
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010
1433

PAPER Special Section on Info-Plosion

Query Processing in a Traceable P2P Record Exchange Framework

Fengrong LI†a), Student Member and Yoshiharu ISHIKAWA††b), Member

SUMMARY As the spread of high-speed networks and the develop-
ment of network technologies, P2P technologies are actively used today
for information exchange in the network. While information exchange in a
P2P network is quite flexible, there is an important problem—lack of reli-
ability. Since we cannot know the details of how the data was obtained, it
is hard to fully rely on it. To ensure the reliability of exchanged data, we
have proposed the framework of a traceable P2P record exchange based
on database technologies. In this framework, records are exchanged among
autonomous peers, and each peer stores its exchange and modification his-
tories in it. The framework supports the function of tracing queries to query
the details of the obtained data. A tracing query is described in datalog and
executed as a recursive query in the P2P network. In this paper, we focus on
the query processing strategies for the framework. We consider two types
of queries, ad hoc queries and continual queries, and present the query
processing strategies for their executions.
key words: information exchange, peer-to-peer networks, traceability,
data provenance, query processing

1. Introduction

In recent years, peer-to-peer (P2P) technologies have at-
tracted much attention from both academic communities
and industries [3]. A P2P network consists of a large number
of autonomous peers. Peers cooperate to provide various in-
formation services such as information sharing and delivery
without centralized control.

From the early stage of the P2P technologies, one
of their main application fields was information exchange
among peers. For example, Gnutella [12] is a well-known
software system for P2P file exchange. P2P technologies
were successful for flexible information exchange among
peers in all over the world, but there exists an important
issue—lack of reliability. By the term reliability, we mean
the trustiness of the data exchanged in a P2P network. For
example, when we get some data from a P2P network, how
can we believe that the data is fully trustful?

In a typical P2P file exchange service, we cannot know
details of the obtained data such as who created the data
and which peers participated the process of a file exchange.
It means that such systems are not traceable. The support
of traceability is quite important for a reliable information

Manuscript received September 4, 2009.
Manuscript revised January 4, 2010.
†The author is with the Graduate School of Information Sci-

ence, Nagoya University, Nagoya-shi, 464–8601 Japan.
††The author is with the Information Technology Center, Na-

goya University, Nagoya-shi, 464–8601 Japan.
a) E-mail: lifr@db.itc.nagoya-u.ac.jp
b) E-mail: ishikawa@itc.nagoya-u.ac.jp

DOI: 10.1587/transinf.E93.D.1433

exchange.
The traceability facility is also highly interested in the

field of database research. The keyword data provenance (or
lineage) is often used for describing the related concept [7],
[8], [29]. In short, data provenance tries to give us evidences
how a data item was obtained from other data items and why
a data item exists in the database. So far, practical and the-
oretical methodologies for describing, querying, and main-
taining provenance information have been proposed. Some
projects focus on the data provenance issues in P2P infor-
mation integration [18].

With the above background, we have proposed a frame-
work for traceable P2P record exchange [20], [23]. We have
extended the notion of data provenance to information ex-
change in a P2P network. In the framework, a record means
a tuple-structured data item that obeys a predefined schema
globally shared in a P2P network. Records are exchanged
among peers and peers can modify, store, and delete their
records independently. An important feature of the frame-
work is that it is based on the database technologies. To
ensure traceability, each peer maintains its own relational ta-
bles for storing record exchange and modification histories.
To make the tracing process easy, the framework provides an
abstraction layer which virtually integrates all distributed re-
lations and a datalog-based query language for writing trac-
ing queries in an intuitive manner. Another feature of the
framework is that it employs “pay-as-you-go” approach [17]
for tracing. We assume that tracing queries do not occur fre-
quently so that it is not a wise idea to pay high maintenance
cost only for the efficient tracing. The system performs min-
imum maintenance tasks for tracing and a user pays the cost
when he issues a tracing query.

In this paper, we focus on the query processing issues
in our traceable P2P record exchange framework. Although
the basic concept of the framework was described in our for-
mer papers [20], [23], we did not show concrete procedures
to evaluate tracing queries. In addition, this paper introduces
a new type of queries called continual queries [24] in our
framework. In contrast, the existing type of queries is called
ad-hoc queries, which represents queries issued by users in
an instantaneous manner. A continual query is stored in the
related peers in a P2P network and used to monitor the spec-
ified events to occur. We show that continual queries are also
quite useful to represent some types of traceability require-
ments.

One example of the application fields that our P2P
record exchange framework assumes is information ex-

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

1434
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

change in scientific communities. For example, large
databases are maintained distributedly in the bioinformatics
area, but there is a big problem of data provenance [7], [29].
Copied data is managed independently in each organization
and researchers often modify and annotate the local copied
data, and to make matters worse, other organization may
copy the modified data. We should esteem the autonomy of
each organization, but the original source and modification
histories should be able to be traceable. Another example
of the application field is cooperative distributed digital li-
braries. In the research field of digital libraries, P2P tech-
nologies attract researchers to enable next-generation dig-
ital libraries. For example, BRICKS [6], organized as an
EU IST Project, developed a framework of P2P-based dis-
tributed digital libraries. In their framework, digital libraries
and museums can participate cooperative resource sharing
as peers.

Based on the above reasons, we aim at flexible P2P
resource sharing with esteeming autonomity of each peer.
Each peer in our framework is independent and can ex-
change information with other peers. We estimate that each
peer is a trusted organization such as a research center and a
digital library so that privacy and anonymity issues are out
of scope. In addition, failure and unexpected leave of a peer
is not a critical problem compared to information sharing
among untrusted peers.

The remainder of this paper is organized as follows.
Section 2 reviews the related work. Section 3 gives the
overview of the traceable P2P record exchange system. Sec-
tion 4 defines tracing queries and presents their two execu-
tion modes. Section 5 and Sect. 6 provide the query pro-
cessing strategies for ad-hoc queries and continual queries,
respectively. Section 7 discusses the issues and Sect. 8 con-
cludes the paper and addresses the future work.

2. Related Work

There are a variety of research topics regarding P2P
databases, such as coping with heterogeneity, query pro-
cessing, and indexing methods [1]. The most related field
to our research is information integration in a P2P net-
work. Record exchange in our framework can be consid-
ered as a special type of information integration, in which
information (records) are loosely but cooperatively shared
in the network. In this sense, a highly related project is
Orchestra [13], [19], [27], which aims at collaborative shar-
ing of evolving data in a P2P network. However, our frame-
work is totally different from P2P information integration
because we do not try to collect all the information in the
P2P network. The key point is that we can trace all the
histories about exchanged records if we want using trac-
ing queries. In contrast to the conventional approaches of
information integration, we do not consider schema hetero-
geneity to simplify the problem; a record schema is globally
shared in a network.

A related concept is a dataspace system [17]. Roughly
speaking, it is a topic of information integration, but focuses

on a more flexible integration scenario. In some applica-
tion situations, it is not reasonable to integrate all the avail-
able information beforehand. For example, a personal in-
formation management system does not necessarily require
full integration of information sources; it may be reasonable
to perform integration dynamically when a user request is
issued. Such integration is called the “pay-as-you-go” ap-
proach [17]. Since we can assume tracing queries (integra-
tion of histories) do not occur quite often, the “pay-as-you-
go” approach will be a better choice; it does not highly in-
terfere with the autonomity of peers.

