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Video Quality Assessment Using Spatio-Velocity Contrast
Sensitivity Function
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Norimichi TSUMURA†, Toshiya NAKAGUCHI†, and Yoichi MIYAKE††, Members

SUMMARY Due to the development and popularization of high-
definition televisions, digital video cameras, Blu-ray discs, digital broad-
casting, IP television and so on, it plays an important role to identify and
quantify video quality degradations. In this paper, we propose SV-CIELAB
which is an objective video quality assessment (VQA) method using a
spatio-velocity contrast sensitivity function (SV-CSF). In SV-CIELAB,
motion information in videos is effectively utilized for filtering unneces-
sary information in the spatial frequency domain. As the filter to apply
videos, we used the SV-CSF. It is a modulation transfer function of the
human visual system, and consists of the relationship among contrast sen-
sitivities, spatial frequencies and velocities of perceived stimuli. In the
filtering process, the SV-CSF cannot be directly applied in the spatial fre-
quency domain because spatial coordinate information is required when
using velocity information. For filtering by the SV-CSF, we obtain video
frames separated in spatial frequency domain. By using velocity informa-
tion, the separated frames with limited spatial frequencies are weighted
by contrast sensitivities in the SV-CSF model. In SV-CIELAB, the crite-
ria are obtained by calculating image differences between filtered original
and distorted videos. For the validation of SV-CIELAB, subjective evalua-
tion experiments were conducted. The subjective experimental results were
compared with SV-CIELAB and the conventional VQA methods such as
CIELAB color difference, Spatial-CIELAB, signal to noise ratio and so on.
From the experimental results, it was shown that SV-CIELAB is a more
efficient VQA method than the conventional methods.
key words: objective video quality assessment, spatio-velocity contrast
sensitivity function, image diffrence, subjective evaluation, rank order cor-
relation coefficient

1. Introduction

Recently, due to the development and popularization of
high-definition televisions, digital video cameras, Blu-ray
discs, digital broadcasting, IP television and so on, high-
quality videos have been widely used in our life. As high-
quality videos become popular, it plays an important role
to identify and quantify video quality degradations due to
video data compression.

Since humans are the ultimate evaluators of video qual-
ity, the most reliable way of video quality assessments
(VQAs) is a subjective evaluation method. However the cost
of a subjective evaluation is expensive and it is not an appro-
priate way for a versatile VQA method. On the other hand,
an objective VQA method is not expensive compared with
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subjective methods. In general, factors of image quality in
objective evaluations are quantified by the criteria such as
sharpness, color reproduction, tone reproduction and noise
characteristics. The simplest and most widely used image
quality assessment (IQA) method is the mean square error
(MSE) or peak signal to noise ratio (PSNR). But they are
not very well correlated with perceived visual quality [1]–
[5]. Since images are perceived through the human visual
system, objective IQA or VQA methods should be designed
by incorporating human visual characteristics [1]. Based on
this observation, Wang et al. proposed structural similarity
(SSIM) [6]–[8]. Though SSIM is an IQA method based on
the assumption of human visual perception, it does not con-
tain exact human visual characteristics.

In conventional IQA or VQA methods with the human
visual characteristics, contrast sensitivity functions (CSFs)
are frequently used. CSFs are a modulation transfer func-
tion of the human visual system, and have band-pass char-
acteristic in spatial frequency domain [9]. In 1996, Zhang et
al. proposed Spatial-CIELAB (S-CIELAB) [10]. To com-
pute image degradations between original and distorted im-
ages, they applied a CSF in filtering images. The criteria
can be obtained by calculating CIELAB color differences
between filtered original and distorted images at each pixel.
Though S-CIELAB is useful for still image quality assess-
ment, temporal characteristics in human visual system were
not considered and it is not enough for VQA. To evaluate
video quality, Tong et al, proposed spatio-temporal CIELAB
(ST-CIELAB), which is an extension of S-CIELAB [11].
They used a spatio-temporal CSF [12], [13] to filter orig-
inal and distorted videos. Though ST-CIELAB was pro-
posed as a VQA method, a previous research has reported
that ST-CIELAB is not so much effective compared to S-
CIELAB [14]. This reason is that ST-CSF does not con-
tain eye movement characteristics. When observers evaluate
video quality, it is considered that their eyes track moving
objects in the video. To build more useful VQA methods,
the eye movement characteristics should be incorporated.

