compels application de-
velopers to carefully manage the DMA buffer arrays to avoid
buffer overflows. In the worst case, DMA buffer overflows
by the SPE could also overwrite the original code and data
segments, which could allow arbitrary code execution. If
that SPE application were running with the system root priv-
ilege, it would be possible for an adversary to hijack not
only that SPE, but also the entire Cell/B.E. system. For ex-
ample, once an SPE program with the root privilege is com-
promised, that hijacked SPE program can illegally access a
file system or inject arbitrary malicious code on any DRAM
areas via DMA, even if the PPE-side programs including the
operating system or hypervisor are protected against buffer
overrun attacks by the previous countermeasures. Unfortu-
nately, in the current Cell/B.E. architecture, the SPE has no
hardware memory protection even though it has this DMA
buffer overflow vulnerability. It is hard to protect the origi-
nal SPE code, stack, and data segments and to prevent arbi-
trary code execution. There is a need for DMA buffer over-
flow prevention to avoid malicious code injection.
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This paper addresses this DMA buffer overflow prob-
lem on the Cell/B.E. architecture, and introduces efficient
and effective buffer overflow prevention techniques. Mil-
lions of Cell/B.E. chips are already deployed in game sys-
tems [6], embedded systems [7], and supercomputers [8],
[9]. We are contributing to addressing the DMA security
threats in a large variety of applications. The difficulties in
realizing efficient and effective DMA buffer overflow pre-
vention for the SPE are due to the following characteristics:

• Limited Resources

– An SPE has only 256 KB of LS. Every SPE ap-
plication must manage this small memory to al-
locate the code, stack, data, and heap areas. The
DMA buffer overflow prevention code must not
waste memory space.

• Lack of Memory Protection Mechanisms

– An SPE has no hardware-level memory protection
mechanisms such as ring-protection or an NX bit.
Stack or heap buffer overflows can overwrite any
of the content in the LS. Both kinds of overflows
must be prevented before the DMA commands are
executed.

• Minimum Performance Overhead

– Most SPE applications are carefully optimized to
accelerate computationally intensive tasks. The
DMA buffer overflow prevention code must not
impose noticeable performance overhead.

We have implemented optimized safe DMA library
calls that replace the original DMA library calls. Our safe
DMA library calls prevent buffer overflows from the stack
and in the heap before the DMA starts to write to the buffer
arrays. We optimized the safe DMA library calls by elimi-
nating branch operations. The empirical results showed that
we could prevent buffer overflows with minimal overhead,
an average performance decline of 2.93% in comparison
with the original and unmodified DMA library calls in the
case of single-block DMA transfers.

The remainder of the paper is structured as follows.
Section 2 discusses the related work and clarifies the draw-
backs of each technology. Section 3 briefly reviews the
Cell/B.E. processor architecture and then describes mech-
anisms for DMA buffer overflows. Section 4 focuses on the
DMA buffer overflow problem and proposes several opti-
mization methods. We evaluate our optimized buffer over-
flow elimination code in terms of the performance overhead
in Sect. 5. Finally, Sect. 6 concludes this paper.

2. Previous Work

A number of attempts to address buffer overflow and over-
run attacks have been made in the last few decades. Theoret-
ically, it is possible to eliminate the risks of buffer overflows
by performing bounds checking every time a program issues

any write operation to a buffer array. In this section, we cat-
egorize the previous work into four groups and clarify the
drawbacks in each approach.

2.1 Overflow-Free Approach

An overflow-free approach guarantees that buffer overflows
and underflows are prevented at the programming language
level. Java and .NET support this capability by perform-
ing bounds-checking in the runtime environment, in the Java
Virtual Machine, or in .NET’s Common Language Runtime.
With this approach, application programmers do not need
to worry about programming mistakes causing buffer over-
flows and underflows. Therefore, it is easy to implement
buffer-overrun-free code in such languages.

Unfortunately, the Cell/B.E. programming environ-
ment, and especially SPE programming environment, sup-
ports native code execution only. The reason is that safe
language environments impose overhead. In the Cell/B.E.
processor, each core has only 256 KB of local memory
in which code, data, and stack areas are allocated. It
is impractical to implement safe language runtime sys-
tems supporting bounds-checking with such limited hard-
ware resources. Also, the essence of the Cell/B.E. is to
directly use the Cell/B.E. hardware acceleration features
such as user-managed DMA with double-buffering, SIMD,
and dual-instruction issues to enhance the application per-
formance. Therefore, a C or C++ type of programming
model is most suitable for the Cell/B.E. environment for
the sake of performance and resource efficiency. We need
a lightweight method to handle the DMA buffer overflows
for the Cell/B.E. architecture.

