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SUMMARY Many hash-based authentication protocols have been pro-
posed, and proven secure assuming that underlying hash functions are se-
cure. On the other hand, if a hash function compromises, the security
of authentication protocols based on this hash function becomes unclear.
Therefore, it is significantly important to verify the security of hash-based
protocols when a hash function is broken.

In this paper, we will re-evaluate the security of two MD5-based au-
thentication protocols based on a fact that MD5 cannot satisfy a required
fundamental property named collision resistance. The target protocols are
APOP (Authenticated Post Office Protocol) and NMAC (Nested Message
Authentication Code), since they or their variants are widely used in real
world. For security evaluation of APOP, we will propose a modified pass-
word recovery attack procedure, which is twice as fast as previous attacks.
Moreover, our attack is more realistic, as the probability of being detected is
lower than that of previous attacks. For security evaluation of MD5-based
NMAC, we will propose a new key-recovery attack procedure, which has
a complexity lower than that of previous attack. The complexity of our at-
tack is 276, while that of previous attack is 2100.∗∗Moreover, our attack has
another interesting point. NMAC has two keys: the inner key and the outer
key. Our attack can recover the outer key partially without the knowledge
of the inner key.
key words: authentication protocol, APOP, NMAC, MD5

1. Introduction

Authentication is the act of confirming someone or some-
thing, such as the identity of a person or the integrity of a
message. The authentication action is indispensable, espe-
cially when the two interacting parties are communicating
with each other through Network. One popular approach to
design an authentication protocols is utilizing a hash func-
tion. Hash function compresses arbitrary-length messages
into fixed-length short random values. The hash-based au-
thentication protocols have been proven secure based on the
assumption that the underlying hash functions are secure.
On the other hand, if a dedicated hash function compro-
mises, the security of the authentication protocols based on
this hash function will become unclear. Therefore, it is sig-
nificantly important to verify the security of the hash-based
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authentication protocols when their underlying hash func-
tions are broken.

Recently cryptographers pay a lot of attention to crypt-
analysis of hash functions. Weakness of many hash func-
tions has been revealed [14], [15]. It leads to the necessity
of re-analyzing the hash-based protocols implemented with
a dedicated hash function, which compromised. This is the
main motivation of our research.

One of the most popular hash functions is MD5, which
was broken in 2005 [14]. We will deal with two authentica-
tion protocols based on MD5: APOP [8] and NMAC [1].

APOP is an authentication command for the server to
authenticate the users in the Post Office Protocol Version 3
(POP3) [8], which is implemented for a local user to retrieve
his emails from a remote server over the Internet channel.
Interestingly, quoting to [8], APOP is defined with MD5 as
its underlying hash function.

NMAC, proposed in [1], does not have any applica-
tion. However, its variant HMAC (Keyed-Hashing for Mes-
sage Authentication Code), proposed in [1], has been ap-
plied in many protocols such as TLS (Transport Layer Se-
curity) and IPSec (Internet Protocol Security). MD5-based
HMAC (HMAC-MD5 for simplicity) has been standardized
and implemented in many Internet protocols. We stress
that the security of NMAC is the foundation of the secu-
rity of HMAC: the security proof of HMAC is based on
the assumption that NMAC is secure [1], [2]. If MD5-based
NMAC (NMAC-MD5 for simplicity) is insecure, the secu-
rity proof of HMAC-MD5 will collapse. Consequently the
security of the protocols based on HMAC-MD5 will become
unclear. Therefore cryptanalysis of NMAC-MD5 is signifi-
cantly important, even though it does not have any practical
application.

1.1 Our Results

We will attack APOP and NMAC-MD5 by utilizing the
weakness of MD5.

For APOP, we will propose a modified password recovery
attack. Previous password recovery attacks are chosen-
challenge attacks, which impersonate the server to send
chosen challenges to the user. Our attack procedure
adopts the same strategy and scenario. Our main con-
tribution is half-reducing the number of necessary im-
personations. Namely our attack is twice as faster as

∗∗We follow the complexity evaluation method in [4].
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previous attacks [7], [10], [11]. Moreover, during im-
personating the server, the attack has a risk of being
detected. Therefore reducing the number of imperson-
ations will lower the probability of the attack being de-
tected, which makes the attack more realistic.

For NMAC-MD5, there are two secret keys: the inner key
and the outer key. Our main contribution is a new at-
tack procedure to recover the outer key. By combining
previous inner-key recovery attack [4], we can obtain a
new full-key recovery attack on NMAC-MD5. Our at-
tack can recover the full key within 275 online queries
and 275 offline MD5 computations, while previous at-
tack needs 228 online queries and 2100 offline MD5
computations [6]. Following the evaluation method of
the total complexity in [4], which is the sum of online
queries and offline complexity, the complexity of our
attack is 276, while that of previous attack is 2100. Of
independent interest, our outer-key recovery attack can
recover the outer key without the knowledge of the in-
ner key. Finally we emphasize that our attack reveals
a new weakness of NMAC-MD5, which is based on
the feed-forward operation in compression function of
MD5. Many other hash functions such as SHA-1 have
similar structure. Therefore our attack procedure might
be applicable to SHA-1-based NMAC.