In this paper, therefore, we propose SV-CIELAB which
is a VQA method using a spatio-velocity contrast sensitivity
function (SV-CSF) [15]–[17]. The SV-CSF consists of the
relationship among contrast sensitivities, spatial frequencies
and velocities of stimuli. It also contains eye movement
characteristics that follow moving objects. We assumed that
eyes track moving objects in videos when observers eval-
uate the video quality. Based on this observation, the SV-
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CSF was applied to filter original and distorted videos. The
criteria in our method are obtained by calculating image
differences between filtered videos. Furthermore we con-
ducted subjective experiments for validating SV-CIELAB.
The subjective results were compared with SV-CIELAB and
the conventional VQA methods which are PSNR, SSIM,
CIELAB color difference, S-CIELAB and ST-CIELAB.

2. Related Work

2.1 Spatial-CIELAB and Spatio-Temporal CIELAB

Figure 1 shows the overview of the color difference calcu-
lations in S-CIELAB or ST-CIELAB [10]–[14]. Original
R, G, B images and distorted R, G, B images are respec-
tively transformed to the opponent color components, A (lu-
minance channel), T (r/g channel), D (b/y channel). Then,
the spatial frequency filtering in S-CIELAB and the spatio-
temporal frequency filtering in ST-CIELAB are performed.
The filters are CSFs which represent band-pass character-
istics in human visual system. Those filtered images are
transformed to X, Y, Z colorimetric values and then L*, a*,
b* values. Finally color difference is calculated pixel-by-
pixel and then the mean difference is calculated.

2.2 Spatio-Velocity Contrast Sensitivity Function

The SV-CSF model was originally proposed by S. Daly et
al. [15], [16]. They proposed the SV-CSF model based on
the experimental data of some previous works [9], [12] and
their brief experiments. However the parameters in the SV-
CSF model were not validated sufficiently. In 2007, more
detailed experiments to measure the contrast sensitivities
were conducted by Hirai et al [17]. In the experiments, Ga-
bor patterns were used as the stimuli which moved from left
to right on a display device. A fixation point was also dis-
played at the center of the stimuli and the point moved along
the motion of the stimuli. The observers were instructed to
fix their gazes on the fixation point, and contrast sensitivities
were measured. Based on the measured data, they optimized
the parameters in the SV-CSF model.

Figure 2 represents the SV-CSF model [17]. The SV-
CSF consists of the relationship among contrast sensitivi-
ties, spatial frequencies and velocities of stimuli. As shown
in Fig. 2, the SV-CSF has band-pass characteristics and the
peak of contrast sensitivities with 0 degrees/second (degree
means visual degree) is around 3 cycles/degree. As the ve-
locity increases, the peak becomes close to lower frequency.
In the experiments to measure contrast sensitivities, ten sub-
jects participated [17]. The results of each subject are same
tendency which indicates that SV-CSF has band-pass char-
acteristics and the peak becomes close to lower frequency
as the velocity of stimulus increase.

As shown in Fig. 2, the contrast sensitivities depend
on the velocity of the moving stimuli. If eyes follow the
fixation point perfectly, the retinal image when looking at
moving stimuli are ideally the same as that when looking

Fig. 1 Overview of S-CIELAB and ST-CIELAB.

Fig. 2 SV-CSF model.

at still stimuli. However, the contrast sensitivities changed
depending on the velocity of the moving stimuli. S. Daly
described that this reason is caused by smooth pursuit eye
movements [15]. The smooth pursuit eye movements reduce
the accuracy of tracking moving stimuli. In other words, the
smooth pursuit eye movements change the characteristics of
the contrast sensitivities when looking at moving stimuli.