Another related topic is data provenance. It tries to
give users some evidence about a data item, for example,
why the item is in the database, how it is obtained from
other data sources, etc. Historical information to support
data provenance is often called lineage. The target field of
data provenance is quite wide and it covers data warehous-
ing [10], [11], uncertain data management [4], [30], database
curation [7], and other scientific fields such as bioinformat-
ics [5]. In our framework, exchange and modification his-
tories stored in peers correspond to lineage to explain how
records are obtained and modified in the P2P network. In
typical implementation of data provenance, lineage infor-
mation is attached to a data item and modified when the item
is updated. In contrast, lineage information in our frame-
work is scattered in the P2P network and collected when it
is required. Orchestra, a P2P information integration sys-
tem [13], [19], [27], has a feature of data provenance, but it
is limited in the context of data integration. Our approach
mainly focuses on the data provenance issue in P2P record
exchange.

A tracing query in our framework is executed as a re-
cursive query executed in a P2P network. It recursively tra-
verses the peers which contain related historical informa-
tion. To describe a tracing query in a user-friendly man-
ner, we use the datalog language, which is a well-known
query language for deductive databases [2]. Query process-
ing based on the deductive database approach was not a
hot topic in recent years, but the situation is now chang-
ing. As proved in the declarative networking project [9],
[26], [28], a declarative recursive query is a very powerful
tool for network-oriented database applications such as P2P
and sensor data aggregation. We can find several related
ideas for executing and optimizing declarative queries in a
network [16], [25], [32].

The idea of a continual query [24] is also related with
our research. When a continual query is given to a query
processing system, it is registered in the system and exe-
cuted continually for the incoming data items. Continual
queries are used to describe requirements to cope with sen-
sor data, internet information delivery, etc. In our frame-
work, a continual query is used to represent a tracing re-
quirement to monitor changes happened in the P2P network.

3. System Framework

In this section, we describe the overview of the traceable

LI and ISHIKAWA: QUERY PROCESSING IN A TRACEABLE P2P RECORD EXCHANGE FRAMEWORK
1435

P2P record exchange framework. It is based on our former
work [20], [23], but the terminology is revised. Since our
main concern in this paper is the query processing issue,
we omit some topics such as record search, registration and
deletion and failure handling. Please refer to [20], [23] for
their details.

3.1 Traceable P2P Record Exchange

As an example, let us assume that information about nov-
els is shared among peers in a P2P network. Figure 1
shows an example record set Novel owned by a peer that
consists of four attributes title, author, language, and
year. Other peers also maintain their Novel records with
the same structure, but their contents are not the same. In
our traceable record exchange framework, peers can behave
autonomously and exchange records when required. A peer
can search records managed in other peers in a P2P network
by specifying search conditions, and the peer can select and
register the retrieved records into its record management
system. After that, the records are under the management
of the peer until explicit deletion instruction issued by the
peer.

A traceability problem occurs, for instance, when
the peer wishes to ask the following question: “Where
did the record (Pride and Prejudice, Jane Austen,
English, 1813) come from?” To support such a question,
we need to provide the traceability facility in our frame-
work. It implies that we should store all the record exchange
histories in a P2P network and we need to provide a query
language to express lineage queries.

To provide a traceability facility in our framework, we
take the following principles:

• All the information required for tracing is maintained
in distributed peers. Each peer maintains its own his-
torical information, which consists of creation (regis-
tration), modification, deletion, and exchange histories,
related to the peer itself.

• When a tracing query is issued, the query is processed
by coordinating related peers in the P2P network. His-
torical information stored in related peers is collected
for answering the query.

• To help users to write queries, an abstraction layer,
called the global layer, is provided. In the global layer,
all the data in a P2P network is integrated in global vir-
tual views. In contrast, the underlying layer mentioned
above is called the local layer. User queries are written
by the datalog query language [2].

The underlying idea behind these design principles is

Fig. 1 Example record set Novel.

the notion of “pay-as-you-go” data integration [17]. Since
copies and updates are performed everywhere in a dis-
tributed autonomous P2P network, it is costly to maintain
the historical information in a central server or several hub
servers. Instead of that, each peer in our framework only
maintains minimum historical information related to the
peer. It means that we need to aggregate the required histor-
ical information from the corresponding peers when a trac-
ing query is issued from a user—the user should pay the cost
when he traces information. While the tracing cost is high,
the principles are reasonable due to the following reasons:

• Since tracing queries are not issued quite often, the
“pay-as-you-go” approach contributes to the low main-
tenance cost.

• A peer may have limited interests and exchange records
within a group of peers which shares the local interests.
In this case, a tracing query is only related with the
peers in the group. Thus, it is not a wise idea to collect
all the historical information into a centralized server.

3.2 Three Layer Model

To represent records and their historical information, we
employ the layered architecture with different abstraction
levels. It is called the three layer model.

3.2.1 User Layer

The user layer directly supports what users see. Figure 2
shows a simplified example with four peers. Each peer
maintains a Novel record set that has two attributes title
and author.

In our framework, every peer can act as a provider and a
searcher. A peer can find desired records from other peers by
issuing a query. In addition, a peer can register the retrieved
or created records into the local record management system,
and can modify and delete records in the local system. For
example, the record (t1, a1) in peer A in Fig. 2 may have
been copied from peer B and registered in peer A’s record
management system.

3.2.2 Local Layer

The local layer is used for representing each peer’s own

Fig. 2 Record sets in four peers.

1436
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

Fig. 3 Data[Novel]@’A’. Fig. 4 Change[Novel]@’A’.

Fig. 5 From[Novel]@’A’. Fig. 6 To[Novel]@’A’.

record set with local historical information using four re-
lations. For example, peer A shown in Fig. 2 contains the
following relations:

• Data[Novel]@’A’: It maintains records owned by
peer A. Figure 3 shows the example. Every record
has its own record id for the maintenance purpose.
Each record id should be unique in the entire P2P net-
work. Note that there are additional records compared
to Fig. 2. They are deleted records and normally hidden
from the user.
We call the symbol ‘@’ a location specifier. If a con-
stant peer name follows this symbol as @’A’, it means
that the relation is located at peer A. We also allow a
variable follows a location specifier such as @P.

• Change[Novel]@’A’: It is used to hold record cre-
ation (or registration), modification, and deletion histo-
ries. Figure 4 shows its example for peer A. Attributes
from id and to id express the record ids before/after
a modification. Attribute time represents the times-
tamp. When the value of the from id attribute is the
null value (−), it represents that the record was created
at the peer. Similarly, when the value of the to id at-
tribute is the null value, it means that the record was
deleted locally. Although we simply modeled data up-
dates as insertions of tuples, real applications may have
additional semantics such as keys and dependencies,
and update requirements may be different in applica-
tions. We would like to consider this problem in the
future work.

• From[Novel]@’A’: It records which records were
copied from other peers. When a record is copied from
other peer, attribute from peer contains the peer name
and attribute from id has its record id at the original
peer. Attribute time stores the timestamp information.
The first tuple in Fig. 5 shows the record with id #A1 is
a copy of the record with id #B1 at peer B.

• To[Novel]@’A’: It plays an opposite role of
From[Novel]@’A’ and stores information which
records were sent from peer A to other peers. Figure 6
shows its example.

Note that From[Novel] and To[Novel] contain duplicates,

Fig. 7 Local layer vs. user layer.

Fig. 8 Local layer vs. global layer.

which are stored in different peers. For example, for the
tuple of From[Novel]@’A’ in Fig. 5, there exists a corre-
sponding tuple (#B1, A, #A1, ...) in To[Novel]@’B’.
When the record is registered at peer A, From[Novel]@’A’
and To[Novel]@’B’ are updated cooperatively to preserve
the consistency.