2.2 Overflow Prevention Approach

An overflow prevention approach aims to detect buffer over-
flows before trying to execute any damaged code. Lib-
safe [10] is a dynamically loadable library that intercepts
insecure library calls from the target applications, espe-
cially from insecure functions such as strcpy(), gets(),
and sprintf(). For example, when a user program calls
strcpy(), Libsafe’s strcpy() is invoked before the libc
original strcpy() is executed. First, Libsafe determines
and compares the input string lengths and the upper bounds
of the output buffers on the stack. If an input string is larger
than its output buffer, Libsafe terminates that user program.
Otherwise, it passes control to the libc original strcpy().
Since Libsafe is automatically and dynamically preloaded
by the Linux library-preloading facility, users need not re-
compile their applications.

Libparanoia [11] also focuses on making unsafe libc
functions secure. Libparanoia provides secure versions of
the libc string manipulation functions with the same seman-
tics and functions. When a program statically or dynam-
ically linked to libparanoia calls strcpy(), libparanoia’s
strcpy() is invoked first, as in Libsafe. Libparanoia’s
strcpy() uses three steps. First, before copying strings,
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libparanoia saves the frame pointer and return address in
the data segment. Then it copies the strings from the in-
put buffers into the local output buffers on the stack. Fi-
nally, libparanoia compares the current frame pointer and
return addresses with the stored values. If those values do
not match, libparanoia terminates the program. Libparanoia
can detect buffer overflows only after the buffer overflows
occur, whereas Libsafe can check for buffer overflows be-
fore invoking the insecure libc functions.

Libsafe and libparanoia focus only on stack smashing
attacks. In contrast, our buffer elimination techniques deal
with both stack buffer overflows and heap buffer overflows
in an unified way.

2.3 Overflow Detection Approach

StackGuard [1], an overflow detection approach, inserts
code to generate a random value (a ‘canary’) in the function
prologue. The canary is placed next to the return address.
If a buffer overflow occurs, both the canary and the return
address will be replaced. Thus, it is possible to detect buffer
overflows by checking if the canary has been changed. To
implement this test, StackGuard also inserts canary check-
ing code in the function epilogue. When the function ex-
its, the canary checking code compares the current canary
on the stack and the original one generated in the function
prologue. If the canary has changed, then StackGuard ter-
minates the program.

The main idea of the Stack Smashing Protect (SSP) [2]
system is similar to that of StackGuard. In SSP, a more ad-
vanced method is implemented to deal with argument over-
writing and frame pointer overwriting. SSP protects against
such attacks by changing the stack layout. It places the local
variables at the low end of all arrays, and inserts a canary
(SSP calls the canary a ‘guard’) between the previous frame
pointer and the array. In this layout, local variables are al-
ways unaffected by overflows of the arrays. This protects
functions from argument overwriting. A function only needs
to make a copy of the pointer arguments to local variables
and use copies of these variables. In addition, since a guard
is located at the upper bound of any array, we can detect any
overwriting of the previous frame pointer by checking the
guard before and after the use of arrays.

StackGuard and SSP focus on buffer overflows in the
stack. In contrast, this paper addresses DMA buffer over-
flows not only in the stack, but also in the heap. Also, there
are other problematic behaviors of SPE DMA buffer over-
flows. A DMA transfer request beyond the end of the LS
can overwrite the original code and data segments as well
as the application stack. This is because an operation such
as a ‘load’ or ‘store’ to an address beyond the LS wraps to
an address at the low end of the LS [12]. This means that an
adversary could overwrite and disable the original code con-
taining any stack inspection code by exploiting this address
wrapping operation.

SPE application compilers like spu-gcc [13] and
spuxlc [14] also provide options (-fstack-check or

-qcheck=stack) to generate stack inspection code. Instead
of generating a canary word, the generated inspection code
tests for buffer overflows by checking the Available Stack
Space stored in the stack pointer register [15]. The Avail-
able Stack Space word contains the limit of the free space
for stack growth. This word is decremented when a new
stack frame is allocated, and incremented when the top stack
frame is released. The Available Stack Space word should
always be positive or zero in normal cases. The stack inspec-
tion code inserted in the function prologue and epilogue can
detect stack overflows if that word becomes negative.