1.2 Related Previous Attacks

For APOP, Leurent published a password recovery attack [7]
by utilizing Wang et al.’s collision attacks on MD5 [14],
which can recover 3 password characters. This was inde-
pendently found by Sasaki et al. [10]. Sasaki et al. pub-
lished an improved password recovery attack [11] by utiliz-
ing Den Boer et al.’s collision attack on MD5 [3], which
can recover 31 password characters. For NMAC, Contini et
al. proposed an inner-key-recovery attack on NMAC based
on several hash functions including MD5 [4]. Fouque et al.
proposed an outer-key-recovery attack on NMAC with sev-
eral hash functions including MD5, which can be extended
to a full-key-recovery attack by combining [4].

2. Background and Related Works

2.1 MD5 and Related Attacks on MD5

2.1.1 MD5 Algorithm

MD5 [9] follows Merkle-Damgård structure. An input mes-
sage M will be padded and divided into 512-bit blocks
{M1, . . . ,Ml}. The padding rule is first adding a single ‘1’
and the minimum number of ‘0’s until the bit length be-
comes 448 on modulo 512, and then adding the bit length
of original M to the last 64 bits. The message blocks will
be hashed sequentially by a primitive usually described as
compression function. Hereafter we will denote by md5 the
compression function of MD5. md5 is a mapping function:

Table 1 Md5 algorithm.

1 ∼ 16 f (X, Y,Z) = (X ∧ Y) ∨ (¬X ∧ Z)
steps k: (0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

17 ∼ 32 f (X, Y,Z) = (X ∧ Z) ∨ (Y ∧ ¬Z)
steps k: (1, 6, 11, 0, 5, 10, 15, 4, 9, 14, 3, 8, 13, 2, 7, 12)

33 ∼ 48 f (X, Y,Z) = X ⊕ Y ⊕ Z
steps k: (5, 8, 11, 14, 1, 4, 7, 10, 13, 0, 3, 6, 9, 12, 15, 2)

49 ∼ 64 f (X, Y,Z) = (X ∨ ¬Z) ⊕ Y
steps k: (0, 7, 14, 5, 12, 3, 10, 1, 8, 15, 6, 13, 4, 11, 2, 9)

{0, 1}128 × {0, 1}512 → {0, 1}128. The MD5 procedure is as
follows:

h0 ← a public initial value IV;
hi ← md5(hi−1,Mi).

md5 function.
Mi and hi−1 will be divided into 32-bit variables
(m0, . . . ,m15) and (a0, b0, c0, d0) respectively. md5 consists
of 64 steps, regrouped into four 16-step rounds. Each step
is as follows:

ai = di−1, ci = bi−1, di = ci−1, and
bi = bi−1 + (ai−1 + f (bi−1, ci−1, di−1) + mk + t) ≪ si,

where mk is one of (m0, . . . ,m15), t is a constant defined at
each step, ≪ si means a left-rotation by si bits, and f is a
Boolean function depending on the round. The details of
these parameters are shown in Table 1. The final output is
as follows:

(a0 + a64, b0 + b64, c0 + c64, d0 + d64).

2.1.2 Collision Attacks on Md5

A collision attack on md5 has been proposed by Den Boer
and Bosselaers in [3]: md5(h,M)=md5(h′,M), where the
differences only exist between h and h′. Moreover, the dif-
ference between h and h′ has a special form. From the spec-
ification of md5, h and h′ will be divided into (a0, b0, c0, d0)
and (a′0, b′0, c′0, d′0) respectively. The differences between h
and h′ have to satisfy

(a0 ⊕ a′0, b0 ⊕ b′0, c0 ⊕ c′0, d0 ⊕ d′0) =
(0x80000000, 0x80000000, 0x80000000, 0x80000000),

which will be denoted as ΔMS B hereafter for simplicity.
Moreover, the MSBs of b0, c0 and d0 should be equal.

For random h and M, the probability that md5(h,M) =
md5(h⊕ΔMS B,M) is 2−46, because 46 conditions have to be
satisfied during the computation md5(h,M). These condi-
tions are as follows:

1∼14 steps: bi,32 = bi−1,32;
16∼31 steps: bi,32 = bi−1,32;
49∼63 steps: bi,32 = bi−2,32,

where bi, j means j-th bit of bi.

2.1.3 IV Bridge

Collision attacks on md5 in Sect. 2.1.2 can not be trivially
extended to attack MD5. The main reason is that IV of MD5
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Table 2 Tunnel Q9.

step index message conditions
9 m9 b10 = 0x f f f f f f f f ;
10 m10 b11 = 0x00000000;

has been fixed. The attacker has to generate two intermedi-
ate hash values hi and h′i , which have XOR difference ΔMS B.
Towards this problem, Sasaki et al. proposed a technique
named IV bridge [11]. Conceptually, IV bridge is a pair of
messages M and M′ which link IV to a pair intermediate
hash values h and h′ satisfying h ⊕ h′ = ΔMS B. Sasaki et
al. provided one IV bridge [11], which has been detailed in
Appendix A. We will utilize their IV bridge for improving
the previous attacks on APOP.

2.1.4 Tunnel Technique

Klima proposed a technique named Tunnel [5], which can
speed up searching collisions on MD5. Here we will only
describe “Q9 Tunnel”, which will be used in our improved
attacks on APOP.

