
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010
1127

PAPER

A New Local Search Based Ant Colony Optimization Algorithm for
Solving Combinatorial Optimization Problems

Md. Rakib HASSAN†, Md. Monirul ISLAM†a), Nonmembers, and Kazuyuki MURASE†, Member

SUMMARY Ant Colony Optimization (ACO) algorithms are a new
branch of swarm intelligence. They have been applied to solve different
combinatorial optimization problems successfully. Their performance is
very promising when they solve small problem instances. However, the al-
gorithms’ time complexity increase and solution quality decrease for large
problem instances. So, it is crucial to reduce the time requirement and at the
same time to increase the solution quality for solving large combinatorial
optimization problems by the ACO algorithms. This paper introduces a Lo-
cal Search based ACO algorithm (LSACO), a new algorithm to solve large
combinatorial optimization problems. The basis of LSACO is to apply an
adaptive local search method to improve the solution quality. This local
search automatically determines the number of edges to exchange during
the execution of the algorithm. LSACO also applies pheromone updating
rule and constructs solutions in a new way so as to decrease the conver-
gence time. The performance of LSACO has been evaluated on a number
of benchmark combinatorial optimization problems and results are com-
pared with several existing ACO algorithms. Experimental results show
that LSACO is able to produce good quality solutions with a higher rate of
convergence for most of the problems.
key words: ant colony optimization, combinatorial optimization problem,
local search

1. Introduction

Ant Colony Optimization (ACO) algorithms [1] were in-
troduced by M. Dorigo and colleagues in the early 1990s
as a novel nature-inspired metaheuristic for solving diffi-
cult combinatorial optimization problems [1] in a reasonable
amount of time. These algorithms use a number of artifi-
cial ants with a set of simple rules that take inspiration from
the behavior of real ants for solving a given problem. Ar-
tificial ants are allowed to move freely on a graph, which
represents a given problem being solved. These ants prob-
abilistically build a solution to the problem and then de-
posit some artificial pheromone on the edges of the graph
to bias the solution construction activity of future ants. The
amount of pheromone deposition and the way of building
solutions are such that the overall search process is biased
towards better approximate solutions. ACO algorithms have
been applied to many combinatorial optimization problems
such as traveling salesman problem [3], job-shop schedul-
ing [4], sequential ordering problem [5], resource constraint
project scheduling problem [6] and open shop scheduling
problem [7].

There exist several variants of ACO algorithms. These
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are ant system (AS) [8], elitist AS [9], ant-Q [10], [11], ant
colony system (ACS) [12], max-min AS [13], rank-based
AS [14], approximate nondeterministic tree search [15],
[16], and hyper-cube AS [17], [18]. We briefly describe
these algorithms in Sect. 2. The performance of these ACO
algorithms in solving difficult combinatorial optimization
problems is very promising [19]. However, the solution
quality of these algorithms decreases as the size of problems
grows [20]–[24]. These algorithms stuck in local optima or
take much time to solve large problem instances.

In this paper, we propose a new ACO algorithm, called
Local Search based ACO algorithm (LSACO). Our LSACO
differs from the existing ACO algorithms in different ways.
It uses a new adaptive local search to find optimum solu-
tions, so the name is local search based ACO. The proposed
algorithm balances the exploration and exploitation of the
search space in such a way that the chance of getting stuck
into local optima is greatly reduced. The pheromone initial-
ization and updating is done in different ways in LSACO.
To reduce the time complexity, LSACO adopts a number of
different techniques. These are the use of don’t look bit, dy-
namic ordering of the candidates, and a maximum of 5-opt
move.

The rest of the paper is organized as follows. Section 2
discusses the related works of ACO and their potential prob-
lems. Section 3 describes LSACO in detail and gives moti-
vations behind various design choices and ideas. Section 4
presents experimental results on LSACO and some discus-
sions. Finally, Sect. 5 concludes with a summary of this pa-
per and few remarks.

2. Related Work

A number of ACO algorithms have been proposed in the lit-
erature. All such algorithms use two components: the artifi-
cial ants and their deposited pheromone. They mainly differ
in some aspects of the search control. The first ACO algo-
rithm is the AS [8], which was applied to solve the traveling
salesman problem. The relative performance of AS tends
to decrease dramatically when the size of the test-instance
increases.