The relationship between the local layer and the user
layer is shown in Fig. 7. A record set in the user layer corre-
sponds to a virtual restricted view constructed from the Data
relation in the underlying local layer.

3.2.3 Global Layer

The global layer provides virtual integrated views of all in-
formation in the P2P network. Its main role is to support
users for writing tracing queries and users do not need to
consider how historical information is distributed in the net-
work. Figure 8 illustrates the relationship between the local
layer and the global layer. In the global layer, three rela-
tional views are constructed by unifying all the relations in
peers. Relation Data[Novel] in Fig. 9 expresses a view
that unifies all the Data[Novel] relations in peers A to

LI and ISHIKAWA: QUERY PROCESSING IN A TRACEABLE P2P RECORD EXCHANGE FRAMEWORK
1437

Fig. 9 View Data[Novel]. Fig. 10 View Change[Novel].

Fig. 11 View Exchange[Novel].

D shown in Fig. 2. The peer attribute stores peer names†.
Relation Change[Novel] shown in Fig. 10 is also a global
view which unifies all Change[Novel] relations in a similar
manner.
Exchange[Novel] shown in Fig. 11 unifies all the un-

derlying From[Novel] and To[Novel] relations in a global
view. Attributes from peer and to peer express the origin
and the destination of record exchanges, respectively. At-
tributes from id and to id contain the logical ids of the
exchanged records in both peers.

In summary, the local layer manages the records and
historical information for each peer. The user layer is a
view on the local layer, and hides lineage information from
the user. It is limited for a specific peer. The global layer
is also located over the local layer, but it provides a global
virtual view by integrating all the information in distributed
peers. The global views in Figs. 9, 10, and 11 are virtual
views which unify all of the related information in the P2P
network. Although they are used for writing tracing queries,
they are not materialized.

4. Tracing Queries

In this section, we describe how tracing queries are defined
and introduce two execution modes.

4.1 Definition of Tracing Queries

When a tracing requirement occurs, the user needs to aggre-
gate the related lineage information stored in the distributed
peers. Since recursive processing in a P2P network is re-
quired to collect such information, the datalog query lan-
guage [2] is used in our framework. Because if we want
to trace the provenance of data, recursive query is needed.
Since the lineage information in our framework has a recur-

sive nature, datalog appears to be one of the most promising
language for specifying queries. Furthermore, by using dat-
alog, we can reduce the program size greatly and can cope
with various types of tracing queries [20], [23]. First we in-
troduce the notation and semantics of a tracing query with
an example.

Example 1: Suppose that peer A holds a record with title
t1 and author a1 and that peer A wants to know which peer
originally created the record. The following query Q1 ful-
fills the requirement:

Query Q1
BReach(P, I1)← Data[Novel](’A’, I2, ’t1’, ’a1’),

Exchange[Novel](P, ’A’, I1, I2,)

BReach(P1, I1)← BReach(P2, I2),
Exchange[Novel](P1, P2, I1, I2,)

Origin(P)← BReach(P, I),
¬ Exchange[Novel](, P, , I,)

Query(P)← Origin(P)

We introduce some terms used for describing a datalog
program [2]. A predicate corresponding to a stored rela-
tion, such as Data[Novel], is called an edb (extensional
database) predicate. An edb predicate can only appear in
rule bodies. While a predicate representing a derived re-
lation that does not exist in the database, such as BReach,
is called an idb (intentional database) predicate. P and I1
are variables and ‘ ’ indicates an anonymous variable. Rela-
tion BReach defined by the first two rules means “Backward
Reachable”. It recursively traverses the arriving path of tu-
ple (t1, a1) until it reaches the origin. The third rule is
used for finally determining the originating peer name—it
should be reachable from peer A and should not have re-
ceived the record from any other peer. The last rule rep-
resents the final result expected by the user. Note that the
query is written using the three views in the global layer.
The user does not need to consider how the actual data is
distributed among the peers. �

A tracing query is defined as a datalog¬ program with
some restrictions. The language datalog¬ is defined by al-
lowing negated literals in the bodies of rules [2]. In the fol-
lowing, we simply call it datalog.

Definition 1 (Tracing Query): A tracing query Q is a
datalog¬ query that satisfies the following conditions:

1. Q only contains Data, Change, and Exchange relations
as edb predicates.

2. The arities of Data predicates appeared in Q should
consistent with the definition of the target record
schema.

3. Q is a safe datalog query.
4. Q is a linear datalog query.
5. Q is stratifiable.
6. All recursions appeared in Q should be self-recursions

over Exchange relations.

†In our framework, peer name is an overlay identifier in the
overlay network. We assume that we can send a message to a peer
if we know its peer name.

1438
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

7. The body of each rule in Q does not contain different
location specifier variables. �

The conditions 1 to 7 have two aims: (a) to set the
scope and the structure of a tracing query (1 to 3) and (b) to
limit the expressive power of a datalog query just enough for
representing a tracing query to simplify the query process-
ing (4 to 7). Condition 1 is to ensure that all of the tracing
queries should only use the three relations as edb predicates.
Condition 2 is for consistency with the target record struc-
ture. For example, the Data[Novel] predicate in query Q1
satisfies the condition since its arity is four. Condition 3 is
required for guaranteeing the ranges of all variables are re-
stricted [2]—a datalog query is said safe if it satisfies some
reasonable syntactic conditions [31]. It is a sufficient condi-
tion that a datalog query does not have the problems of do-
main dependence and infiniteness of answers. Condition 4
is useful for simplifying query processing. A datalog rule
with head relation R is linear if there is at most one atom
in the body of the rule whose predicate is mutually recur-
sive with R. A datalog program is linear if each rule of the
program is linear [2]†. Fortunately, we do not need mutual
recursions for tracing. In addition, nonlinear recursions can
frequently be made linear by rewriting. A linear datalog
has a benefit that it can be evaluated by a simple algorithm
compared to a non-linear datalog query [2]. Condition 5 is
required for efficient query processing while allowing a rea-
sonable expressive power including negation. Our tracing
query can be evaluated in polynomial time in terms of the
database size because datalog with stratified negation is in
DB-PTIME [31]. Condition 6 is a realistic restriction for
our tracing problem. As shown in query Q1, recursion in
our framework is only used for traversing Exchange rela-
tions. Such a query can be described using self-recursion.
The restriction greatly simplifies query processing because
we do not need to consider general recursions. Condition 7
ensures that we can perform distributed query execution by
query forwarding. Its detail is mentioned in Sect. 5. If we
allow different location specifier variables in a rule body, it
may result in arbitrary distributed joins between peers. That
is highly costly and is not used when we issue a query for a
tracing purpose.

Note that this restriction is not enough for a valid query
in terms of distributed query execution. We introduce an
additional condition in Sect. 5.

4.2 Ad-hoc Queries and Continual Queries

Our framework supports two types of query execution
modes, the ad-hoc execution mode and the continual exe-
cution mode. Depending on the execution mode, a query is
called an ad-hoc query or a continual query, respectively.
In this section, we describe how tracing queries are defined
and introduce two execution modes.

First we consider ad-hoc queries. When query Q1 is is-
sued from a user in an ad-hoc manner, the query is processed
with the cooperation of distributed peers, then the result is

returned the original query issuer (the initial peer). In this
sense, such a query is called an ad-hoc query. We say that
an ad-hoc query is executed in the ad-hoc execution mode.
As shown in this example, datalog is so flexible that we can
specify various queries for tracing.