Q9 tunnel, detailed in Table 2, is a local collision in-
side md5 from the 8-th step until the 12-th step: for any
m8 at the 8-th step, there are corresponding m9 and m12 that
make the intermediate chaining variables at the 12-th step
remain the same. Moreover, m8, m9 and m12 locate at steps
28, 25 and 32 in the second round respectively. Therefore all
the intermediate chaining variables from the 12-th step until
the 24-th step will also remain the same. During searching a
collision on md5, by setting Q9 tunnel, after a message satis-
fying all the conditions from the first step until the 24-th step
is found, we will change its m8 freely, then adaptively com-
pute m9 and m12 without breaking the intermediate chaining
variables until the 24-th step. For more details, refer to [5].

2.2 APOP and Related Attacks on APOP

2.2.1 APOP

APOP is a MD5-based challenge and response authentica-
tion protocol, which is used in POP3 [8] by mail servers to
authenticate users. The procedure of APOP is detailed as
follows.

1. The user sends an access request to the server.
2. The server sends a random challenge to the user.
3. The user sends a MD5 hash digest MD5(IV ,

challenge||password) to the server, where || means con-
catenation.

4. The server performs the same calculation on his side
to obtain another MD5 hash digest, and then checks
whether the two MD5 digests match.

5. If the two digests are the same, authentication suc-
ceeds. Otherwise, authentication fails.

2.2.2 Password Recovery Attacks on APOP

Password recovery attacks on APOP [7], [10], [11] are

chosen-challenge attacks. The attacker impersonates the
server and sends chosen challenges to the user. The main
novelty of the previous password recovery attack is recov-
ering the former part of the password following the exhaus-
tively guess-then-verify approach without the knowledge of
the latter part. Consequently, the attacker can recover the
password one part by one part sequentially, and the com-
plexity will be significantly lower than the expected com-
plexity.

Denote the password by P1|| · · · ||Pl, where Pi is one
part of password. Suppose the attacker has recovered P1,
. . ., Pi−2 and Pi−1 (i ≤ l). The high-level description of re-
covering Pi is as follows.

1. Guess the value of Pi.
2. Generate a pair of challenges (C,C′) satisfying the fol-

lowing three conditions.

a. C and C′ have the same bit length;
b. the length of C||P1||P2|| · · · ||Pi is a multiple of

block-length;
c. MD5(IV,C||P1 · · · ||Pi)=MD5(IV,C′||P1|| · · · || Pi).

Here MD5 computation is without padding the
messages.

From the specification of MD5, these three conditions
guarantee that MD5(IV,C||P)=MD5(IV,C′||P) no mat-
ter what Pi+1, · · ·, Pl are.

3. Send C to the user to obtain a response R.
4. Send C′ to the user to obtain a response R′.
5. If R = R′, the current guess value is the true Pi.
6. If R � R′, change the guess value, and go to step 2.

Suppose Pi has n bits. There are 2n possible candidates
for Pi. As a result, steps 2∼6 will be repeated 2n times in
the worst case. So the bit length of Pi should be as short as
possible. From the specification of APOP [8], the length of
challenges must be a multiple of 8. Therefore, the minimum
bit length of Pi is 8, namely, one character. So previous
APOP attacks [7], [10], [11] recover the password characters
one by one. For one password character, 28−1 pairs of chal-
lenges are necessary in the worst case (the attacker does not
need to confirm the last candidate if all the other candidates
have been proven wrong).

2.3 NMAC and Related Attacks on NMAC

2.3.1 NMAC

NMAC is designed based on the keyed Merkle-Damgård
hash functions. A keyed Merkle-Damgård hash functions
is derived from a public Merkle-Damgård hash function by
replacing the public IV with a secret key. Denote by H(IV, ·)
a Merkle-Damgård hash function. The structure of NMAC
is as follows:

NMAC(M)=H(k1,H(k2,M)),

where k1 and k2 are denoted as the outer key and the inner
key respectively.
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2.3.2 Previous Key-Recovery Attacks on NMAC-MD5

Previous key-recovery attacks on NMAC-MD5 [4], [6] are
in the related-key setting, which means that the attacker
is given other NMAC-MD5 oracles with different keys,
and the relations between the keys in different oracles are
known. Denote by MD5(k1, MD5(k2, ·)) the target oracle.
The attacker first recovers the inner key k2 by utilizing an-
other oracle MD5(k1, MD5(k2 ⊕ ΔMS B, ·)) [4], and then re-
covers the outer key k1 by utilizing the inner key k2 and an-
other oracle MD5(k1⊕ΔMS B, MD5(k2, ·)) [6]. The procedure
of recovering k1 and of recovering k2 are similar. How to re-
cover kb (b ∈ {1, 2}) is as follows:

1. Search a message M satisfying md5(kb,M)= md5(kb ⊕
ΔMS B,M). Such a message M can be found after
246 trials according to the collision attack on md5 in
Sect. 2.1.2.

2. Recover an intermediate chaining value at some step
(ai, bi, ci, di) (0 ≤ i ≤ 64) during the computation of
md5(kb,M). This technique is the main novelty of the
previous attacks. However, our attack does not utilize
this technique at all, so we will omit the description.
For more details of this technique, refer to [4], [6].