A first improvement on the initial AS is the Elitist
AS [9]. The idea of Elitist AS is to provide strong addi-
tional reinforcement to the edges belonging to the so-far
best tour found. The performance of Elitist AS is not good
compared to ACS [12]. Rank-based AS (ASrank) [14], an-
other improvement over AS, assigns ranks to the ants based
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on their performance. The quantity of pheromone deposi-
tion by an ant is weighted according to its rank. ASrank per-
forms slightly better than the Elitist AS with an extra over-
head due to ranking. Ant-Q [10], [11] is developed based on
AS and Q-learning algorithms. Although its performance is
good, Ant-Q is abandoned for the equally good but simpler
ACS [12].

Max-Min AS (MMAS) [13] introduces a number of
modifications into AS. MMAS initializes the pheromone
trails to the upper limit, restricts the possible range of
pheromone trail values to avoid local optima, exploits the
best tours found and reinitializes the pheromone trails each
time the system approaches stagnation. Among the vari-
ant of ACO algorithms, ACS [12] is the best performing one
that exploits search experience through an aggressive action
choice rule. ACS deposits and evaporates pheromone only
on the edges belonging to the best-so-far tour. When an ant
moves from the node i to the node j, ACS removes some
pheromone from the edge in order to increase the explo-
ration of alternative paths.

Approximate Nondeterministic Tree Search
(ANTS) [15], [16] is an ACO algorithm that exploits ideas
from mathematical programming. This algorithm in-
troduces hyper-cube framework in ACO to rescale the
pheromone value in the interval [0, 1]. The hyper-cube
framework is a complex method compared to the existing
ACO algorithms and so, it has not been applied extensively
like other ACO algorithms.

Our proposed LSACO relates to the hyper-heuristics
approaches [31]–[34], which broadly describe the process
of using meta-heuristics to choose meta-heuristics for solv-
ing the problem in hand [31]. A hyper-heuristic does not
operate on problems directly and does not utilize domain
knowledge; rather it utilizes low level heuristics in solv-
ing problems. The aim of hyper-heuristics is to raise the
level of generality on which search algorithms operate.
Hyper-heuristics can be split into two groups [34]: construc-
tive and perturbative (local search). Constructive hyper-
heuristics construct a solution from scratch by using con-
structive heuristics. Perturbative hyper-heuristics start from
a complete initial solution and iteratively select appropriate
low level heuristics aiming at improving the solution. The
LSACO algorithm falls in constructive hyper-heuristics.

For solving TSP problems, several other local search
algorithms exist among which Lin-Kernighan heuris-
tic [35], [36] performs best. Our proposed LSACO is dif-
ferent from Lin-Kernighan heuristic with respect to the base
algorithm. LSACO uses a variant of ACO algorithms as its
base algorithm in solving combinatorial optimization prob-
lems. This base algorithm is different from the one used
in [35], [36]. The detail description of LSACO is given in
the next section.

3. Proposed LSACO Algorithm

The LSACO algorithm consists of two main parts: base al-
gorithm and adaptive local search. The base algorithm used

in LSACO is a variant of ACS and consisted of three compo-
nents: tour construction, local pheromone update rule, and
global pheromone update rule. Thus there are four compo-
nents in LSACO, three for the base algorithm and one for
the adaptive local search. The LSACO algorithm executes
its four components sequentially one after another and re-
peats the whole process again and again until a solution is
found or the termination criterion is satisfied.

To improve the solution quality and reduce the com-
putational complexity, a number of different techniques are
adopted in LSACO. We describe different components and
techniques in the following subsections.

3.1 Tour Construction

The LSACO first maps a given problem to a graph with a set
of nodes and edges. The aim of LSACO is to find a mini-
mum cost path in the graph, which is the solution of the
problem. Our LSACO constructs tours in a different but ef-
fective way to improve the solution quality in a reasonable
time. Initially, the algorithm places m ants on the randomly
chosen nodes of the graph, where m is a user-specified pa-
rameter and selected randomly between 10 and 15. If the
solution quality does not improve after every τ iteration, it
is assumed that the number of ants is insufficient. Hence
LSACO adds one ant and places the new ant on a new node,
which is chosen randomly from the nodes that do not con-
tain any ant. The number of iterations, τ, is a user-specified
parameter. The LSACO algorithm tests this criterion after
every τ iterations. We can describe the criterion as:

mt+1 =

{
mt + 1 if (mt < mmax) and Q(t) > Q(t − 1)
mt otherwise

(1)