Ad-hoc queries are effective when we want to trace lin-
eage information currently available in the network. How-
ever, the facility is not suffice for supporting some types of
tracing requirements. We illustrate the problem by an exam-
ple.

Example 2: Consider the following query Q2:

Query Q2
Reach(P, I1)← Data[Novel](’A’, I2, ’t1’, ’a1’),

Exchange[Novel](’A’, P, I2, I1,)

Reach(P, I1)← Reach(P1, I2),
Exchange[Novel](P1, P, I2, I1,)

Query(P)← Reach(P,)

The query returns all the peers that copied the target record
(t1, a1) in peer A. We can execute Q2 as an ad-hoc query,
but there is a problem. Other peers may copy the target
record after the query is executed. If we want to know up-
to-date information, we need to issue ad-hoc queries repeat-
edly. �

To solve the problem, we introduce the continual exe-
cution mode. When a tracing query is executed in the con-
tinual execution mode, the query is firstly executed as if in
the ad-hoc execution mode and an initial result is returned
to the query peer, but the query is replicated in the related
peers while the distributed query execution. The query is
registered in each related peer as a continual query. A con-
tinual query monitors changes in its peer, and may reports
an incremental query result to the query peer when an addi-
tional result is obtained. A continual query may be copied
repeatedly when some related events happen. To quit a con-
tinual query, a user explicitly removes the query to clear the
states in the related peers.

Example 2 (Continued): If we execute query Q2 for our
example databases, we get an initial result tuple (C), which
is a peer that copied the record (t1, a1) from peer A.
While the execution, the query is copied into peer C as a
continual query. The continual query is triggered, for in-
stance, when peer E copies the record (t1, a1) from peer
C. The query derives an incremental result tuple (E), and it
is sent to the query peer A. The process enables continual
tracing in a P2P network. �

Note that the continual execution mode is not effective
for the queries asking past information only. For example, if
we run query Q1 in the continual mode, the new result will
not appear because the query only refers to past histories.

†The following is an example of a non-linear program because
two R’s appear in the body of the second rule.
R(I1, I2)← Exchange[Novel](, ’A’, I1, I2,)
R(I1, I2)← R(I1, I3), R(I3, I2)

LI and ISHIKAWA: QUERY PROCESSING IN A TRACEABLE P2P RECORD EXCHANGE FRAMEWORK
1439

5. Ad-Hoc Query Processing

In this section, we describe the query processing method for
ad-hoc tracing queries. Some of the techniques described
in this section are reused for continual tracing queries dis-
cussed in the next section.

5.1 Query Mapping

Remember that tracing queries are described in datalog in
terms of global virtual views in the global layer. In order to
process a tracing query, first we need to transform the query
for distributed execution using the information in the local
layer. The mapping rules are summarized in Fig. 12, where
R represents the record name and attrs means its attribute
list. Rules r1 and r2 are straightforward. Rules r3 and r4

show two alternatives for rewriting Exchange relation. We
explain how to select an appropriate one later.

We show an example of mapping.

Example 3: Query Q1 is mapped as follows:

Mapped Query Q1
BReach(P, I1)← Data[Novel]@’A’(I2, ’t1’, ’a1’),

From[Novel]@’A’(I2, P, I1,)

BReach(P1, I1)← BReach(P2, I2),
From[Novel]@P2(I2, P1, I1,)

Origin(P)← BReach(P, I),
¬ From[Novel]@P(I, , ,)

Query(P)← Origin(P)

From[Novel]@P2 represents From[Novel] relation at peer
P2, where P2 is a variable representing a peer name. The
variable is instantiated while the query processing. Note that
the mapped query only accesses relations in the local layer.

�

Note that an application of the rules in Fig. 12 may pro-
duce multiple mapped queries. They may contain queries
which are not efficiently evaluable. In the following, we de-
scribe how to decide a given mapped query is executable.
First, we define the notion of an accessible variable.

Definition 2 (Accessible Variable): A variable X in a rule
body of a mapped query is accessible if either of the follow-
ing conditions is satisfied:

1. X appears in a positive (non-negated) idb predicate in
the body.

Fig. 12 Global to local mapping rules.

2. X appears in a positive edb predicate in the body, and
the location specifier of the edb predicate is bound to a
constant or an accessible variable.

3. There exists an equality literal X = Y in the body,
where Y is an accessible variable. �

We illustrate the idea using mapped query Q1 as an
example. In the first rule body, the appeared variables I1,
I2, and P are all accessible because Condition 2 is satisfied.
In the second rule body, P2 and I2 satisfy Condition 1, thus
they are accessible. Since P2 is accessible, Condition 2 says
that P1 and I1 are accessible.

Using this notion, we define an executable query.

Definition 3 (Executable Query): A mapped query is exe-
cutable if every location specifier that appears in the bodies
of the query is bound to a constant peer name or an accessi-
ble variable. �

Let us consider an example of a non-executable
mapped query. If we replace the first rule of mapped query
Q1 with the following rule, we get an another candidate.

BReach(P, I1)← Data[Novel]@’A’(I2, ’t1’, ’a1’),
To[Novel]@P(I1, ’A’, I2,)

For the evaluation of this rule, we need to access To[Novel]
relations in all the peers in the P2P network. It is quite in-
efficient or not impossible. By introducing the notion of an
executable query, we can exclude such inefficient queries.

In summary, the global to local mapping step selects
one of the executable programs after applying the mapping
rules. If there are multiple executable candidates, we can se-
lect one of them arbitrarily. For the most of cases, however,
we will have a unique candidate.

5.2 Deriving Query Fragments Based on Seminaive
Method

To execute a mapped query, we further need to translate the
query into the form that is suit for distributed execution. In
this paper, we employ the seminaive method [2], which is
the most basic method for datalog query evaluation. The
seminaive method takes a bottom-up approach and its query
process is performed based on forward chaining. As de-
scribed later, forward-chaining can be directly applicable for
query forwarding between distributed peers.

Given a mapped query Q, we can derive query frag-
ments as follows:

1. For each rule S (u)← T1(v1), . . . ,Tn(vn) in Q such that
Q does not contain an idb predicate in the body, we
create the following rule:

Δnew
S (u)← T1(v1), . . . ,Tn(vn)

We call a program which is made by collecting all the
transformed queries Q init.

2. Next, we construct a program QS for each idb predi-
cate S in Q. Let S (u) ← T1(v1), . . . ,Tn(vn) be a rule
which defines S and contains an idb predicate in the

1440
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

body, where u, v1, v2, . . . , are lists of variables and con-
stants. Since we are considering that a linear datalog
program, the rule body has only one appearance of an
idb predicate. Let the predicate be T j. We construct a
query fragment QS for idb predicate S as follows:

tempS (u)← T1(v1), . . . ,ΔT j (v j), . . . ,Tn(vn)
Δnew

S := tempS − S
S new := S ∪ Δnew

S

where ‘:=’ denotes an assignment between relations.

We show an example of the derivation next.

Example 4: We derive query fragments from mapped
query Q1. First, Q1 init is constructed by extracting rules
that do not contain idb predicates in the bodies.

Q1 init
Δnew
BReach

(P, I1)← Data[Novel]@’A’(I2, ’t1’, ’a1’),
From[Novel]@’A’(I2, P, I1,)

Next, the query fragments are constructed for idb predicates
BReach, Origin, and Query, respectively.