However, the stack inspection code generated by SPE
application compilers fails to detect buffer overflows, if the
Available Stack Space word is positive, but incorrect. Un-
fortunately, the SPE cannot prevent the code area from be-
ing overwritten for the same reason as in the StackGuard
and SSP cases.

2.4 Overrun Blocking Approach

PaX [3], Exec Shield [4], WˆX [16], XD bit [17], and En-
hanced Virus Protection [18] are categorized into this group.
PaX, WˆX, and Exec Shield are software-based solutions,
while the XD bit and Enhanced Virus Protection are imple-
mented in Intel chips and AMD chips, respectively. This
general approach prevents the execution of injected mali-
cious code by controlling the permission of memory pages
or segments instead of preventing buffer overflows.

Address Space Layout Randomization (ASLR) in PaX,
WˆX, and Exec Shield is one of the techniques used to pre-
vent illegal code execution, in which the base positions of
the executable, the heap, and the stack are randomized when
the application is loaded. This makes it harder to find a point
of attack. Another way to prevent illegal code execution is
to make the stack non-executable by using the IA-32 seg-
mentation mechanism. As implemented in Exec Shield, the
code segment size limit is set to the boundary of the applica-
tion stack area and the application code area, which makes
the code executable only within the application code area.

However, these methods cannot be applied to the
Cell/B.E. architecture. First, the SPE does not support any
hardware security mechanism for memory pages or seg-
ments. This means that the SPE does not have permission
control for its local memory. Second, it is hard to apply
the ASLR as used in PaX, WˆX, or Exec Shield to the SPE
applications, because randomizing the base address of the
code, stack, and heap segments in the SPE executable wastes
the limited local memory. We need to make efficient use of
the limited resources.

3. DMA Buffer Overflows

3.1 Cell/B.E. Overview

Figure 1 is a block diagram of a Cell/B.E. processor. The
Cell/B.E. processor has a heterogeneous multiple core ar-
chitecture, in contrast to commercial PCs and servers, which
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Fig. 1 Block diagram of the Cell Broadband Engine architecture.

typically use the homogeneous multi-core processor ap-
proach.

There are two kinds of cores on the chip: one 64-bit
Power Processor Element (PPE) and eight Synergistic Pro-
cessor Elements (SPEs). The PPE is a PowerPC proces-
sor that runs an operating system to manage the comput-
ing resources such as processing units, system memory, and
other peripherals. In contrast, the SPEs are computational
workhorses that support RISC-style single instruction, mul-
tiple data (SIMD) computation, wide and large (128 128-bit)
register files, and 256 KB of physical private memory, called
the Local Store (LS). The LS is not a hardware cache, but a
working memory area. Software on the SPEs or the PPE ex-
plicitly issues DMA commands to transfer data between the
system memory and the LS. The high-bandwidth Element
Interconnect Bus (EIB) connects these processor cores to
each other and to the off-chip system memory and I/O.

3.2 DMA Transfer Types and APIs

The Cell/B.E. processor supports two types of DMA trans-
fers at the hardware level: a single block DMA transfer and
a list DMA transfer. The single block DMA transfer copies
up to 16 KB of data per request between the system mem-
ory and the LS. In contrast, the list DMA transfer supports
scatter-gather data copies. Since this paper addresses DMA
buffer overflows on the SPE side, the DMA transfers from
the system memory to the LS are focused on in this section.

Table 1 shows the DMA transfer APIs which are most
frequently used. The mfc get() call is used to perform a
single block DMA transfer from the system memory to the
LS. The mfc get() call requires 6 parameters, of which
the first 3 parameters are important here. The ls is a pointer
to the destination DMA buffer array in the LS, ea is the
effective address† of the data source, and the size is the data
size. The mfc get() call transfers a block of consecutive
data of size bytes from ea to ls.

The mfc getl() is used for a list DMA transfer,
and requires 7 parameters. Compared with mfc get(),
mfc getl() has no parameters for DMA transfer size. In-
stead, the third parameter, list and the fourth parameter,
list size are specific to this function. In the list DMA
transfer, each list element defines the DMA transfer size

Table 1 APIs for SPE-initiated DMA calls that move data from an
effective address to the LS.