3. SV-CIELAB

3.1 Overview

SV-CIELAB is a VQA method using the SV-CSF. How-
ever the SV-CSF model was proposed for the only lumi-
nance channel in the human visual system. Therefore, in
this research, gray-scale videos are addressed. Y values (lu-
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Fig. 3 Overview of the proposed SV-CIELAB.

minance channel) of CIEXYZ color space are used in the
processing of the videos. Figure 3 shows the overview of
the proposed SV-CIELAB. As described above, the SV-CSF
model contains velocity axis. Therefore, first, the veloci-
ties at each pixel are acquired. To obtain the velocities, we
calculated optical flows by using the Bergen’s method [18].
Next, the original and distorted videos are filtered using the
optical flows and the SV-CSF. Finally, the criteria in SV-
CIELAB are obtained by calculating image differences be-
tween filtered original and distorted videos.

3.2 Filtering in SV-CIELAB

Figure 4 shows the filtering process using the SV-CSF. In
S-CIELAB and ST-CIELAB, input images or videos are fil-
tered in spatial or temporal frequency domain. However,
the SV-CSF cannot be applied in the frequency domains be-
cause the spatial coordinate information is required when
using velocity information at each pixel. Therefore, in fil-
tering by the SV-CSF, we obtain video frames separated in
spatial frequency domain. Each separated frame has the in-
formation of one cyc/deg. By using velocity information,
the frames separated by each spatial frequency are weighted
by contrast sensitivities in the SV-CSF model (described in
Sect. 3.3). A final filtered frame is obtained by synthesizing
the weighted frames.

3.3 Weighting Map

Figure 5 shows the weighting process using the SV-CSF.
In this process, weighting map w at frame t configured by
specific spatial frequency f (cyc/deg) is generated by a fol-
lowing equation.

wt f (x, y) = S V −CS Fnor( f , vt(x, y)) (1)

Fig. 4 Filtering process in SV-CIELAB.

where x and y are spatial coordinates, vt is velocity (deg/sec)
at frame t. SV-CSFnor is the normalized SV-CSF which
range is from 0 to 1. f is given by the frames separated
by each spatial frequency as described in Sect. 3.2. The SV-
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Fig. 5 Weigting process using SV-CSF.

CSF [17] is computed by

S V −CS F( f , v) =

kc0c1c2(v + cv)(c12π f )2exp

(
−c14π f

fmax

)

k = 6.1 + 7.3|log(c2(v + cv)/3)|3
fmax = 45.9/(c2(v + cv) + 2) (2)

where c0, c1, c2 and cv are parameters: c0 = 1.00, c1 = 0.56,
c2 = 0.48 and cv = 5.1. Finally, the weighted frame t of f
cyc/deg is calculated by

t f w(x, y) = wt f (x, y)t f (x, y) (3)

3.4 Image Difference Calculation

The criteria in SV-CIELAB are obtained by calculating
image differences between filtered original and distorted
videos. To calculate the differences, the filtered videos are
transformed to L*, a*, b* values in CIELAB color space.
The image difference is computed pixel-by-pixel and then

the mean difference is obtained as follow.

Image di f f erence =∑
x,y,t

√
(Lo(x, y, t) − Ld(x, y, t))2

NxNyNt
(4)

where Nx, Ny and Nt are the number of samples in x, y and
t, respectively. Lo and Ld are L* (lightness) values of the
filtered original and distorted video.

4. Validation

In general, VQA methods are required to address video
quality factors such as sharpness, tone reproduction, color
reproduction and noise characteristics. In particular, noise
such as random noise, mosquito noise and blockiness often
occur due to broadcasting or video data compression, and
it is important to evaluate degradation caused by the noise.
Therefore, as the first step, distorted videos generated by
adding random noise were used to validate SV-CIELAB.

For the validation of SV-CIELAB, two kinds of sub-
jective evaluation experiments were conducted. In the vali-
dation, subjective experimental results were compared with
SV-CIELAB and the conventional VQA methods which are
PSNR, SSIM, CIELAB color difference, S-CIELAB and
ST-CIELAB.