Here, mt is the number of ants at iteration t and mmax

is a user-specified parameter that determines the maximum
number of ants. The variables Q(t) and Q(t − 1) represent
the solution quality at addition steps t, and t − 1, respec-
tively. We set mmax to 1.5 times of the initial number of
ants. As execution proceeds, if LSACO finds that the ad-
dition of ants improves solution quality, it increases mt by
one. This is done by comparing mt with mmax and Q(t) with
Q(t − 1) as expressed by Eq. (1). It is worth mentioning that
the LSACO algorithm does not delete any ant even if it ex-
hibits worse performance compared to other ants. This is
reasonable in the sense that the worse ant may perform bet-
ter in the future iterations due to the use of a variable-opt
local search strategy in our algorithm.

To reduce burden in defining mmax, LSACO uses an
criterion to increase the value of mmax if it is set small. We
can describe the criterion as:

mmax =

{
mmax+1 if (mt =mmax) and Te < Ta

mmax otherwise
(2)

where Te and Ta represent amount of time already elapsed
and amount of time allowed for solving a given problem,
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respectively. At every iteration, our LSACO first checks the
criterion expressed by Eq. (2) to add an ant according the
criterion expressed by Eq. (1).

The way LSACO constructs tours is different from the
existing ACO algorithms [8]–[18]. Generally, a fixed num-
ber of ants are used throughout the whole execution of an
algorithm. The choice of this number is very crucial for the
performance of an ACO algorithm. A large number of ants
may increase computational expense, while a small number
of ants may reduce the solution quality. To increase solution
quality, AS [8] sets the number of ants equals to the num-
ber of nodes in a graph and keeps it fixed during execution.
Although this is reasonable for a medium sized problem, it
becomes infeasible when the problem size grows resulting
in the increase of the nodes in a graph.

Since LSACO is a variant of the ACO algorithm, it
uses a pheromone based transition rule that decides how
ants move from one node to another based on pheromone
in the edges of a graph. Our algorithm initializes each edge
(i, j) with an amount of pheromone 1/Cnn, where Cnn is
the length of a nearest-neighbor tour of a problem size n.
This initial pheromone value is neither too low nor too high.
Thus, at the start of search, all edges will be good candidates
for moderate exploration and exploitation. The positive ef-
fect of such an initialization is that it avoids early entrapping
at local optima and low convergence in finding solutions. It
has been known that the pheromone initialization plays an
important role in the solution quality [25].

Existing ACO algorithms initialize the edges with
a maximum or minimum pheromone level to encour-
age more exploration or exploitation at the beginning of
search [8], [12]–[14]. Although this kind of extreme ini-
tialization may be suitable for some problems, it may not
be suitable for other problems. For example, more explo-
ration is suitable if a search space is very rough consisting
of many local optima, while more exploitation is suitable
for a smooth search space. Since it would not be possi-
ble to know the characteristics of search spaces in advance,
the LSACO algorithm initializes pheromone with a moder-
ate value. This initialization approach can be considered as
a combination of two extremes: initialize pheromone with
a very large value and initialize pheromone with a very small
value.

According to a node transition rule, ants choose the
next node j from the unvisited nodes. This rule can be ex-
pressed as follows [12]:

j =

{
arg maxu∈Nk

i
{τiu[ηiu]β}, if q ≤ q0 (exploitation)

J, otherwise (biased exploration)

(3)

where Nk
i is the feasible neighborhood of the ant k while

being at node i, i.e., the set of nodes that the ant k has not
visited yet, q is a random variable uniformly distributed in
[0, 1]. According to [12], q0 is set to 0.9, which is found op-
timal independent of problems. Every time an ant in node i
intends to move to a node j, the LSACO generates a ran-
dom number q uniformly in the range [0, 1]. If q > q0, then

the next node j (denoted as J) is selected using Eq. (3). J is
a random variable selected according to the probability dis-
tribution and expressed by the following equation [8]:

pk
i j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
[τi j]

α[ηi j]
β

∑
u∈Nk

i
[τiu]α[ηiu]β

, if j ∈ Nk
i

0, otherwise

(4)

Here, pk
i j is the probability of choosing the node j from the

node i for the ant k, τi j is the pheromone trail of the edge
(i, j), and ηi j = 1/di j is a heuristic in which di j is the cost
of the edge (i, j). The parameter, α and β, determine the
relative influence of the pheromone trail and the heuristic
value, respectively. The aforementioned rule indicates that
the probability of choosing a particular edge (i, j) increases
with the value of the associated pheromone trail τi j and of
the heuristic information ηi j.