(void) mfc get(volatile void *ls, uint64 t ea,

uint32 t size, uint32 t tag, uint32 t tid, uint32 t rid)

ls destination LS address
ea source effective address
size DMA transfer size
tag DMA tag ID
tid transfer class ID
rid replacement class ID

(void) mfc getl(volatile void *ls, uint64 t ea,

mfc list element *list, uint32 t list size,

uint32 t tag, uint32 t tid, uint32 t rid)

ls destination LS address
ea source effective address
list DMA list
list size DMA list size
tag DMA tag ID
tid transfer class ID
rid replacement class ID

Fig. 2 Examples of DMA buffer overflows: (a) Stack smashing by illegal
heap expansion, (b) Stack smashing by illegal local variable expansion.

and the offset from the ea. As specified by the list el-
ements, mfc getl() gathers and copies the scattered data
from the effective addresses to the ls.

3.3 DMA Buffer Overrun Attacks

Unfortunately, an adversary can easily execute arbitrary ma-
licious code on an SPE by abusing the DMA buffer overflow
vulnerabilities in the current Cell/B.E. runtime environment.
The SPE has no memory protection mechanism such as page
or segment permission control to protect against illegal ac-
cess to its LS. Thus, an illegal heap expansion as well as
an illegal expansion of the local variables could easily cor-
rupt the SPE application stack (Fig. 2). In the worst case, an
adversary might overwrite the link register save area hold-
ing a return address and jump to arbitrary malicious code.

†The effective address space is a 64-bit address space in the
POWER architecture.
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In the current Cell/B.E. architecture, a DMA transfer re-
quest beyond the size of the LS can overwrite the original
code and data segment as well as the application stack. This
is because an operation such as ‘load’ or ‘store’ to an ad-
dress that is beyond the end of the LS is performed at the
wrapped address. This means that the adversary could dis-
able the original code containing buffer-overflow inspection
code with malicious use of this address wrapping operation.

4. DMA Overflow Prevention

The current Cell/B.E. runtime system lacks DMA buffer
overflow protection. To address this problem, this paper
proposes an efficient and effective DMA overflow elimina-
tion technique to protect against both stack and heap buffer
overflows. Our proposed idea would be categorized as an
“Overflow Prevention Approach” in Sect. 2. First, our basic
DMA overflow elimination mechanism is described. Then
several optimization techniques to reduce the performance
overhead of the inspection code are introduced.

4.1 Basic Idea

Considering the characteristics of DMA buffer overflows in
the SPE, it is imperative that countermeasures against this
problem prevent SPE applications from causing buffer over-
flows and terminate such applications before any attempts
succeed.

Similar to the previous approaches of Libsafe and
libparanoia, we replace the unsafe mfc get() and
mfc getl() with safe versions. This is because we want
minimal performance overhead and a small footprint for the
inspection code.

Figure 3 is the pseudocode for our safe DMA func-
tion calls. Our safe mfc get() (Fig. 3 (a)), a safe ver-
sion of a single block DMA transfer function, obtains the
current stack pointer and the backchain pointer in Lines 2
and 3. In Line 4, it computes the upper bound of the allo-
cated buffers in the LS with the specified size. In Line 5,
safe mfc get() compares ls and stack to check if ls is
or is not located in the stack. If ls is defined as a local vari-
able in the stack, our safe safe mfc get() tests whether or
not the upper bound of the allocated buffers exceeds the lat-
est backchain pointer in Line 6. It immediately terminates
the SPE application when it detects that upper boundmight
smash into the wall of the bcp in Line 7. If ls is located in
the heap area or in the data area, then safe mfc get() per-
forms the conditional check for the upper bound in Line
10. Similar to Line 6, it checks if the upper bound is
greater than or equal to the current stack pointer, instead
of using the latest backchain pointer to protect the stack. If
there are no violations for the use of the DMA buffer arrays,
then safe mfc get() issues a DMA GET request to copy
the data from the system memory into the LS.