Q1 BReach
tempBReach(P1, I1)← ΔBReach(P2, I2),

From[Novel]@P2(I2, P1, I1,)

Δnew
BReach

:= tempBReach − BReach
BReachnew := BReach ∪ Δnew

BReach

Q1 Origin
tempOrigin(P)← ΔBReach(P, I),

¬ From[Novel]@P(I, , ,)
Δnew
Origin

:= tempOrigin − Origin
Originnew := Origin ∪ Δnew

Origin

Q1 Query
tempQuery(P)← ΔOrigin(P)
Δnew
Query

:= tempQuery − Query
Querynew := Query ∪ Δnew

Query

The three query fragments correspond to the iteration step
of the seminaive method. �

5.3 Distributed Query Execution

5.3.1 Outline

We describe how query fragments are executed in a dis-
tributed P2P environment. The outline is given as follows:

1. Given query fragments (and intermediate relations, if
the peer is not an initial peer), peer p performs query
processing locally as possible. Using the terminology
of deductive databases, we execute the query fragments
until we reach the local fixpoint.

2. If the remaining part of the query process can be exe-
cuted by other peers, p forwards the query fragments
and intermediate relations to such peer p1, . . . , pn.
Peers p1, . . . , pn perform similar processes recursively.
Peer p waits the query results from the peers.

3. Peer p merges the query results from p1, . . . , pn and
own result then return the merged result. If p is called
recursively from other peer, the result is returned to the
peer. If p has no peer for forwarding in Step 2, it returns
the own result only. After that, p deletes all the local
intermediate data.

4. When the initial peer receives all the results, it returns
the final result to the user by merging them.

5.3.2 Query Execution Algorithm

We formulate the procedure in Algorithm 1. The algorithm
receives query fragments Qinit and {QS }, where {QS } is a
set of query fragments for all idb predicates. Lines 1 to
5 correspond to the initialization step, where {S } denotes
the set of all idb predicates. The notations such as {S }
are not conventional, but used for simplifying the presen-
tation. If we write {X} in Algorithm 1, {X} means a set of
instances which made as instantiations of X. For example,
{S } = {BReach,Origin,Query} for Query 1 and {QS } is a set
of query fragments, each of which has the form defined in
Sect. 5.2.

Lines 6 to 11 represent the local iteration step. We say
that {QS } is locally executable when there exists at least one
QS ∈ {QS } that satisfies the following condition: the value
of ΔT j (v j), appeared in the body of the rule tempS (u) ←
T (v1), . . . ,ΔT j (v j), . . . ,Tn(vn) in QS , is not empty. We per-
form iterative execution while {QS } is locally executable.

Lines 12 to 20 are called the query forwarding step.
We say that {QS } is forwardable when there exists at least
one QS ∈ {QS } that satisfies the following condition: the
body of the rule tempS (u) ← T (v1), . . . ,ΔT j (v j), . . . ,Tn(vn)
in QS contains a location specifier variable and it is bound

Algorithm 1 exec query(Qinit, {QS })
Input: Qinit, {QS }: set of all QS

Output: {S new}: query result
1: // initialization
2: Δnew

S ← ∅, for each S ∈ {S }
3: � {S } is a set of all idb predicates
4: execute Qinit � some Δnew

S are updated
5: S new ← Δnew

S , for each S ∈ {S }
6: // iterative execution
7: while {QS } is locally executable do
8: ΔS ← Δnew

S , for each S ∈ {S }
9: S ← S new, for each S ∈ {S }

10: execute QS , for each QS ∈ {QS }
11: end while
12: // query forwarding
13: if {QS } is fowardable then
14: foreach target peer p do
15: {S res} ← exec query@p({QS }, {Δnew

S }, {S new})
16: � same algorithm except without initialization step
17: S new ← S new ∪ S res, for each S ∈ {S }
18: � merge the results of forwarded queries
19: end for
20: end if
21: return {S new}

LI and ISHIKAWA: QUERY PROCESSING IN A TRACEABLE P2P RECORD EXCHANGE FRAMEWORK
1441

to peer names† in ΔT j (v j). Since our tracing query is safe,
we can find assignments (peer names) for the location spec-
ifier variable. That means we should forward the query to
the peers. The forwarding query includes the query frag-
ments {QS } and the current partial results {Δnew

S } and {S new}.
The current peer waits the query results then merges them
with the local result. Finally, {S new} is returned as the query
result.

At line 15, we call other peers recursively. Each for-
warded peer uses the similar query algorithm to perform the
local query processing. The exception is that it receives ar-
guments {QS }, {Δnew

S }, and {S new}. Note that we used a for
loop in lines 14 to 19 to simplify the presentation, but we
can perform parallel query execution for efficiency: queries
are first forwarded, then the peer waits the response by asyn-
chronous communications.

Finally note that the algorithm returns {S new} at the end
(line 21), but the initial peer only has to return the idb pred-
icate Query, which the user actually wanted.

5.3.3 Example of Query Execution

We illustrate how query Q1 is processed using the database
instances shown in Fig. 3 to Fig. 11. Figure 13 illustrates the
query processing steps.

Example 5: Let us assume that query Q1 is issued at peer
A. First, peer A executes Q1 init††. Since the location spec-
ifier constant in the rule body of Q1 init is @A, we can exe-
cute the initialization query locally†††. As the result of the
initialization step, we get Δnew

BReach
= BReachnew = {(B, #B1)}

as shown in Fig. 13 (a). Other relations are still empty.
Since the iteration step is not applicable to the current

status, we go to the query forwarding step. We can notice
that Q1 BReach and Q1 Origin satisfy the condition and
Δnew
BReach

is not empty, thus {QS } is forwardable. We forward
the query to the target peer B, which has an entry in Δnew

BReach
.

Note that we need to forward to multiple peers if we have
multiple entries in Δnew

BReach
, but query Q1 asks about “origin”

so that we have only one entry.
After receiving the forwarded query {QS } and the par-

tial result Δnew
BReach

= BReachnew = {(B, #B1)}, peer B
starts query execution. By executing Q1 BReach, we get

Fig. 13 Example of query execution.

Δnew
BReach

= {(D, #D1)} and BReachnew = {(B, #B1), (D, #D1)},
as shown in Fig. 13 (b). Next, Q1 Origin is executed but no
tuples are generated.

Then, peer B forwards the query to the next peer
D. Peer D receives ΔBReach = {(D, #D1)} and BReach =
{(B, #B1), (D, #D1)}. The execution of Q1 BReach results in
Δnew
BReach

= ∅ and BReachnew = {(B, #B1), (D, #D1)}, and the
execution result of Q1 Origin is Δnew

Origin
= Originnew =

{(D)}, as shown in Fig. 13 (c).
Peer D can perform one more iteration. By executing

Q1 Query, we get Δnew
Query = Query

new = {(D)} as Fig. 13 (d).
Since the query cannot continue further, peer D returns the
result to peer B, and then peer B returns the result to peer A.
Thus, the query finishes and we get Querynew = {D}. �

5.4 Discussion

We describe some additional issues related to query process-
ing.

5.4.1 Stratified Queries

Queries including negations may need to be evaluated by
stratified evaluation based on multiple strata. We show an
example here.