The value of α = 0 means that the closest nodes are
more likely to be selected. And β = 0 means that only
pheromone value will be considered without any heuristic
bias, that is, the distance of the nodes will not be considered.
Thus α = 0 or β = 0 will lead the solution to local optima.
Existing ACO algorithms used α = 1 to increase the chance
of convergence by giving more importance to pheromone.
This operation is equivalent to exploitation which is ex-
pressed by our Eq. (3). We used α = 0.1 in Eq. (4) to de-
crease the chance of convergence by giving less importance
to pheromone. Thus the shorter edges with more pheromone
will be not frequently chosen by ants. This operation is
equivalent to exploration. These phenomena indicate that
unlike existing ACO algorithms, LSACO incorporates both
exploitation and exploration in searching.

The tour construction phase is the major component of
ACO algorithms because it affects the solution quality and
convergence speed. As an approach to fasten the search pro-
cess, the LSACO algorithm uses a candidate list, a list of
preferred nodes to be visited, in the tour construction phase
for problems larger than 1000 nodes. The candidate list
is pre-computed by the nearest neighbor heuristic and kept
same throughout the execution of our algorithm. For prob-
lems with more than 1000 nodes, the size of the candidate
list is 50. The nodes in the candidate list are arranged in
ascending order of distances. The ants in LSACO first con-
sider the nodes belonging to the candidate lists to move to.
If all nodes in the candidate list have already been visited
then LSACO considers the rest of the unvisited nodes. The
use of the candidate list reduces the time complexity nearly
to O(n), which without the candidate list is O(n2) where n is
the number of nodes. This reduction is important for solving
large problems in reasonable time.

3.2 New Local Pheromone Update

As mentioned before, LSACO initializes the edges of
a graph with pheromone and ants chose to move from one
node i to another node j based on the probabilistic transi-
tion rule. It is natural to reduce the pheromone deposited
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in the edge (i, j) to undermine its desirability so that all the
ants do not follow the same path. This phase is called as
local pheromone update. Unlike AS [8], LSACO reduces
pheromone only on the visited edges. The local pheromone
updating rule of LSACO is as follows:

τi j ← (1 − ξ)τi j (5)

where ξ, 0 < ξ < 1, is the pheromone decay parame-
ter. Since LSACO reduces pheromone only for the visited
edges, its time complexity is linear i.e., O(n). The time com-
plexity of some other ACO algorithms (e.g. AS [8]) is O(n2),
which is not suitable for large sized problems. After local
pheromone updating, LSACO applies a new adaptive local
search phase, which is described as follows.

3.3 Adaptive Local Search

Local search is an iterative method that works in ACO algo-
rithms by changing the edges of a graph to further improve
the solutions found by the ants. Generally, ACO algorithms
employ 2-opt and 3-opt local search methods, a special case
of the λ-opt algorithm [4], [5], [13], where λ edges of the
current tour are replaced in each step by the same number of
edges in such a way that a shorter tour is achieved. Although
any value of λ can be used, existing ACO algorithms use
a fixed value 2 or 3 for all problems. This fixed value may
be suitable for some problems, but it may not be suitable for
other problems and may degrade the solution quality. Fig-
ure 1 illustrates a sample edge exchanging process. Suppose
the graph shown in the figure is a tour with minimum cost.
Then at each iteration step the searching attempts to find two
sets of links, X = {x1, x2, . . . , xn} and Y = {y1, y2, . . . , yn} in
such a way if the links of X are replaced by the links of Y ,
then the result is a better tour.

To overcome the aforementioned problem, LSACO
uses an adaptive approach in changing the value of λ
during execution. For the local search to take place in
LSACO, a feasible tour with minimum cost Tmin is chosen.
Given Tmin, the adaptive approach repeatedly exchanges
edges that reduce the length of the current tour. The ex-
changing process stops when no improvement is obtained
by exchanging edges. Our adaptive local search starts with
λ = 2 and then it examines λ = λ + 1. If λ + 1 yields
a better solution, then λ + 2 is examined. This process is

Fig. 1 Edge exchanging process.

continued for λ = 5. We have found that λ > 5 does not
improve the solution quality although it increases time com-
plexity. This choice is not an inherent constraint because we
allow λ to change during execution. If a large value is found
suitable for some problems, LSACO can use it because the
adaptive nature of the proposed local search. Because of
the adaptive nature of the local search, backtracking is not
required in LSACO, which is necessary for existing ACO
algorithms [8]–[18]. The avoidance of backtracking simpli-
fies LSACO and tends to reduce runtime in solving difficult
problems.