We use the same approach as safe mfc get() for
safe mfc getl() to eliminate buffer overflows. The ad-
ditional operations in safe mfc getl() are computing the

1 safe_mfc_get(ls, ea, size, tag, tid, rid) {
2 stack:=current stack pointer
3 bcp:=latest backchain pointer
4 upper_bound:=ls+size
5 if (ls>stack) then
6 if (upper_bound >=bcp) then
7 halt with an error
8 end if
9 else

10 if (upper_bound >=stack) then
11 halt with an error
12 end if
13 end if
14 issue the dma GET request
15 }

(a) Pseudocode of safe mfc get()

1 safe_mfc_getl(ls,ea,list,list_size,tag,tid,rid) {
2 stack:=current stack pointer
3 bcp:=latest backchain pointer
4 for i:=0 to (list_size >> 3) do
5 begin
6 {size:=size+list[i].size}
7 end
8 upper_bound:=ls+size;
9 if (ls>stack) then

10 if (upper_bound >=bcp) then
11 halt with an error
12 end if
13 else
14 if (upper_bound >=stack) then
15 halt with an error
16 end if
17 end if
18 issue a dma list GET request
19 }

(b) Pseudocode of safe mfc getl()

Fig. 3 The code examples of DMA buffer overflow elimination.

upper bounds of the target buffer arrays by parsing list.
Looking back at the original interface of mfc getl() again,
there is no information about the total DMA transfer size in
the parameters. To obtain the size of the total DMA trans-
fer, it is necessary to extract DMA transfer size from each
DMA list element. We perform these operations in Lines
4 to 7 in Fig. 3 (b). Once a DMA list GET request is is-
sued, the SPE’s DMA hardware processes a scatter/gather
operation specialized for list DMA copies, and locates the
gathered data in the ls. For this reason, the upper bounds
checking including the calculation of the total transferred
data size must be performed before issuing any DMA list
GET request as shown in Fig. 3 (b).

Although, in the current implementation, application
programmers must explicitly specify which versions of the
DMA functions are used in the source code, this switching
feature could be implemented as a compiler option. Meth-
ods of secure DMA code insertion using compilers are pos-
sible future work.

4.2 Code Optimization

In Fig. 3, there are many branches in both pieces of code.
In SPE code, branch operations are relatively expensive. In
the worst case, the branch penalty is 19 clock cycles. This
is because the SPE has no branch prediction circuit. In gen-
eral, most SPE applications slice a large amount of data into
small pieces to fit in the LS. They transfer and process
each small chunk of data in the loop until the final chunk
arrives. Thus, this branch penalty would cumulatively in-
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crease. Thus, branch elimination or branch penalty reduc-
tion is the primary optimization target. This section focuses
on the single block DMA, but the same ideas can also be
used for the list DMA.

In the current work, we have implemented three dif-
ferent methods to optimize branches in our original buffer
overflow elimination. The first approach is an intuitive one
of giving the compiler branch hints so the software can spec-
ulate that the code will branch to the target path. We call
this approach branch-hint-based optimization. The second
approach is a jump-table based approach. In general, a
jump table is implemented as a function pointer array, and
the code branches to a target path by choosing the index
of that array and calling the selected function pointer. We
used SIMD operations for the table content selection. The
third approach is an unique approach. The inspection code
dynamically overwrites the instructions according to their
branch paths. We call this approach self-modifying-based
optimization. The details of those approaches are described
below.

Figure 4 (a) gives pseudocode for the first approach,
safe mfc get A(). To eliminate the nested branches
in the original safe mfc get(), this new approach uses
spu cmpgt and spu sel, which are both SPU SIMD op-

1 safe_mfc_get_A(ls, ea, size, tag, tid, rid) {
2 vector stack:=current stack pointer
3 vector bcp:=latest backchain pointer
4 vector upper_bound:=spu_add(ls, size)
5 vector cmp_r1:=spu_cmpgt(stack, ls)
6 vector cmp_r2:=spu_cmpgt(upper_bound, stack)
7 vector cmp_r3:=spu_cmpgt(upper_bound, bcp);
8 vector mask1:=spu_sel(cmp_r3, cmp_r2, cmp_r1);
9 vector results:=spu_sel(all0, all1, mask1);

10 if (__builtin_expect(results != 0, 0)) then
11 halt
12 endif
13 issue a dma GET request
14 }