Example 6: Consider the following query Q4:

Query Q4
Reach1(P, I1)← Data[Novel](’A’, I2, ’t1’, ’a1’),

Exchange[Novel](’A’, P, I2, I1,)

Reach1(P, I1)← Reach1(P1, I2),
Exchange[Novel](P1, P, I2, I1,)

Reach2(P, I1)← Data[Novel](’A’, I2, ’t2’, ’a2’),
Exchange[Novel](’A’, P, I2, I1,)

Reach2(P, I1)← Reach2(P1, I2),
Exchange[Novel](P1, P, I2, I1,)

Query(P)← Reach1(P,), ¬ Reach2(P,)

The query finds the peers such that they have direct or in-
direct copies of record (t1, a1) of peer A and that they
do not have the copies of record (t2, a2) of peer A. Two
idb predicates Query and Reach2 belong to different strata
because the body for Query includes Reach2 in a negated
form [2]. We can execute this query in two phases:

1. First we execute third and fourth rules for Reach2 as
the first stratum. We can use Algorithm 1 and we get
an instance of Reach2.

2. As the second stratum, we execute the remaining rules.
We treat Reach2 as if a base relation.

�

†Strictly speaking, the peer names should be different from the
current peer. If the peer names are same as the current peer, we
consider that the query is locally executable.
††Note that Q1 init (and other queries) can be issued as a SQL

query if the underlying RDBMS accepts SQL. Transformation of
a conjunctive query to an SQL query is straightforward.
†††If the peer name is different from the current peer (e.g., @B), a

remote query is issued to the peer.

1442
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

As described before, we assume that given tracing
queries are stratifiable. Therefore, we can execute all the
tracing queries using one or more strata as shown in this ex-
ample.

5.4.2 Query Optimization Based on Magic Set-Based
Rewriting

We consider a query optimization issue based on the well-
known magic set-based technique. Consider the following
example.

Example 7: The following query detects whether peer C
copied the record (t1, a1) owned by peer B:

Query Q5
Reach(P, I1)← Data[Novel](’B’, I2, ’t1’, ’a1’),

Exchange[Novel](’B’, P, I2, I1,)

Reach(P1, I1)← Reach(P2, I2),
Exchange[Novel](P2, P1, I2, I1,)

Query(I)← Reach(’C’, I)
Of course, the query can be executed using Algorithm 1.
However, the algorithm does not use the information of the
constant ‘C’ that appears in the third rule. We have a possi-
bility of efficient execution by “pushdown” the constraint of
the constant in the early stage of query processing. �

As a strategy for efficient execution of datalog pro-
grams, a well-known approach for this problem is the magic
set method [2]. By modifying a given program, it simulates
“selection pushdown” for the top-down evaluation approach
within the bottom-up evaluation approach. Once a program
is modified by the magic set-based rewriting, we can execute
the program using the seminaive method.

Example 7 (Continued): Query Q5 can be rewritten as a
magic set-based program as follows:

Translated Query Q5
Reach(P, I1)← magic Reach(P, I1),

Data[Novel]@’B’(I2, ’t1’, ’a1’),

From[Novel]@P(I1, ’B’, I2,)

Reach(P1, I1)← magic Reach(P, I1), Reach(P1, I2),
From[Novel]@P(I1, P1, I2,)

magic Reach(P1, I2)← magic Reach(P, I1),
From[Novel]@P(I1, P1, I2,)

magic Reach(’C’, I)←
Query(I)← Reach(’C’, I)

After the transformation, we can execute this program us-
ing the seminaive method in Algorithm 1. Assume that this
query is executed at peer B. In this case, the body of the
fourth rule above is empty. It is used to define the tuples
of the magic Reach relation, and it works as an initial goal
for the magic set evaluation process. In other words, the
fourth rule defines the actual starting point; it first triggers
the evaluation of the third rule. This means that we need
to evaluate From[Novel]@’C’. The query is forwarded to
peer C and the actual query execution starts from peer C.
Relation magic Reach collects the sources of the records
in peer C based on backward recursive traversals. Then the
contents of magic Reach are used for forward traversals for
the Reach predicate. �

In [22], we evaluated the performance of the magic set-
based rewriting based on simple experiments. In summary,
the result showed that the effectiveness of the rewriting de-
pends on the target queries and the contents of the underly-
ing databases. For example, the magic set-based rewriting of
query Q5 shown above was not more efficient than the nor-
mal seminaive method-based execution because the back-
ward traversals for magic Reach are quite costly to find an-
cestors of the records in peer C. The result indicates that we
need to construct a cost-based query optimization method
that considers the properties of our framework. We leave
the issue for future work.

6. Continual Query Processing

In this section, we describe the query processing strategy for
continual queries.

6.1 Query Execution Strategy

As described in Sect. 4.2, a continual query is executed for
a potentially long period of time, and is used for monitoring
events occurred in the system. It is particularly useful in our
context where information of record exchange is updated
frequently in a distributed P2P network. The following ex-
ample explains the idea of continual queries.

Example 8: Consider the following query Q6:

Query Q6
Reach(P, I1)← Data[Novel](’A’, I2, ’t1’, ’a1’),

Exchange[Novel](’A’, P, I2, I1,)

Reach(P, I1)← Reach(P1, I2),
Exchange[Novel](P1, P, I2, I1,)

End(P)← Reach(P, I),
¬ Exchange[Novel](P, , I, ,)

Query(P)← End(P)
This query is similar to query Q1, except for exchanging
BReach and Origin by Reach and End. It finds the peers
which located at the end of the peers that recursively copied
(t1, a1) from peer A. In contrast to query Q1, its query
result may change as time passes. For example, if we apply
the query to our sample database, we get the initial result
Query = {(C)}. Assume that peer E copied the record from
peer C. After that, the result will change as Query = {(E)}.

�

As shown in this example, the result of a tracing query
may change when an update is performed in the underlying
databases. To monitor updates, we introduce the continual
execution mode. We call a query executed in the continual
execution mode a continual query. The query transforma-
tion steps are same as the ad-hoc execution mode. For query
Q6, we derive seminaive method-based query fragments as
shown in Example 4 for query Q1. The main differences are
that BReach, Origin, and From are changed as Reach, End,
and To, respectively. We omit the query fragments here.

Example 8 (Continued): We explain how query Q6 is exe-
cuted as a continual query. First, the query is executed like

LI and ISHIKAWA: QUERY PROCESSING IN A TRACEABLE P2P RECORD EXCHANGE FRAMEWORK
1443

Fig. 14 Continual query execution: before update.

Fig. 15 Continual query execution: after update.

an ad-hoc query. Figure 14 shows the result for our example
databases. The result Query = {(C)} obtained in peer C is
returned to peer A, then it is returned to the user as a final
result. The execution is same as the ad-hoc mode, but the
difference is that we do not delete the given queries in the
peers.

Suppose that peer E copied the record (t1, a1) from
peer C now, and assume that its record id in peer E be #E1.
In this case, the following tuple insertions are performed in
the local databases of peer C and E:

• (#C1, E, #E1, ...) in To[Novel]@’C’
• (#E1, t1, a1) in Data[Novel]@’E’
• (#E1, C, #C1, ...) in From[Novel]@’E’

The insertion of a new tuple in To[Novel]@’C’ triggers a
new query process. Our basic strategy is to restart the par-
tial query from peer C by reevaluating Algorithm 1 in peer
C. For that purpose, peer C needs to preserve Δnew

Reach
and

Reachnew obtained from peer A when the query was for-
warded to peer C. By reevaluating the query from peer C,
we get new results as shown in Fig. 15. Based on the reeval-
uation, we obtain a new result Query = {(E)}. �

As shown in this example, a continual query can be
executed based on the seminaive method as in the case of
ad-hoc queries. In summary, the query processing strategy
is given as follows:

• If an update occurs in the local database of the initial
peer, it executes the query as a new continual query.