The search for better tours is stopped when the current
tour is similar to a previous tour or when all the alternatives
are searched. Every resulting final tour after exchanging
edges must be better than the original one. Otherwise, the
original tour is not replaced. To reduce the number of com-
parisons, thus to reduce time complexity, and to improve the
performance of the algorithm, several measures have been
taken in the local search of LSACO. The major new steps
that are incorporated in this new algorithm are given in the
following subsections.

3.3.1 Don’t Look Bit

To speed up the computation time, the concept of don’t look
bit [26] is used here. Suppose, (i, j) is the edge connecting
the nodes i and j. Starting from i, there may be several edges
to reach j. If the algorithm previously failed to find an im-
provement from node i, and node i’s tour neighbors have not
changed since then, it is unlikely that an improvement can
be made if the algorithm again looks at node i.

To incorporate this technique, LSACO uses don’t look
bit for each node, which is initially set to 0. The don’t look
bit for node i is set to 1 whenever a search failed previously
from node i, and it is set to 0 whenever an improving move
is found. To consider candidates for node i, all nodes whose
don’t look bit is 1 are ignored. This is done by maintaining
a queue of nodes whose bits are zero. The incorporation of
this technique reduces running time of LSACO.

3.3.2 Dynamic Ordering of the Edges

The existing ACO algorithms use a nearest neighbor heuris-
tic to compute the candidate edges to work with. The heuris-
tic rule is built on the assumption that the shorter an edge is,
the greater its probability belonging to an optimal tour. This
heuristic rule encourages the search process towards short
tours, but it reduces the exploration behavior.

Our proposed LSACO algorithm uses a dynamic order-
ing of candidates to speed up the search process further. In
dynamic ordering, when a shorter tour is found, all edges
shared by this new tour and the previous shortest tour be-
come the first candidate edges among the list of candidate
edges. As a result, the probability of finding the shortest tour
is increased. This is done to favor local optima by choosing
the recent improved tour’s edges.
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Fig. 2 Sharing common endpoints.

3.3.3 Other Conditions

The local search will be applied in such a way so that the
links of the tours doesn’t break. Otherwise, it will take
more time to build the links again. So, the new tour that
will be obtained by replacing edges must also be a closed
tour. Otherwise, opened tour cannot be visited by the ants
to find a solution. To maintain the links, a new edge to re-
place must have a common endpoint with the old edge. That
is, edge (i, j) and new edge ( j, k) must have a common end-
point and so must ( j, k) and (k, l). Thus, this condition helps
to maintain the chain of links. Figure 2 illustrates this con-
dition in which the edge (i, j) or (k, l) can be replaced by the
edge ( j, k).

To reduce computational complexity, several other
measures are taken in the local search process. Suppose,
if there is more than one edge to select as a new edge, then
an untried edge is chosen. If there are more than one alter-
native for an edge, the one where the cost is minimum, is
chosen. This reduces the running time of the local search.
To further reduce search time, replaced edges will not be
added or added edges will not be deleted.

The search for improvements is stopped if the current
tour is the same as a previous solution tour. It saves a lot
of running time and it does not affect quality of solutions.
If a tour is the same as a previous solution tour, there is no
point in attempting to improve it further. The time needed
to check that no more improvements are possible is there-
fore saved. Thus the adaptive local search makes LSACO
an efficient algorithm for finding quick optimum solutions
for large problem instances.

3.4 New Global Updating Rule

The LSACO algorithm uses a new global updating rule to
deposit pheromones in the edges of a graph. The aim of de-
position is to attract more ants to exploit the visited edges.
Our algorithm applies the global updating rule only by a sin-
gle ant instead of all the ants used in AS [8]. The single ant
is either the iteration-best ant or the best-so-far ant, which
the algorithm chooses alternatively. The iteration-best ant
is chosen as the best ant of the current iteration. The best-
so-far ant is selected among best ants from all previous it-
erations. It is changed at each iteration. The reason for

using such an alternation mechanism is to avoid local op-
tima and increase the convergence speed. If the best-so-far
ant is allowed to deposit pheromone each time, the search
process may fall into local optima. On the other hand, if
the iteration-best ant is allowed to deposit pheromone each
time, then the number of edges that receive pheromone is
larger and the search is less directed. So, LSACO updates
pheromone by using the best-so-far ant and the iteration-
best ant alternatively. A comparison of using different ants
for depositing pheromone is shown in Table 11. The global
updating rule of LSACO is given below:

τi j ← τi j + Δτ
′
i j (6)

where Δτ′i j = 1/Cbs or Δτ′i j = 1/Cib. The variable Cbs is

the length of the best-so-far tour, while Cib is the length
of the iteration-best tour. Since only single ant is allowed
to deposit pheromone in each iteration, the computational
complexity is only O(n). The LSACO algorithm deposits
pheromone on the edges according to Eq. (6), while it de-
creases pheromone according to Eq. (5). As the algorithm
proceeds towards the optimum solution, the shorter paths
(edges) will be chosen more by the ants because it will
have more pheromone than other edges. In other words, the
pheromone levels at the shortest path will converge nearly
to one, while they at other edges will converge near to zero.
It is important to note that since the best-so-far ant and the
iteration-best ant are allowed to deposit pheromone alterna-
tively, LSACO is less prone to fall into local optima.

The computational complexity of the global updating
rule of AS [8] was O(n2). The computational complexity of
the global updating rule of other ACO algorithms [9]–[18]
are approximately O(n). Here, the computational complex-
ity mainly depends on the number of ants to globally update
the pheromone. All the existing ACO algorithms [8]–[18]
fall in local optima because of either excessive exploration
or exploitation. But LSACO uses the best-so-far ant and the
iteration-best ant alternatively to deposit pheromone. So,
LSACO is less prone to local optima for solving large com-
binatorial optimization problems.

4. Experimental Studies

This section presents the performance of LSACO on sev-
eral well-known benchmark problems including symmet-
ric traveling salesman problems [12], [27], asymmetric trav-
eling salesman problems [12], [27] and Hamiltonian cycle
problems [28]. To apply LSACO in other combinatorial op-
timization problems, it is necessary to represent a problem in
a graph and then apply all the components of LSACO as de-
scribed in Sect. 3. These aforementioned traveling salesman
problems have been widely used in many previous ACO al-
gorithms. The detailed description of these problems can
be obtained from [28], [29]. We here describe experimental
results and comparison with other works in this section.

In all the experiments, different parameters of LSACO
are set to: α = 0.1, β = 2, q0 = 0.9 and ξ = 0.1. The number
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Table 1 Experimental results of LSACO on some larger TSP prob-
lems [28], [29] over 15 trials.

of initial ants m is set randomly between 10 and 20, mmax is
set to 1.5 times of m and τ is set to 10. In tour construction,
ants use a candidate list of size 20. However, a candidate
list of size 50 is used during adaptive local search for prob-
lems with dimension more than 1000. Our algorithm termi-
nates when no further improvement is found after adding an
ant. All experiments were run on a machine having Pentium
Dual Core processor with 2.2 GHz speed and 1 GB RAM.

4.1 Experimental Results

Table 1 shows the results of LSACO over 15 independent
trials on different problems. The percentage error in the ta-
ble is computed by using the following formula:( |best − optimum|

optimum
× 100

)

where optimum is the length of the shortest possible tour
found in [28] and best is the best length found by LSACO
over 15 trials.

It can be observed from Table 1 that LSACO produces
very good results on some large TSP problems. For exam-
ple, for the pla7397 dataset of the symmetric traveling sales-
man problem, the best length found by LSACO algorithm
was optimal. In fact, the average results of the proposed al-
gorithm was very close to the optimum i.e., average percent-
age error was 0.01%–0.03%. These results indicate the pos-
itive effect of different techniques adopted in our LSACO.
The proposed algorithm also shows promising performance
on the Hamiltonian cycle problems (Table 2).

4.2 Comparison

We compare here the performance of LSACO with some
other well known ACO and non-ACO algorithms. These

Table 2 Performance of LSACO for Hamiltonian cycle problems [28],
[29] over 15 trials.

Table 3 Comparison between LSACO and ACS-3-opt [12] on some
symmetric TSP problems [28], [29] over 15 trials.