(a) Branch-hint based optimization

1 static vector op1:={nop operations}
2 static vector op2:={halt operations}
3 safe_mfc_get_B(ls, ea, size, tag, tid, rid) {
4 snipped // same as line 2-8 of safe_mfc_get_A
5 /* second spu_sel */
6 func_t op:=(func_t)spu_sel(op1, op2, mask1);
7 op();
8 issue a dma GET request
9 }

(b) Jump-table based branch elimination

1 static vector op1:={nop operations}
2 static vector op2:={halt operations}
3 safe_mfc_get_C(ls, ea, size, tag, tid, rid) {
4 snipped // same as line 2-8 of safe_mfc_get_A
5 INLINE_ASM(
6 /* second spu_sel */
7 select op, op1, op2, mask1
8 store op, label_1
9 /* some code consuming 6 cycles here */

10 label_1:
11 nop
12 lnop
13 nop
14 lnop
15 );
16 issue a dma GET request
17 }

(c) Self-modifying based branch elimination

Fig. 4 The pseudo code for three optimization methods.

erations. In Line 5, safe mfc get A() compares stack
and ls, and stores the result of the comparison into cmp r1.
When ls is located in the stack, which means that ls is
larger than stack, all of the bits of cmp r1 become ze-
ros. Otherwise, cmp r1 is full of ones. In Lines 6–7, the
code checks if the upper bound is greater than stack or
bcp, which corresponds to Lines 6 and 10 in Fig. 3 (a). The
spu sel(a, b, c) is a key SIMD operation, where the
first parameter, a or the second parameter, b is selected
based on the third parameter c. The first spu sel in Line 8
checks if ls is allocated in the stack or in the heap, and the
second spu sel in Line 9 checks for stack buffer overflows
or heap violations following the results of the first spu sel
operation. Finally, it branches to a target path depending on
the result of the second spu sel operation. In this branch
operation, we have added the builtin expect directive
for a branch hint to the compiler. The code predicts that the
conditional statement is false, which does not cause any per-
formance penalty in the normal case. If the code detects a
buffer overflow (from an incorrect prediction), then it termi-
nates the application.

Figure 4 (b) shows the second approach, which does
not use the builtin expect directive. To completely
eliminate branches, safe mfc get B() causes the second
spu sel in Line 6 to return a value that can be cast as a
function pointer. If this DMA function call might cause a
buffer overflow, then the spu sel returns a value for a ‘halt’
instruction. Otherwise, it returns a value for a ‘nop’ instruc-
tion. Then safe mfc get B() invokes f(), which is the
result of the second spu sel. However, this approach has
some overhead for the function call using a function pointer.

The pseudocode in Fig. 4 (c) is a special implementa-
tion to completely avoid branches. As the description im-
plies, safe mfc get C() dynamically overwrites its own
code to branch to the target path. Our code protects against
overwriting the .text segment of an SPE application by us-
ing DMA buffer overflows. This special implementation
can be safe. The difference between safe mfc get B()
and safe mfc get C() is in the operations after the second
spu sel. Note that an SPE executable can issue a ‘write’
operation to an arbitrary LS address. This is because the
SPE has no access permission control (e.g., read-only, exe-
cutable, or read-write) for the LS. Thus, the inline assembler
allows us to use self-modifying code. In the current imple-
mentation, safe mfc get C() always replaces the quad-
word starting at label 1 with op1 or op2, depending on
the result of the second spu sel in Line 7. Line 8 writes
the code at the label 1, but there is a latency for this up-
date of 6 clock cycles. If the DMA operations are safe, then
it executes a ‘nop’ instruction, but if not, then it executes
a ‘halt’ instruction. In comparison with the first approach,
both the second and the third approaches have no branch-
miss penalties. The second and third approaches are effec-
tive when we cannot know the branch probabilities ahead of
time or need to eliminate prediction-miss penalties as well
as branch penalties.

The three branch optimization techniques introduced
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here do not change the functionalities of our original
buffer overflow elimination procedures, safe mfc get()
and safe mfc getl(). Thus, we believe the same buffer
overflows will be prevented with those approaches. We will
study the performance of those optimization techniques in
the next section.