In the calculation of the objective scores, CIELAB
color difference, S-CIELAB and ST-CIELAB were obtained
by the ways described in Sect. 2.2 and Eq.4. PSNR is de-
fined as

PSNR = 10 log10

(
Imax

2

MSE

)

MSE =
1

NxNyNt

∑
x,y,t

(Io(x, y, t) − Id(x, y, t))2 (5)

where x and y are spatial coordinates and t is frame num-
ber. Nx, Ny and Nt are the number of samples in x, y and t,
respectively. Io and Id are pixel values of the filtered origi-
nal and distorted video. Imax is a constant which represents
the dynamic range of pixel intensities (e.g., for 8 bits/pixel
grayscale image, Imax = 255). SSIM [6] was also calculated
as one of typical conventional VQA methods. SSIM is de-
fined as

SSIM(t) =
(2μo(t)μd(t) +C1)(2σod(t) +C2)

(μo(t)2 + μd(t)2 +C1)(σo(t)2 + σd(t)2 +C2)
(6)

where μo, μd and σo, σd are the mean and standard devia-
tion of the frame t in the original and the distorted videos,
respectively. σod is the cross correlation between the mean-
removed frame t in the original video and that in the dis-
torted video, and C1 and C2 are two constants: C1 = 6.5 and
C2 = 58.5. SSIM is a value between −1 and 1, and value 1
means that the quality of an original frame is the same as the
one of a distorted frame. Finally, SSIM is a simple average
over all frames.
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4.1 Experiment A

In Experiment A, assuming that the video contents of for-
est and men are commonly used, we prepared two videos
as shown in Fig. 6 (Sample 1: forest, and Sample 2: stand-
ing men). The velocities and directions of motion in each
pixel of the videos were same because the motions of the
videos were generated by virtual panning of a camera. The
velocities in the videos were 0, 2.5, 5 and 10 deg/sec and the
directions are horizontal scrolls. The distorted videos were
generated by adding random noise of 0, 7.5, 10 and 12.5%

(a) (b)

Fig. 6 Displayed videos. (a) Sample 1: forest. (b) Sample 2: standing
men.

Fig. 7 Experimental room.

(a) (b)

Fig. 9 Relationships between subjective scores and velocities of videos. Noise levels are ◦: 0%,
�: 7.5%, �: 10% and �: 12.5%. (a) Sample 1: forest. (b) Sample 2: standing men.

(maximum luminance levels of random noise are 7.5, 10 and
12.5% of 340 cd/m2 which is the maximum luminance of
the LCD). The random noise was generated frame-by-frame
based on general random noise in broadcasting. Totally 32
videos were evaluated. The videos are 30 frames/second,
the size is 256× 256 pixels, and the time of each video is 10
seconds.

Figure 7 shows the experimental room. The setup of il-
lumination in the room is dark condition. Fifteen observers
participated in Experiment A. In the VQA methods, the
objective scores are obtained by calculating the difference
between the original and distorted videos. Therefore, in
the subjective experiments, the original and distorted videos
were displayed at the same time and observers were in-
structed to evaluate the difference between the videos. The
observers were not instructed how to watch the videos. In
other words, the observers could watch the original and dis-
torted videos freely while the videos were displayed. The
viewing condition in this instruction way is close to the nat-
ural viewing condition while viewing videos, and it was
used in the conventional evaluation of S-CIELAB or ST-
CIELAB [14]. In these experimental conditions, we as-
sumed that eyes tracked moving objects in videos while

Table 1 Setups of display device.

type LCD
size 27 inches

pixels 1980 × 1280 pixels
pixel pitch 0.303 mm

maximum luminance 340 cd/m2

background luminance 170 cd/m2

around videos (half of maximum luminance)
gamma 2.2

color temperature 6500 oC

Fig. 8 Experimental procedure.
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(a) (b) (c)

(d) (e) (f)

Fig. 10 Relationships between objective scores and velocities in Sample 1. Noise levels are ◦: 0%,
�: 7.5%, �: 10% and �: 12.5%. (a) PSNR. (b) SSIM. (c) CIELAB. (d) S-CIELAB. (e) ST-CIELAB.
(f) SV-CIELAB.