• A non-initial peer processes the query as follows:

– It stores the arguments (the query fragments {QS }
and the partial results {Δnew

S } and {S new}) passed
from the previous peer persistently.

– If an update occurs in its local database, the peer
restarts the query using the stored partial results.

The idea is simple: we rederive the partial result from the
peer in which an update occurs.

6.2 Relationship with Materialized View Maintenance

The continual query processing method described above is
highly related with the materialized view maintenance prob-
lem [14] in deductive databases. For maintaining general
recursive views, [15] proposed the DRed (Delete and Red-
erive) algorithm that can handle incremental updates. How-
ever, the algorithm assumes a centralized environment, and
it is quite costly to apply the algorithm in our context be-
cause the maintenance process is propagated among dis-
tributed peers.

Fortunately, we can utilize a feature of our framework.
In our framework, every update is handled as a tuple inser-
tion. Depending on the update types, a record is inserted in
each of the following local relations:

• record update in peer X: Data@X and Change@X
• record modification in peer X: Data@X and Change@X
• record deletion in peer X: Change@X
• record copy from peer X to peer Y: To@X, From@Y, and
Data@Y

It means that the databases in our framework is insertion-
only. Materialized view maintenance for insertions is fairly
easy—it is known that we only have to run the seminaive
method until the fixpoint [15]. The strategy shown above is
based on this observation.

Finally we mention an improvement method for a re-
stricted case. In the strategy shown above, we assume that
a tracing query is written in datalog¬, which may contain
negations. It requires a restart from an intermediate peer
because a datalog query with negation is non-monotonic.
In contrast, if a query does not include negations (e.g.,
query Q2), we can apply more efficient processing. The
peer in which the update occurs only has to do an incre-
mental query process using the current intermediate result
instead of restarting. Since a query without negations is
monotonic, the correctness of the result is assured. On the
other hand, we cannot apply this incremental strategy to a
query with negations. For example, if we apply the strat-
egy to the example shown above, we get the wrong result
Query = {(C, #C1), (E, #E1)}.

7. Discussion

7.1 Features of Our Research

In this paper, we described the query processing strategies
for our traceable P2P record exchange framework. Here we
summarize the features and contributions of this paper. The
paper focuses on the query processing issues for our trace-
able P2P record exchange framework [20], [23], which is a
unique approach to information exchange in a P2P network
that incorporates the notion of data provenance. One of the
important features of the framework is to maintain historical
information in distributed peers and to integrate the informa-
tion based on the “pay-as-you-go” approach [17].

1444
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

The use of the datalog query language [2] is an an-
other feature of the framework. A tracing process basically
requires a recursive traversal along the path of record ex-
change. Datalog has an enough query representation power
to describe such recursive processing requirements. We can
write various types of tracing queries in a compact manner
using datalog. In addition, we already have theoretical re-
sults on the query expressive power and query processing
methods for deductive databases. In this paper, we set sev-
eral constraints on allowable tracing queries. It enables clear
and effective query transformation and executions while we
still have enough query processing power for tracing.

7.2 Comparison with Declarative Networking

The most related work to our research is declarative net-
working [9], [26], [28]. In their research, a datalog-based re-
cursive query processing framework used for collecting in-
formation from P2P networks and sensor networks. They
propose query processing methods based on the seminaive
method and the magic set method; the results greatly in-
spired our development. In contrast to declarative network-
ing, our framework has the following features:

1. The objective of our framework is to realize traceable
record exchange in a P2P network and is based on
the three layer model introduced in Sect. 3.2. Datalog
queries are used not only for describing high-level trac-
ing requirements in the global layer, but also for repre-
senting distributed query execution in the local layer.
On the other hand, declarative networking focuses on
continual monitoring in a distributed network and does
not have the high-level abstraction feature.

2. Declarative networking mainly focuses on continual
queries because their target is continual monitoring in
a network, but our framework considers ad-hoc queries
in addition to continual queries.

3. The framework of declarative network assumes that
each peer has a special relation called link, which
stores the information of neighborhood peers (or sen-
sors). Given a monitoring query, the system constructs
a dataflow graph by traversing link relations in dis-
tributed peers. When a new data item (e.g., a sensor
measurement value) is detected, the data is propagated
in the dataflow graph and finally collected in the initial
sink. It means that the dataflow graph in declarative
network is static, once an initial setup is finished. In our
framework, on the other hand, From and To relations
in each peer describe the record exchange information
and the tracing process requires a traversal using the
information stored in the relations. As we described
in Sect. 6, the graph topology of the query process is
dynamic because a new record copy changes the graph
structure.

4. We proposed to use datalog¬ for representing tracing
requirements. By allowing the use of negations, we can
greatly improve the query expression power. We care-

fully restricted allowable tracing queries and examined
the insertion-only feature of the underlying databases,
and enabled a clear query processing framework. In
contrast to our approach, declarative networking can
only use non-negated datalog queries.

8. Conclusions and Future Work

In this paper, we discussed the details of query process-
ing strategies for our P2P record exchange framework. The
query language for writing a tracing query is datalog, a com-
mon database language with a recursive query processing
facility. The datalog-based query specification allows us
to write tracing queries in a compact manner, and a trac-
ing query is evaluated by cooperating peers using query for-
warding. The recursive nature of tracing is well suited to the
deductive approach.

We presented two different query execution modes, the
ad-hoc execution mode and the continual execution mode.
The related queries are called ad-hoc queries and contin-
ual queries, respectively. We clearly defined valid trac-
ing queries and some example queries were presented. We
showed two different modes can be supported by a sim-
ilar query processing framework based on the seminaive
method, which is the most common query evaluation frame-
work for datalog.

Our query processing framework is still in the develop-
ment stage. We have the following future work:

• Cost-based query optimization: As described in
Sect. 5.4.2, we may be able to present different query
processing plans depending on queries. For selecting
an optimal plan, we need to develop a cost model for
query processing.

• Effective use of materialized view technologies: For
tracing queries, especially for the queries asking past
histories, materialized views [14] are quite helpful to
reduce query response time. For that purpose, we need
to develop a query processing method which effectively
uses materialized views and a view selection and main-
tenance method which considers the trade-off of cost
and benefit.

• Data replication and caching: Data replication and
caching is helpful for efficient query processing and
fault-tolerance. We already proposed some initial ideas
in [21]. We would like to consider the problem in de-
tail.

• Attachment of lineage information: The current frame-
work takes a minimal approach. We do not maintain
redundant information in the underlying databases. We
may be able to improve the cost of query processing
by attaching lineage information to each record. It will
increase the storage cost, but some types of queries can
be supported efficiently.

• Enhancement of the query language: Considering prac-
tical requirements of tracing, we need to incorporate
additional features and constructs to our language. For

LI and ISHIKAWA: QUERY PROCESSING IN A TRACEABLE P2P RECORD EXCHANGE FRAMEWORK
1445

example, we can consider aggregate queries (e.g., for
each record of peer A, count the number of peers that
copied the record) and the temporal query facility be-
cause historical information can be considered as a
temporal database. In addition, we may be able to in-
troduce a stream database-like feature such as window-
based queries into our continual queries.

• Support of different types of records: To simplify the
problem, we only considered one type of records are
shared among peers in the user layer. We may be able
to extend to manipulate multiple types of records (e.g.,
Novel and Author). It means that the user layer be-
haves like a relational database. We may need to totally
revise our query processing framework.