3. Obtain kb by the inverse calculation from step i until the
initial value kb. The step function of md5 is invertible:
bi−1 = ci, ci−1 = di, di−1 = ai, and
ai−1 = (bi − ci)≫ si − f (ci, di, ai) − mk − t.

3. Improving the Previous Attacks on APOP

At first, we will show two problems of the previous pass-
word recovery attacks on APOP and point out one plausible
approach. Then we will introduce a new variant of collision
on hash function and apply it to MD5. Finally we illustrate
our improved attack on APOP.

3.1 Two Problems of the Previous Attacks

3.1.1 Problem I: APOP is Triggered by the User

From the specification of APOP, APOP can not be executed
unless the user sends access requests first. Therefore the at-
tacker impersonating the server can not send chosen chal-
lenges unless the user sends access requests, which will
make the time complexity of the previous attacks depend
on the number of chosen challenges and the frequency of
the user sending requests. Pick one password character as
an example. The number of necessary chosen challenges is
510 in the worst case. Suppose the user checks new emails
once per hour. The time complexity is at least 510 hours in
the worst case.

Reducing the number of necessary chosen challenges
will improve the time complexity.

3.1.2 Problem II: the Attack Might be Detected

Following the previous attack procedure, the attacker imper-
sonates the mail server when the user sends access requests
for new emails. Finally the attacker responds with “No new
email” to the user. The attack might be detected by the user:

(a) the user does not get any new email for a long
time when the attacker continuously impersonates the
server;

(b) the user gets a new email delayed when the attacker
impersonates the server from time to time. Suppose
the user checks new emails once per day. Then when
he gets a new email one day delayed, he may suspect
being attacked.

Reducing the number of necessary chosen challenges
will reduce the number of impersonations, which will lower
the probability of the attack being detected. This improve-
ment will make the attack on APOP more realistic.

3.2 A Variant of Collisions on Hash Functions: Applied to
MD5

3.2.1 Bit-Free Collision

Definition 1. If a pair of partially-fixed messages (M,M′)
satisfies the following conditions†, it is denoted as a bit-free
collision on a hash function H:

1. M and M′ have the same bit-length.
2. the unfixed bits of M and of M′ have the same bit posi-

tions, and are equal.
3. any pair of messages, derived by setting the value of

the unfixed bits of M and M′, will be a collision on H.

where the unfixed bits are denoted as free bits.
Denote by t-bit-free collision a bit-free collision with t-

free bits for simplicity. 2t pairs of colliding messages can be
derived from a t-bit-free collision. So a t-bit-free collision
is a set of 2t colliding message pairs. Note that the collision
pairs differ from each other at the bit values of the t-free
bits. For any two messages from different pairs, namely with
different bit values at the t-free bits, the probability that they
contribute to a collision is negligible.

To make the definition clear, we will pick a 1-bit-free
collision (M,M′) as an example. M and M′ have the same
bit-length, and have one same bit position (the free bit),
where the value is not fixed. By setting the free bit to 0, a
pair of messages (M0,M′0) is derived from (M,M′). By set-
ting the free bit to 1, a pair of messages (M1,M′1) is derived
from (M,M′). Both (M0,M′0) and (M1,M′1) are collisions on
H. The probability that (M0,M′1) or (M′0,M1) is a collision
on H is negligible.

†The conditions are restrictive. In fact we can give more gen-
eral definition for bit-free collision. For example, conditions 1 and
2 are not necessary. Since this paper deals with the application to
attacking APOP, we define the bit-free collision according to this
application for the consistency.



WANG et al.: CRYPTANALYSIS OF TWO MD5-BASED AUTHENTICATION PROTOCOLS: APOP AND NMAC
1091

3.2.2 Bit-Free Collision Attack on MD5

Our bit-free collision attack on MD5 adopts the collision
attack on md5 in Sect. 2.1.2, the IV bridge in Sect. 2.1.3
and the Tunnel technique in Sect. 2.1.4. Following the no-
tations in Appendix A, denote by (M1||M2,M1||M′2) the pair
of messages of IV bridge in [11], and by h and h′ the values
MD5(M1||M2) and MD5(M1||M′2) respectively, where mes-
sages are not padded during MD5 computations. h ⊕ h′ =
ΔMS B, and h satisfies that b0,32 = c0,32 = d0,32. We will lo-
cate the free bits in the third message block M3 to search
a bit-free collision (M1||M2||M3,M1||M′2||M3) on MD5. The
procedure searching M3 such that md5(h,M3)=md5(h′,M3)
is as follows:

1. Determine the bit position of the free bits.
Since we will apply the bit-free-collision attacks on
MD5 to improve the attacks on APOP, we locate the
free bits in the last 8-bit positions of messages. Note
that MD5 adopts little-endian. Therefore the free bits
locate at the 8 MSB of m15 when M3 is divided into
{m0, . . . ,m15} during the md5 computation.