(a) (b) (c)

(d) (e) (f)

Fig. 11 Relationships between objective scores and velocities in Sample 2. Noise levels are ◦: 0%,
�: 7.5%, �: 10% and �: 12.5%. (a) PSNR. (b) SSIM. (c) CIELAB. (d) S-CIELAB. (e) ST-CIELAB.
(f) SV-CIELAB.

observers evaluated the video quality. We also considered
that the eyes could track moving objects while the observers
were watching the videos, because similar experimental
methods were used to evaluate quality of moving images
which were displayed on LCDs [19], [20]. In Experiment

A, the observers evaluated the degraded level by the scale
of 1 to 5 (1: the same, 2: slightly different, 3: different, 4:
definitely different and 5: very different). Table 1 shows the
setups of the display device. We prepared a 27” LCD in the
experiment. The viewing distance is 400 mm which are de-
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cided based on the standard viewing distance recommended
by ITU [21]. Figure 8 shows the experimental procedure.
First, observers watched a video for 20 seconds. The video
of 20 seconds were presented by running a video of 10 sec-
onds continuously. By such displaying procedure, we con-
sider it is possible to evaluate same areas in the original and
distorted video easily. After watching the video, observers
evaluated the degraded level in 10 seconds. In this evalu-
ating period, a gray image was displayed. The luminance
of the gray image is the same as the one of the background
shown in Table 1. The distorted videos were displayed in
random order, and the watching and evaluating period were
repeated until all of the degraded videos have been evalu-
ated.

Figure 9 shows the results of the relationships between
the subjective evaluation scores and the velocities of the
videos. As the velocities increase, the subjective scores be-
come lower values. In other words, the observers cannot
perceive additive noise accurately in the videos with high
velocities.

Figure 10 and 11 show the results that describe the re-
lationships between the objective evaluated scores and the
velocities in the videos (Sample 1 and 2). In the results
of PSNR (Fig. 10 (a) and Fig. 11 (a)), the plots with 0%
noise are excepted because the PSNR between the original
videos and the distorted video of 0% noise cannot be cal-
culated. The objective scores of PSNR, SSIM, CIELAB, S-
CIIELAB and ST-CIELAB shown in Fig. 10 and 11 are ap-
proximately the same values in each noise level respectively.
These results mean that the conventional methods practi-
cally are not affected by the changes of the velocities. On

(a) (b) (c)

(d) (e) (f)

Fig. 13 Relationships between subjective scores and objective scores in experiment A. (a) PSNR. (b)
SSIM. (c) CIELAB. (d) S-CIELAB. (e) ST-CIELAB. (f) SV-CIELAB. Note that the values of horizontal
axes in (a) and (b) are reciprocals of PSNR and SSIM, respectively.

the other hand, the objective scores of SV-CIELAB become
lower values as the velocities increase. The tendency of SV-
CIELAB is similar to the subjective results shown in Fig. 9.
Figure 12 shows the images differences between an origi-
nal and distorted frame in Sample 1. The figures also show
that ST-CIELAB cannot take into account the change of the
velocities whereas the objective scores of SV-CIELAB be-
come lower values with higher velocities.

Figure 13 shows the relationships between subjective
and objective scores. In PSNR and SSIM, the image quali-
ties of the distorted videos are better as the objective scores
are higher. On the other hand, in CIELAB color difference,
S-CIELAB, ST-CIELAB and SV-CIELAB, the image quali-

Fig. 12 Image differences between an original and distorted frame in
Sample 1.
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ties are worse as the ones are higher. Therefore, in Fig. 13 (a)
and (b), the values of the horizontal axes are the reciprocals
of PSNR and SSIM to conform to the CIELAB color differ-
ence, S-CIELAB, ST-CIELAB and SV-CIELAB. Table 2
also shows the Spearman’ s rank order correlation coeffi-
cients (ROCC) [22] between subjective scores and the pro-
posed and conventional VQA methods. ROCC is given by

ROCC=1 − 6
∑

d2

n(n2 − 1)
(7)

where n is the number of evaluated videos in the experiment
and d is the difference between the ranks in subjective and
objective scores. ROCC is one of the metrics for the evalu-
ation of video quality measures [23]. Its advantage is in its
robustness because it is independent of any fitting functions
that attempt to find a nonlinear mapping between the objec-
tive and the subjective scores. From the results shown in
Fig. 13 and Table 2, SV-CIELAB is the more efficient VQA
method than the conventional methods.