5. Experimental Results

This section presents empirical results for the performance
overhead of our safe mfc get() and mfc getl(). In this
experiment, we use a micro-DMA benchmark program,
dmabench, provided as a part of the IBM SDK for Multi-
core Acceleration. The throughputs of single-block DMA
transfers and list-form DMA transfers are evaluated on a
2.8 GHz IBM PowerXCell 8i processor [19] while varying
the data transfer sizes from 8 bytes to 16,384 bytes. The
graphs in Fig. 5 compare our safe DMA library calls and
the unsafe ones. The throughputs in the left-hand graph are
averages of 1,000 single-block DMA transfers, and all of
the standard deviations were less than 2.03% of each mean.
The results in the right-hand graph are averages of 1,000 list
DMA transfers, and all of the standard deviations were less
than 1.05% of each mean.

The white bars denote the throughputs of the unsafe
DMA functions, mfc get() or mfc getl(). The striped
bars are the DMA throughputs of safe mfc get() and
safe mfc getl(), and the basic secure implementation.
The light gray, dark gray, and black bars are the perfor-
mance results of our optimized implementations: branch-
hint based optimization, jump-table based optimization, and
self-modifying-code based optimization respectively.

In the worst case, we found 10.14% throughput degra-
dation in non-optimized safe mfc get(). In contrast,
we have got at most 3.21% throughput degradation in the
branch-hint based optimization, 6.75% throughput degra-

(a) Single-block DMA throughputs (b) List DMA throughputs

Fig. 5 The performance overhead for our secure implementation of DMA functions.

Table 2 The configuration of the list DMA transfers.

Transfer size for each element 128 128 128 128 128 128 128 128 128 128 128
The number of list elements 1 2 4 8 16 32 64 128 256 512 1024

Total transfer size 128 256 512 1024 2048 4096 8192 16384 31768 65536 131072

dation in the jump-table based one, and 2.93% through-
put degradation in the self-modifying version. The re-
sults showed that these three optimization implementation
improves the performance overhead compared with non-
optimized safe mfc get().

We note that the throughput of the self-modifying-code
based optimization is better than the other optimizations if
the DMA block size is less than 2,048 bytes. With 2,048-
byte DMA transfers, branch-hint-based optimization has the
best performance. When the DMA transfer size is from
4,096 bytes to 16,384 bytes, jump-table-based optimization
is better than the other optimizations. Therefore, if the DMA
transfer size is known at the application build time, it is pos-
sible to make a compiler selectively insert the branch-hint
based optimization code, the jump-table based optimization
code, or the self-modifying optimization code based on the
DMA transfer sizes. We are studying such improvements
for future work.

Table 2 shows the configuration of the list DMA trans-
fers in this experiment. Thanks to our optimizations, we
were able to get 6% performance improvement in compar-
ison with the non-optimized safe mfc getl() when the
number of DMA list elements is small. However, the big-
ger the list element size becomes, the larger the overhead
of our safe list-DMA functions is (Fig. 5 (b)). Looking at
the safe list-DMA pseudocode in Fig. 3 (b), we compute the
total DMA size by extracting the DMA list structure. This
computation is the most time-consuming part when we input
long DMA lists. For this reason, our optimization methods
offer little performance benefit in the long DMA list cases.
It might be possible to improve the performance of our safe
DMA list transfer code, but the data format conversion from
mfc list element to a vector data type is required to per-
form SIMD operations, which may cause additional over-
head. Improving safe list DMAs is a challenge for the fu-
ture.
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6. Conclusions and Future Work

We presented a new approach to cope with DMA buffer
overflows and overrun attacks. In our approach, unsafe
DMA transfer functions are replaced with safe ones at build
time, as in Libsafe or libparanoia. In SPE programming, we
should address both stack buffer overflows and heap buffer
overflows at the same time, which is a special problem of
the Cell/B.E. processor. To address these problems, our safe
DMA functions evaluate both buffer overflow cases and ter-
minate SPE applications prior to the malicious code injec-
tion. Also, we proposed and implemented several optimiza-
tion techniques for branch reduction or elimination to mini-
mize the performance overhead of buffer overflow elimina-
tion. The empirical results showed that we could prevent
buffer overflows and overrun attacks with minimal over-
head, only a maxium of 2.93% performance degradation.

It would be possible to generate more optimized code
by directly modifying the SPE application compilers. If
a particular DMA copy never causes an overflow, such as
when the DMA copy size is statically defined, we could use
the original DMA utility function with no speed penalty. In-
tegrating our DMA buffer overflow elimination into compil-
ers is also future work.
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