2. Generate a random message M, where the intermediate
chaining values at 1 ∼ 15 steps of md5(h,M) satisfy
both the conditions of Den Boer et al.’s collision attack
on md5 [3] and the conditions of Q9 tunnel [5]. Note
that there is a contradiction between the conditions on
the MSBs of b9 and of b10. We will set that b9,32 =

b10,32. Therefore the freedom for Q9 tunnel becomes
31 bits.
Denote by M0, . . ., M2t−1 messages derived from M
by setting the free bit to 0, 1, . . . , 2t − 1 respectively.
From the specification of the step function of md5, we
can first randomly generate the intermediate chaining
values at 1 ∼ 15 steps satisfying all conditions, and
then calculate M:

mi = (bi+1 − bi)≫ si − ai − f (bi, ci, di) − t.

3. Check whether the intermediate chaining variables
at 16 ∼ 24 steps of md5(h,M0), md5(h,M1), . . .,
md5(h,M2t−1) can satisfy the conditions of Den Boer
et al.’s attack. If no, go to step 2.

4. Run Q9 tunnel to find bit-free collision from 25-th step,
which means to try all possible values of m8. More
details are shown in Sect. 2.1.4.

5. If the bit-free collision is not found after running the
Q9 tunnel, go to step 2.

There are 9 conditions from the 16-th step until the 24-th
step. By using the Q9 tunnel technique, if one message can
satisfy all these 9 conditions, 231 messages can be derived
from it that each can satisfy these 9 conditions. There are 23
conditions from the 25-th step to the 64-th step. For a reg-
ular collision, roughly 223 md5 computations are necessary.
Hence, for t-bit-free collisions, roughly 223×2t

md5 compu-
tations are necessary. This means that we have to provide
223×2t messages that can satisfy the conditions from the first

step until the 24-th step. The complexity of such preparation
is roughly 29×2t−31 × 223×2t

. Therefore the total complexity
is (1 + 29×2t−31) × 223×2t

md5 computations.
It seems that finding a 1-bit-free collision with a com-

plexity roughly 246 is practical. We implement the 1-bit-
free collision search. Surprisingly, it takes only 12 hours by
12 computers on average to generate a 1-bit-free collision,
which is much faster than the usual time for the 246 md5
computations. One reason is that the complexity calculated
by counting the number of the conditions is greater than the
precise complexity. Moreover, due to the biased bit position
of the conditions, since all the conditions are located in only
MSB of the intermediate chaining values, the complexity
should be less than the 246 md5 computations.

One example of a 1-bit-free collision on MD5 is shown
in Appendix.

3.3 Our Improved Attack on APOP

3.3.1 The Main Novelty

We will recover each password character part by part as fol-
lows: first locate the free bit in the target password character,
then recover the 7-non-free bits by the guess-then-verify ap-
proach using the 1-bit-free collisions on MD5, and finally
recover the free bit by the guess-then-verify approach using
a regular collision on MD5.

The number of necessary chosen challenges will be
half-reduced.

3.3.2 The Detailed Attack Procedure

The procedure of our attack to recover one password char-
acter is as follows. Moreover, we give a pseudo-source code
in Table 3.

1. Locate the free bit in the targeted password character,
which divides the password character into 7-non-free
bits and one free bit.

2. Recover the 7-non-free bits first. The attacker adopts
the exhaustively guess-then-verify approach: guess the
value of 7-non-free bits, then generate a pair of chal-
lenges, which will lead to a t-bit-free collision after
being concatenated with the guess value, and finally
send the pair of challenges to the user to check whether
the responses collide or not. If the responses collide,
the guess value is true. Otherwise, the guess value is
wrong. There are in total 27 possible candidates for
the 7-non-free bits, so (27 − 1) pairs of challenges are
necessary in the worst case.

3. Recover the free bit by the guess-then-verify approach.
The attacker guess the free bit is ‘0’, then generate a
pair of challenges that leads to a regular collision, and
finally sends the pair of challenges to check whether
the responses collide or not. If the responses collide,
then the guess is correct, which means the free bit is 0.
Otherwise, the guess value is wrong, which means the
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Table 3 Our attack procedure.

Denote by pr the password characters which have been recovered. De-
note by p a password character which is going to be recovered. Note
that the online work and offline work are parallel and independent.

Our procedure
Our attack utilizes 1-bit-free collision. Set the bit position of the free bit
in p, which will divide the p into two parts: 1-free bit and 7-non-free
bits denoted as p f and pn f , respectively. For simplicity, we assume the
1-free bit locates at MSB of p.

Stage 1: recover the value of pn f .

-Chosen challenge collection (offline)
1. For pn f = 0000000 to 1111111 (7-non-free bits)
2. Generate a pair of challenges (C,C′): (C||pr ||p f ||pn f ,
C′|| pr ||p f ||pn f ) is a 1-bit-free collision.
3. Store (C,C′, pn f ) to Table T .
4. End For

-Impersonating as server (online)
If T is not NULL, then
1. Pick an element (C, C′, pn f ) from T .
2. Erase (C, C′, pn f ) from T .
3. Send C to the user to obtain the response R.
4. Send C′ to the user to obtain the response R′.
5. If R = R′, then the current value pn f is the true 7-non-
free bits of p. Goto Stage 2.
6. If R � R′, continue to run Stage 1.
Else, the attacker does not impersonate. Continue to run
Stage 1.