• Development of system implementation techniques:
For an efficient implementation, we need to develop
practical implementation techniques such as effective
use of the query processing power of the underlying
RDBMS in each peer.

• Experimental evaluation: We are currently developing
a prototype system of our P2P record exchange frame-
work. We would like to evaluate the effectiveness of
our framework in terms of query response time, stor-
age cost, and maintenance cost based on experiments.
In [22], we already compared two popular query pro-
cessing methods, the seminaive method and the magic
set method, in our framework based on a simulation
environment. The simulation environment should be
extended considering real P2P networks, and we need
to perform large-scale experiments.

Acknowledgments

This research is partly supported by the Grant-in-Aid for
Scientific Research, Japan (#21013023, #22300034).

References

[1] K. Aberer and P. Cudre-Mauroux, “Semantic overlay networks,”
VLDB, 2005. (tutorial notes).

[2] S. Abiteboul, R. Hull, and V. Vianu, Foundations of Databases,
Addison-Wesley, 1995.

[3] S. Androutsellis-Theotokis and D. Spinellis, “A survey of peer-to-
peer content distribution technologies,” ACM Computing Surveys,
vol.36, no.4, pp.335–371, 2004.

[4] O. Benjelloun, A. Das Sarma, A. Halevy, and J. Widom, “ULDBs:
Databases with uncertainty and lineage,” Proc. VLDB, pp.953–964,
2006.

[5] D. Bhagwat, L. Chiticariu, W.-C. Tan, and G. Vijayvargiya, “An an-
notation management system for relational databases,” Proc. VLDB,
pp.900–911, 2004.

[6] BRICKS: Building resources for integrated cultural knowledge ser-
vices, http://www.brickscommunity.org/

[7] P. Buneman, J. Cheney, W.-C. Tan, and S. Vansummeren, “Curated
databases,” Proc. ACM PODS, pp.1–12, 2008.

[8] P. Buneman and W.-C. Tan, “Provenance in databases (tutorial),”
Proc. ACM SIGMOD, pp.1171–1173, 2007.

[9] T. Condie, D. Chu, J.M. Hellerstein, and P. Maniatis, “Evita raced:
Metacompilation for declarative networks,” VLDB, pp.1153–1165,
2008.

[10] Y. Cui and J. Widom, “Lineage tracing for general data warehouse
transformations,” Proc. VLDB, pp.471–480, 2001.

[11] Y. Cui, J. Widom, and J.L. Wiener, “Tracing the lineage of view data
in a warehousing environment,” ACM TODS, vol.25, no.2, pp.179–
227, 2000.

[12] Gnutella, http://en.wikipedia.org/wiki/Gnutella
[13] T.J. Green, G. Karvounarakis, N.E. Taylor, O. Biton, Z.G. Ives,

and V. Tannen, “Orchestra: Facilitating collaborative data sharing,”
Proc. ACM SIGMOD, pp.1131–1133, 2007.

[14] A. Gupta and I.S. Mumick eds, Materialized Views, MIT Press,
1999.

[15] A. Gupta, I.S. Mumick, and V.S. Subrahmanian, “Maintaining views
incrementally,” Proc. ACM SIGMOD, pp.157–166, 1993.

[16] H. Gupta, X. Zhu, and X. Xu, “Deductive framework for program-
ming sensor networks,” Proc. ICDE, pp.281–292, 2009.

[17] A. Halevy, M. Franklin, and D. Maier, “Principles of dataspace sys-
tems,” Proc. ACM PODS, pp.1–9, 2006.

[18] Z. Ives, T.J. Green, G. Karvounarakis, N.E. Taylor, V. Tannen, P.P.
Talukdar, M. Jacob, and F. Pereira, “The Orchestra collaborative
data sharing system,” ACM SIGMOD Record, vol.37, no.3, pp.26–
32, Sept. 2008.

[19] Z. Ives, N. Khandelwal, A. Kapur, and M. Cakir, “Orchestra:
Rapid, collaborative sharing of dynamic data,” Proc. Conf. on In-
novative Data Systems Research (CIDR 2005), pp.107–118, 2005.

[20] F. Li, T. Iida, and Y. Ishikawa, “Traceable P2P record exchange:
A database-oriented approach,” Frontiers of Computer Science in
China, vol.2, no.3, pp.257–267, 2008.

[21] F. Li, T. Iida, and Y. Ishikawa, “On physical organization of a P2P
record exchange system,” Proc. Forum on Data Engineering and In-
formation Management (DEIM Forum 2009) (in Japanese), 2009.

[22] F. Li, T. Iida, and Y. Ishikawa, “’Pay-as-you-go’ processing for
tracing queries in a P2P record exchange system,” Proc. DASFAA,
vol.5463 of LNCS, pp.323–327, 2009. A long version is avail-
able from http://www.db.itc.nagoya-u.ac.jp/papers/2009-dasfaa-li-
long.pdf

[23] F. Li and Y. Ishikawa, “Traceable P2P record exchange based on
database technologies,” Proc. APWeb, vol.4976 of LNCS, pp.475–
486, 2008.

[24] L. Liu, C. Pu, and W. Tang, “Continual queries for internet
scale event-driven information delivery,” IEEE TKDE, vol.11, no.4,
pp.610–628, 1999.

[25] M. Liu, N.E. Taylor, W. Zhou, Z.G. Ives, and B.T. Loo, “Recursive
computation of regions and connectivity in networks,” Proc. ICDE,
pp.1108–1119, 2009.

[26] B.T. Loo, T. Condie, M. Garofalakis, D.E. Gay, J.M. Hellerstein, P.
Maniatis, R. Ramakrishnan, T. Roscoe, and I. Stoica, “Declarative
networking: Language, execution and optimization,” Proc. ACM
SIGMOD, pp.97–108, 2006.

[27] “Orchestra: Managing the collaborative sharing of evolving data,”
http://www.csi.upenn.edu/˜zives/orchestra/

[28] P2: Declarative networking, http://p2.berkeley.intel-research.net/
[29] W.-C. Tan, “Research problems in data provenance,” IEEE Data En-

gineering Bulletin, vol.27, no.4, pp.45–52, 2004.
[30] J. Widom, “Trio: A system for integrated management of data, accu-

racy, and lineage,” Proc. Conf. on Innovative Data Systems Research
(CIDR 2005), pp.262–276, 2005.

[31] C. Zaniolo, “The logic of query languages,” in Advanced Database
Systems, ed. C. Zaniolo, S. Ceri, C. Faloutsos, R.T. Snodgrass,
V.S. Subrahmanian, and R. Zicari, chapter 8, pp.163–199, Morgan
Kaufmann, 1997.

[32] W. Zhou, Y. Mao, B.T. Loo, and M. Abadi, “Unified declarative
platform for secure networked information systems,” Proc. ICDE,
pp.150–161, 2009.

1446
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

Fengrong Li is a Ph.D. candidate major-
ing in Systems and Social Informatics at Grad-
uate School of Information Science in Nagoya
University. Her main research interests lie in
data provenance, P2P database, and integration
of distributed heterogeneous information. She is
a student member of DBSJ and IPSJ.

Yoshiharu Ishikawa is a Professor at Infor-
mation Technology Center, Nagoya University.
His research interests include spatio-temporal
databases, mobile databases, P2P databases,
data mining, information retrieval, and Web in-
formation systems. He is a member of the
Database Society of Japan, IPSJ, JSAI, ACM,
and IEEE.