4.2 Experiment B

In Experiment B, we prepared six kinds of videos whose

Table 2 Rank order correlation coefficients between subjective scores and objective scores in exper-
iment A.

MSE/PNSR/CIELAB SSIM S-CIELAB ST-CIELAB SV-CIELAB

correlations in Sample 1 0.783 0.869 0.811 0.837 0.915
correlations in Sample 2 0.817 0.889 0.853 0.871 0.938

correlations in all videos 0.792 0.878 0.833 0.861 0.925

(a) (b) (c)

(d) (e) (f)

Fig. 15 Relationships between subjective scores and objective scores in experiment B. (a) PSNR. (b)
SSIM. (c) CIELAB. (d) S-CIELAB. (e) ST-CIELAB. (f) SV-CIELAB. Note that the values of horizontal
axes in (a) and (b) are reciprocals of PSNR and SSIM, respectively.

velocities and directions of motion in each pixel were dif-
ferent. The motion of the videos is as described below, and
Fig. 14 shows the example of the motion (Video#6).

Video#1: A man stand at center and a video camera moves
around the man.

Video#2: A man stand and a video camera moves from left

(a) (b)

Fig. 14 Example of motion in a video prepared in Experiment B. (a)
Frame extracted from a video sequence. (b) Estimated optical flows.
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Table 3 Rank order correlation coefficients between subjective scores and objective scores in exper-
iment B.

MSE/PNSR/CIELAB SSIM S-CIELAB ST-CIELAB SV-CIELAB

correlations in all videos 0.771 0.866 0.821 0.843 0.906

to right.
Video#3: The position of a video camera is fixed and a man

walks from left to right.
Video#4: The position of a video camera is fixed and a man

walks from far to near side.
Video#5: A man walks from left to right and a video cam-

era moves with the motion of the man.
Video#6: A man walks from right to left and a video cam-

era moves with the motion of the man.

In addition, we also prepared two more videos which have
the same contents as the two videos (Video#5 and #6) in
the above six videos, but the velocities of the added two
videos were doubled. The velocities of the prepared videos
were acquired by calculating the optical flows as described
in Sect. 3. The distorted videos were generated by adding
random noise of 0, 7.5, 10 and 12.5% and totally 32 videos
were evaluated. Other experimental set-ups are the same as
the experiment A.

Figure 15 shows the results of the relationships be-
tween subjective and objective scores. Table 3 also shows
the rank order correlation coefficients between subjective
scores and the VQA methods. The characteristic features
of these results are similar to those of the results in Experi-
ment A, and SV-CIELAB is the more efficient VQA method
than the conventional methods.

5. Conclusions

In this paper, we proposed SV-CIELAB which is a VQA
method using a SV-CSF. From the experimental results for
the validation, it was shown that the SV-CIELAB is a more
efficient VQA method than the conventional methods which
are PSNR, SSIM, CIELAB color difference, S-CIELAB and
ST-CIELAB.

In SV-CIELAB, we assumed that observers’ eyes
tracked moving objects in videos while observers evaluate
the video quality. However this assumption is not validated
in this research. Therefore, as the future work, we should in-
vestigate the assumption by using the instrument to measure
eye movements. As other future work, we should address
the various types of degradation to validate SV-CIELAB,
because degraded videos with random noise is only used in
the experiments. We also would like to investigate the ef-
fects of errors of the optical flow extraction on SV-CIELAB,
because the filter based on SV-CSF is significantly affected
by the accuracy of the optical flow extraction. In addition,
we should expand SV-CIELAB to color video quality as-
sessment. In our method, mainly gray-scale videos are eval-
uated. However, to build more efficient VQA method, we
have to address color videos. Furthermore, we would like
to incorporate the visual attention model using motion in-

formation to SV-CIELAB. Information of visual attention is
effective in image quality assessment [7], [8], [24]. In partic-
ular, motion information plays an important role in predict-
ing visual attention [25]. Therefore, we should utilize vi-
sual attention areas based on motion information for a high-
performance VQA method.
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