Stage 2: recover the value of p f .

1. Guess the 1-free bit is 0.
2. Generate a pair of challenges (C,C′) such that (C||pr ||0||pn f ,

C′||pr ||0||pn f ) is a collision.
3. Send C to the user to obtain the response R.
4. Send C′ to the user to obtain the response R′.
5. If R = R′, the value of p f is 0. Otherwise, the value is 1.
6. Halt the program.

free bit is 1. So the free bit will be recovered by one
pair of challenges.

In the above procedure, the attacker will first recover the val-
ues of 7-non-free bits without the knowledge of the free bit,
and then recover the value of the free bit. Totally (27−1+1)
pairs of challenges are necessary in the worst case. The to-
tal number of necessary challenges has been approximately
half-reduced compared to the previous attacks on APOP.

4. New Results of NMAC-MD5

First of all, we will reveal a new weakness of NMAC-MD5.
Then based on this weakness, we will propose a new outer-
key recovery attack on NMAC-MD5, which leads to a full-
key recovery attack on NMAC-MD5 by combining the pre-
vious inner-key recovery attack [4]. Finally we evaluate the
complexity of our attack.

4.1 A New Weakness of NMAC-MD5

The input messages of the outer MD5 of NMAC-MD5 are
the outputs of the inner MD5, which are 128-bit long and
shorter than one block length (512 bits). Therefore the in-
put messages of the outer MD5 function is only one mes-

sage block after padded. Namely the outer MD5 is in fact
md5(k1, ·). Recall md5 consists of a feed-forward opera-
tion: the output is the sum of initial value and the interme-
diate chaining value at the last step. As a result, the MAC
value of NMAC-MD5 is the sum of the outer key k1 and
the intermediate chaining value at the 64-th step of the outer
MD5. Hereafter we denote by ICV64 the intermediate chain-
ing value at 64-th step of the outer MD5 of NMAC-MD5 for
simplicity.

Based on the above observation, one trivial attack ap-
proach is obtaining both MAC value and ICV64 of a mes-
sage, and then recovering the outer key k1. The attacker
can send any message to NAMC oracle to get the corre-
sponding MAC value. However it is not trivial to obtain
ICV64 for any message. We will solve this problem in the
related-key setting: denote by MD5(k1, MD5(k2, ·)) the tar-
get NMAC oracle; and the attacker is given another NMAC
oracle MD5(k1 ⊕ ΔMS B, MD5(k2, ·)). The crucial idea is as
follows:
Search a message M that causes a collision between the two
NMAC oracles. According to Den Boer et al.’s collision at-
tack on md5 [3], such a message can be obtained after 246

random messages are tried. Moreover, since the probability
of a message randomly causing a collision between the two
NMAC oracles is 2−128, it is with an overwhelming probabil-
ity that M satisfies all the conditions of Den Boer et al.’s col-
lision attack. Therefore ICV64 of M satisfies a64,32 = c64,32.
Our outer-key recovery attack adopts the same strategy to
obtain the inside information of ICV64 of some message,
and then utilize it to recover the outer key.

4.2 Our Outer-Key Recovery Attack

Recall our attack is in the related-key setting: denote by
MD5(k1, MD5(k2, ·)) the target NMAC oracle; the attacker
is given another NMAC oracle MD5(k1⊕ΔMS B, MD5(k2, ·)).
Divide k1 into 32-bit values (ka, kb, kc, kd), ICV64 into
(a64, b64, c64, d64), and MAC value into (ha, hb, hc, hd) re-
spectively. We can get that ha = ka + a64, hb = kb + b64,
hc = kc + c64 and hd = kd + d64. Our attack will recover ka,i,
kc,i (1 ≤ i ≤ 31) and the value ka,32 ⊕ kc,32.

4.2.1 How to Recover ka,32∼31 and kc,32∼31

One observation. For the sum calculation ha = ka + a64,
fix the two bit values ha,31 and ka,31, and randomly change
the other bit values without affecting the sum relation. The
following property holds: if ha,31 = ka,31, a bit carry from
the 31-th bit to the 32-th bit happens with a probability 1

2 ,
and does not happen with a probability 1

2 ; if ka,31 � ka,31, a
bit carry from the 31-th bit to the 32-th bit either happens
with a probability 1 or does not happen with a probability
1. More precisely, if ka,31 = 1 and ha,31 = 0, the bit carry
happens with a probability 1. If ka,31 = 0 and ha,31 = 1, the
bit carry does not happen with a probability 1. The same
observation exists during the calculation hc = kc + c64.

Based on the above observation, we will illustrate our
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procedure of recovering ka,32∼31 and kc,32∼31.

1. Send random messages to the two NMAC oracles to
check whether a collision happens. If a message causes
collision, then save it into a set denoted asM. For any
M ∈ M, ICV64 satisfies a64,32 = c64,32.

2. RegroupM depending on the MAC bit values ha,31 and
hc,31:

M0 : ha,31 = 0 and hc,31 = 0;
M1 : ha,31 = 0 and hc,31 = 1;
M2 : ha,31 = 1 and hc,31 = 0;
M3 : ha,31 = 1 and hc,31 = 1.