Table 4 Comparison between LSACO and ACS-3-opt [12] on some
asymmetric TSP problems [28], [29] (over 15 trials).

algorithms include ACS-3-opt [12], MMAS-2-opt [13],
MMAS-3-opt [13] and cAS [37]. Tables 3–9 and Figs. 3–4
show the comparison of these algorithms. ACS-3-opt,
MMAS-3-opt and LSACO were run for different problems
of TSPLIB [28], [29] such as fl15177, d2103, pr2392 and
pcb3038. The results for each of these problems was then
averaged and plotted in Figs. 3 and 4. Problem dimension
up to 3038 was taken because above that dimension the
time complexity of ACS-3-opt and MMAS-3-opt increased
exponentially.

It can be observed from Tables 3–4 that LSACO
performed slightly better than ACS-3-opt for symmetric
and asymmetric problems. However, LSACO showed sig-
nificantly better performance in terms of error and time
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Table 5 Comparison between LSACO and MMAS-2-opt [13] on sym-
metric problems of TSP [28], [29] (Over 15 trials).

Table 6 Comparison of LSACO and MMAS-3-opt [13] on asymmetric
problems of TSP [28], [29] (Over 15 trials).

Table 7 Comparison between LSACO and cAS with LK [37] on sym-
metric problems of TSP [28], [29] (Over 15 trials).

as the dimension of the problems increases (Figs. 3–4).
The proposed LSACO also performed better compared to
the MMAS-2-opt, MMAS-3-opt and cAS algorithms (Ta-
bles 5–7). The performance of LSACO was far better com-
pared to MMAS-3-opt for problems with a large dimension
(Figs. 3–4). Based Because the focus of this paper is on the
presentation of the ideas and technical details of LSACO,
the detailed comparison with other algorithms using the
same heuristics and experimental setup is left as the future
work. It is impossible to compare different algorithms fairly
unless we reimplement all the algorithms under the same

Table 8 Comparison of base algorithm of LSACO w/o ALS with ACS
and MMAS for some small problems of TSPLIB [28], [29] (over 15 trials).

Table 9 Comparison of ACS, MMAS and base algorithm of LSACO us-
ing ALS (Adaptive Local Search) for some large problems of TSPLIB [28],
[29] (over 15 trials).

Fig. 3 Comparison of error rates of LSACO and other best known ACO
algorithms with respect to problem dimension.

experimental setup and heuristics.
Table 8 shows the results of LSACO without using the

adaptive local search (LSACO w/o ALS) and two other al-
gorithms (i.e., ACS and MMAS) that also do not use any
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Fig. 4 Comparison of required time with the best known ACO algo-
rithms to find the optimum solution.

Table 10 Comparison of LSACO with CLK (Chained Lin-Kernighan)
heuristic [35] for some problems of TSPLIB [28], [29] (over 15 trials).

local search. It is clear that the base algorithm of LSACO
also performs better compared to ACS and MMAS. Table 9
shows the results of LSACO, ACS and MMAS with the
same ALS. The performance of LSACO is also better in
this case.

So far we have compared LSACO with ACO-based al-
gorithms. It is interesting to know how LSACO performs
with respect to non-ACO algorithms. Table 10 shows the
results of LSACO and the CLK (Chained Lin-Kernighan)
heuristic [35], a non-ACO based algorithm. Our LSACO
performs similar to CLK heuristic. For some problems,
LSACO performs better while CLK heuristic performs bet-
ter for other problems. This is reasonable because the CLK
heuristic is specially designed for solving TSP problems,
while LSACO is designed for any kind of combinatorial op-
timization problems.

Table 11 shows a comparison of using different ants for
depositing pheromone in each global updating phase. There
are three cases compared here. In the first case, only the
iteration-best ant is allowed to deposit pheromone which
made the search less directed. So, it took more iteration
to converge. In the second case, only the best-so-far ant was
chosen to deposit pheromone which made the search to fall
into local optima for some problem instances. In the third
case, the iteration-best ant and the best-so-far ant were al-
lowed to deposit pheromone alternatively. As a result, the
search was more directed and took less time to converge.

Although the comparison of our LSACO with other al-

Table 11 Comparison of using iteration-best ant and best-so-far ant for
depositing pheromone in LSACO for some problems of TSPLIB [28], [29]
(over 15 trials).

Fig. 5 Effect of adding ants in LSACO for different problems.

gorithms shows novelty of the proposed method, it is not
clear the impact of adding ants (an important component
of LSACO) on the solution quality of a given problem. To
show this effect, we plot the performance of LSACO after
adding an ant (Fig. 5). It is clear from this figure that the
addition of ants increases the solution quality. However, the
addition of ants above a certain level does not improve the
solutions quality and this threshold level is usually below 20.
When LSACO reaches this threshold level, it stops adding
any more ants for solving a given problem.