3. Pick out the group satisfying ha,31 � ka,31 and hc,31 �
kc,31.
From ha = ka + a64 and hc = kc + c64, the value

ha,32 ⊕ hc,32 depends on the value ka,32 ⊕ kc,32, the value
a64,32⊕c64,32, and the XOR value of the bit carry values
from the 31-th bit to the 32-th bit of the two addition
computations. ka,32 ⊕ kc,32 is a constant. Any element
fromM satisfies a64,32 ⊕ c64,32 = 0. Therefore, we can
derive the XOR value of the bit carry values from the
31-th bit to the 32-th bit of ka + a64 and that of kc + c64

from ha,32 ⊕ hc,32. Based on the above observation, the
bit carry values from the 31-th bit to the 32-th bit dur-
ing either ka + a64 or kc + c64 is the same for any two
elements of the target group with a probability 1, but
differ from each other with a probability 1

2 for the other
groups. Therefore, the XOR values of the carry from
the 31-th bit to the 32-th bit of ka + a64 and that of
kc + c64 should be a constant for the target group, but
change for the other groups. Namely we can pick out
the target group.

4. Recover ka,31 and kc,31. Moreover, we can determine
the value ka,32 ⊕ kc,32.
Denote by M j the group picked out in step 3. Utiliz-
ing ha,31 and hc,31 in M j, we get ka,31 = 1 − ha,31 and
kc,31 = 1 − hc,31. For any element ofM j, by detecting
the values ka,31 and kc,31, we can determine whether bit
carries happen during ka + a64 and kc + c64. For any
element inM j, a64,32 = c64,32. Therefore we can easily
derive the value ka,32 ⊕ kc,32.

4.2.2 How to Recover ka,i and kc,i (1 ≤ i ≤ 30)

Since the procedure of recovering ka,i is the same with that
of recovering kc,i, here we will pick ka,i as an example to
illustrate our attack procedure.

Our attack will recover the bit values of ka from the
most significant bit until the least significant bit. So we will
recover ka,30 first, then ka,29, . . ., and finally ka,1. Suppose we
have obtained the bit values ka,30, . . ., ka,i+1, and are going to
recover ka,i. The detailed procedure is as follows.

1. Send random messages to the two oracles until one
message M is obtained satisfying the following three
conditions:

a) M causes that the two NMAC oracles collide;
b) hc,30 � kc,30.
c) ha, j=ka, j (i + 1 ≤ ∀ j ≤ 30);

2. Check whether a bit carry happens or not from the i-th
bit to the (i + 1)-th bit during ka + a64.
ha,32⊕hc,32 is determined by ka,32⊕ kc,32, a64,32⊕ c64,32,
and the XOR value of the bit carry value from the 31-
th bit to the 32-th bit of ka + a64 and that of kc + c64.
ka,32 ⊕ kc,32 has been recovered. From the condition a)
in step 1, we can get a64,32 = c64,32. From the condition
b) in step 1, we can get whether the bit carry happens
or not from 31-th bit to 32-th bit during kc + c64. So
by detecting ha,32 ⊕ hc,32, we can derive whether the bit
carry from the 31-th step to the 32-th step happens or
not during ka + a64. Moreover, from condition c) in
step 1, during ka + a64, whether the bit carry happens
from the 31-th bit to the 32-th bit in fact depends on
whether the bit carry happens from the i-th bit to the
(i + 1)-th bit: if a bit carry happens from the i-th bit to
the (i + 1)-th bit, then a bit carry will propagate to the
32-th bit.

3. If the result of step 2 is one of the following situations,
we have recovered ka,i. Otherwise, go to step 1.
Situation 1: if the bit carry happens and ha,i=1, then
ka,i=1;
Situation 2: if the bit carry does not happen and ha,i=0,
then ka,i=0.

4.3 A Full-Key Recovery Attack

Contini et al. proposed an inner-key recovery attack on
NMAC-MD5 [4]. Combining their works, we can extend
our attack to recover the full key of NMAC-MD5. The at-
tack scenario is as follows.

1. Apply our attack to partially recover the outer key.
2. Adopt Contini et al.’s attack procedure to obtain the

inner key.
3. Exhaustively search the unrecovered bit values of the

outer key. At this step, the knowledge of the inner key
is necessary.

4.4 Evaluating the Complexity

4.4.1 The Complexity of Recovering ka,32∼31 and ka,32∼31

Suppose we generate s elements for each group. At step
2 of the attack procedure in Sect. 4.2.1, any two elements
of other groups differ from each other with probability 1

2 .
The probability of failing to find two different elements in
a group (not target group) is 2−s. Since there are 3 other
groups, the failure probability at step 2 is 3 × 2−s. It needs
roughly 248 trials to find one element of a particular group
since there are in total 48 conditions. To summarize, by 3 ×
s×248 queries, we can succeed with a probability 1−3×2−s.
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4.4.2 The Complexity of Recovering ka,i and kc,i (1 ≤ i ≤
30)

At step 1 of the attack procedure in Sect. 4.2.2, it roughly
needs 277−i queries, since 246, 230−(i+1)+1 and 2 queries are
necessary to find a message satisfying conditions a), b) and
c) respectively. The results of the step 2 is one of the two
situations of step 3 with a probability 1

2 . Therefore, the step
1 will be repeated with a probability 1

2 . Suppose step 1 is
repeated q times. The complexity of recovering ka,i will be
q × 277−i with a success probability 1 − 2−q. From 30-th bit
until i-th bit, the total complexity is

∑t=30
t=i q × 277−t < q × 278−i.

4.4.3 The Total Complexity

Finally we will evaluate the complexity of recovering full
keys. The complexity of recovering ka,32∼31 and kc,32∼31 can
be ignored compared with the complexity of recovering ka,i

or kc,i, where i is small. We will pay attention to the com-
plexity of recovering ka,i. Here we determine the value q
to be 2 to obtain the low security bound of NMAC-MD5.
Suppose we partially recover both ka and kc until i-th bit by
online interacting with NMAC oracles. The number of the
remaining unrecovered bit of k1 is 65+2×i, which will be re-
covered by exhaustive offline computation. The offline com-
plexity is 265+2×i MD5 computations. Following the evalua-
tion of the total complexity in [4], which is the sum of online
queries and offline computations, the optimal bit position i
should make the number of online queries equal to the num-
ber of offline MD5 computations:

265+2×i = 2 × 278−i + 2 × 278−i → i = 5.

Finally the complexity of our attack is 275 online queries and
275 offline MD5 computations.

5. Feedback to Practical Information Systems

The password recovery attack on APOP is practical. For ex-
ample, the password has 6 characters. The attacker can ob-
tain the first password character by using our attack proce-
dure. One password character that most people use has 6 bits
of entropy [7]. Following our attack, the number of neces-
sary chosen challenges is just 32 in the worst case and 16 in
the average case. The offline complexity of recovering the
remaining 5 characters is at most 240 MD5 computations,
which takes less than a single day by using 10 PCs. APOP
has been adopted by several practical mail systems such
as Mozilla Thunderbird. An countermeasure that Mozailla
Thunderbird adopts now is restricting the challenges to be
ASCII texts. This countermeasure has two advantages: a)
it is computationally infeasible to generate ASCII colliding
messages on MD5 so far; b) the expense is little. However,
with the increase of the computational power of the comput-
ers and the development of the attack techniques on MD5,

the security of this countermeasure in the coming few years
is very suspicious in our opinion. We suggest that those sys-
tems based on APOP should update their underlying MD5
to a more secure hash function. One candidate is SHA-2.

The key-recovery attack on NMAC-MD5 is still just a
theoretical result. Therefore, the security of both NMAC-
MD5 and HMAC-MD5 is not damaged. However, consid-
ering the increase of computational power, the hash digest
of MD5, which is 128 bits, seems relatively short. We rec-
ommend that the related information systems should update
HMAC-MD5 to HMAC-SHA-1, or HMAC based on more
secure hash functions than SHA-1.
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Appendix: An Example of 1-bit-free Collision on MD5

Table A· 1 1-bit-free collision on MD5.
MD5(M1 ||M2 ||M3)=MD5(M1 ||M′2 ||M3), where the 1 free bit locates in
M3.

IV bridge in [11]
m0=0x3938313c m1=0x37322d34 m2=0x332d3635

m3=0x2e383933 m4=0x37373936 m5=0x3433302d

M1 m6=0x38312d35 m7=0x61704035 m8=0x6f777373

m9=0x645f6472 m10=0x63657465 m11=0x5f726f74

m12=0x2e636264 m13=0x6976746d m14=0x632e7765

m15=0x73752e61

m0=0x986e1da4 m1=0x83707d06 m2=0xa86e1ddd

m3=0xe264eedb m4=0xff68e19f m5=0x120ea5b3

M2 m6=0x7437d3e2 m7=0x600f543d m8=0x7c63c5ab

m9=0xe9ead9d9 m10=0xa9b5c51e m11=0xc309f623

m12=0xfd534f1e m13=0xad33c7ad m14=0xfd0380c6

m15=0x7745f36a

m′0=0x986e1da4 m′1=0x83707d06 m′2=0xa86e1ddd
m′3=0xe264eedb m′4=0xff68e19f m′5=0x120ea5b3

M′2 m′6=0x7437d3e2 m′7=0x600f543d m′8=0x7c63c5ab
m′9=0xe9ead9d9 m′10=0xa9b5c51e m′11=0x4309f623

m′12=0xfd534f1e m′13=0xad33c7ad m′14=0xfd0380c6

m′15=0x7745f36a

h 0xbd7ade50, 0xe17a619d, 0x8e940937, 0xfd4af95f

h′ 0x3d7ade50, 0x617a619d, 0x0e940937, 0x7d4af95f

searched message for 1-bit-free collision
m0=0xc0797ae2; m1=0xe95d42e6; m2=0x49fe29af;
m3=0x3329c9a9; m4=0xa790a55d; m5=0x0783e6d3;

M3 m6=0xb906c7b1; m7=0x2d63e951; m8=0x9edac296;
m9=0x26afe101; m10=0xd4cfc4fb; m11=0xcb0d1667;
m12=0x77b75eab; m13=0xea993a34; m14=0x8c9868ae;
m15=0x7effffff;
m15,25 is the free bit: m15 = 0x7effffff or 0x7fffffff.
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