It can be seen from Fig. 4 that the time requirement of
our proposed LSACO is better compared to ACS-3-opt and
MMAS-3-opt algorithms. Up to problem size of 500 nodes,
the time required by ACS-3-opt [12] and MMAS-3-opt [13]
was reasonable. But when the problem size grows more
than 500 nodes, the time requirement grows higher whereas
our proposed LSACO performed very well even for prob-
lem size of more than 2000 nodes. The is because the time
complexity of the existing ACO algorithms is nearly O(n2)
whereas our proposed LSACO algorithm’s time complexity
has been reduced to nearly O(n) from O(n2). It has been
made possible for introduction of several changes inside our
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algorithm. LSACO uses candidate list in the tour construc-
tion phase for problem size greater than 1000 nodes to re-
duce the computational complexity of O(n2) which is very
inefficient to solve large problem instances. In existing ACO
algorithms, pheromone trails are stored in a matrix with
O(n2) entries. All the entries of this matrix are updated at
each iteration. This is a very expensive operation for large
problems. So, LSACO updates pheromone only to the edges
connecting a node i to nodes belonging to i’s candidate list.
Hence, the pheromone trails can be updated in O(n) time.

Time complexity of 2-opt and 3-opt local search meth-
ods are approximately O(n2.2). Since our adaptive local
search reduces the number of comparisons and uses differ-
ent approaches to reduce running time, its time complexity
reduces to O(n). So, the average time complexity of our pro-
posed LSACO algorithm is O(n). The time complexity of
ACS [12] and MMAS [13] is O(n2) and the time complexity
of ACS-2-opt [12], ACS-3-opt [12], MMAS-2-opt [13] and
MMAS-3-opt [13] algorithms are approximately O(n2.2).

5. Conclusions

The solution quality and the time complexity of ACO al-
gorithms are greatly dependent on their inherent architec-
ture and parameter settings. Although the existing ACO al-
gorithms [8]–[18] show very promising results for solving
combinatorial optimization problems, but their performance
reduces dramatically when the problem size grows gradu-
ally. This paper describes a new algorithm named LSACO
for solving large combinatorial optimization problems in
a reasonable time and with good quality solutions.

The idea behind LSACO is to put more emphasis on
an adaptive local search strategy and to balance the explo-
ration and exploitation of search space in different compo-
nents of the algorithm by introducing various improvements
and modifications. The first improvements include the ini-
tialization and updating of pheromone level in new ways in
different stages of the algorithm so as to improve the so-
lution quality and to reduce the computational complexity.
Besides, the ants are maintained in an adaptive manner un-
like the fixed number of ants in the existing ACO algorithms.

The existing local search algorithms are not adaptive.
That is, they use fixed value of edge exchange. Since the
number of edges is fixed, the solution obtained by local
search may not be optimal because it is not possible to know
in advance what number of edge exchange to use to achieve
the best compromise between running time and quality of
solution. Our proposed adaptive local search strategy is bet-
ter suited due to its ability to cope with different problem
sizes and conditions that may arise at different stages during
the solution building process of the artificial ants. To make
the adaptive local search efficient, the concept of don’t look
bit and dynamic ordering of the candidates are used.

The proposed LSACO algorithm has a lesser chance to
trap into architectural local optima, a common problem suf-
fered by the existing ACO algorithms. All these techniques
are adopted in LSACO for designing a robust ACO algo-

rithm with good generalization ability for solving small to
large combinatorial optimization problems. Due to these
differences with the existing ACO works, LSACO finds
good solutions in a reasonable amount of time. Its compu-
tational complexity is also significantly lower than the other
ACO algorithms. As a result, LSACO can be successfully
applied in larger problem instances which were not possible
with the existing ACO algorithms.

The extensive experiments reported in this paper have
been carried out to evaluate how well LSACO performed
on different problems compared to other algorithms. In al-
most all cases, LSACO outperformed the others (Tables 2–
6). In its current implementation, LSACO has a few user-
specified parameters although this is not unusual in the field.
These parameters, however, are not very sensitive to mod-
erate changes. One of the future improvements to LSACO
would be to reduce the number of parameters or make them
adaptive.
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