
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010
1479

PAPER Special Section on Info-Plosion

Accelerating Smith-Waterman Algorithm for Biological Database
Search on CUDA-Compatible GPUs∗

Yuma MUNEKAWA†, Nonmember, Fumihiko INO†a), and Kenichi HAGIHARA†, Members

SUMMARY This paper presents a fast method capable of accelerating
the Smith-Waterman algorithm for biological database search on a clus-
ter of graphics processing units (GPUs). Our method is implemented us-
ing compute unified device architecture (CUDA), which is available on the
nVIDIA GPU. As compared with previous methods, our method has four
major contributions. (1) The method efficiently uses on-chip shared mem-
ory to reduce the data amount being transferred between off-chip video
memory and processing elements in the GPU. (2) It also reduces the num-
ber of data fetches by applying a data reuse technique to query and database
sequences. (3) A pipelined method is also implemented to overlap GPU
execution with database access. (4) Finally, a master/worker paradigm is
employed to accelerate hundreds of database searches on a cluster system.
In experiments, the peak performance on a GeForce GTX 280 card reaches
8.32 giga cell updates per second (GCUPS). We also find that our method
reduces the amount of data fetches to 1/140, achieving approximately three
times higher performance than a previous CUDA-based method. Our 32-
node cluster version is approximately 28 times faster than a single GPU
version. Furthermore, the effective performance reaches 75.6 giga instruc-
tions per second (GIPS) using 32 GeForce 8800 GTX cards.
key words: Smith-Waterman algorithm, sequence alignment, acceleration,
GPU, CUDA

1. Introduction

In many bioinformatics organizations, biological databases
are exponentially growing in size and number. For example,
such a rapid growth can be seen in SWISS-PROT [2], which
continuously updates a manually annotated protein (amino
acid) sequence database over 20 years [3]. It now contains
approximately 5 × 105 sequence entries, comprising about
1.7 × 108 amino acids. Using these databases, biologists
are trying to identify structure, function and evolutionary
relationships between sequences.

This identification process is usually assisted by se-
quence database search, which finds meaningful sequences
in databases, according to the similarity between a query
sequence and subject sequences in the databases. The sim-
ilarity here can be computed by the Smith-Waterman (SW)
algorithm [4], namely a well-known method for finding the
optimal local alignment between two sequences. However,
it requires a large amount of computation due to high com-
putational complexity. Given a query sequence of length n
and a subject sequence of length m, it takes O(mn) time to
perform a pairwise alignment between them. Thus, some

Manuscript received September 4, 2009.
†The authors are with the Graduate School of Information

Science and Technology, Osaka University, Suita-shi, 565–0871
Japan.

∗A preliminary version of this paper appeared in [1].
a) E-mail: ino@ist.osaka-u.ac.jp

DOI: 10.1587/transinf.E93.D.1479

acceleration methods are needed to use this algorithm for
exponentially growing databases [2], [5].

Heuristic methods solve the alignment problem more
quickly than exact methods. For example, BLAST [6] and
FASTA [7] are widely used by researchers, because they are
up to 40 times faster than a straightforward implementa-
tion of the SW algorithm [8]. However, heuristic methods
have a problem of sensitivity. Accordingly, in order to de-
velop a not only fast but also sensitive solution, many re-
searchers are trying to accelerate the SW algorithm using
various hardware platforms.

Manavski et al. [8] propose a fast method running on
the graphics processing unit (GPU) [9], namely a com-
modity chip designed for acceleration of graphics applica-
tions. They implement the SW algorithm using compute
unified device architecture (CUDA) [10], which is a devel-
opment framework for accelerating general applications on
the nVIDIA GPU. Although their implementation demon-
strates higher performance than a CPU implementation [7],
the acceleration is not enough to outperform an optimized
implementation [11] that uses SSE instructions [12].

To the best of our knowledge, Munekawa et al. [1]
present the first implementation that outperforms the op-
timized CPU implementation. They fully utilize memory
resources available on the GPU. For example, their imple-
mentation exploits on-chip shared memory to save the band-
width between the GPU and off-chip video memory. Similar
approaches are reported in [1], [13], [14].

In this paper, we extend our preliminary work [1] with
a pipeline technique and a cluster computing approach. The
proposed method is designed to accelerate the SW algorithm
for database search on a cluster of GPUs. Our method has
four major contributions. Firstly, on-chip memory is used to
reduce the data amount being transferred between off-chip
memory and processing elements in the GPU. Secondly,
a data reuse scheme further reduces the number of data
fetches from off-chip memory. Thirdly, a pipeline technique
minimizes the execution time by loading database files dur-
ing kernel execution on the GPU. Finally, a master/worker
paradigm is employed to process hundreds of search queries
in parallel on a cluster system.

The rest of the paper is organized as follows. We begin
in Sect. 2 by introducing related work. Section 3 features the
CUDA framework and Sect. 4 gives an overview of the SW
algorithm. Section 5 then describes our proposed method
and Sect. 6 shows experimental results. Finally, Sect. 7 con-
cludes the paper.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



1480
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

2. Related Work

Liu et al. [15] develop the first implementation that runs
on the GPU. Since their work is done before the dawning
of CUDA, they employ the OpenGL library [16], namely
a graphics library, to implement the SW algorithm on the
GPU. They show how the algorithm can be mapped onto
the graphics pipeline. Using an nVIDIA GeForce 7800 GTX
card, their implementation achieves a 10-fold speedup over
SSEARCH [7], a heuristic implementation of the SW algo-
rithm running on the CPU. It provides a peak performance
of 0.7 giga cell updates per second (GCUPS) at a query of
length 4092. Their work is extended by Singh et al. [17] who
show a further acceleration using several desktop machines
equipped with GPUs.

Manavski et al. [8] present a CUDA-based implemen-
tation for the SW algorithm. Their performance reaches a
peak of 1.8 GCUPS using a GeForce 8800 GTX card, but
it is not clear whether this performance includes the data
transfer time needed before/after GPU execution. The per-
formance can be further increased by utilizing on-chip mem-
ory, which is in an order of magnitude faster than off-chip
memory. A similar work but with a heuristic algorithm is
presented by Schatz et al. [18]. Their CUDA-based imple-
mentation achieves a 3.5-fold speedup over a CPU imple-
mentation.

Although earlier GPU implementations show success-
ful timing results, the acceleration is not enough to out-
perform an optimized CPU implementation proposed by
Farrar [11]. This implementation is optimized using SSE
instructions, which are originally designed to accelerate
multimedia applications by performing single-instruction,
multiple-data (SIMD) computation. The implementation
delivers a peak performance of 3.0 GCUPS on a 2.0 GHz
Core 2 Duo processor.

Some recent methods [1], [13], [14], [19] exploit on-
chip shared memory to achieve higher performance than the
SSE-optimized implementation. The performance of these
methods roughly ranges from 5.6 GCUPS to 9.6 GCUPS,
depending on the employed graphics card. The main dif-
ference of this paper to these results is the further accel-
eration achieved by a pipeline technique. We also ex-
tend our single-GPU implementation with a master/worker
paradigm, achieving a scalable performance with respect to
the number of GPUs.

In contrast to the GPU-based solutions mentioned
above, field programmable gate arrays (FPGAs) also pro-
vide attractive, hardware-based solutions. Zhang et al. [20]
implements the SW algorithm on an FPGA, which provides
a peak performance of 25.6 GCUPS. This performance is
250 times faster than a CPU version running on a 2.2 GHz
Opteron processor. One drawback of FPGA-based solutions
is the cost of expensive FPGAs. FPGAs are not so widely
used as compared with GPUs, which have a strong market
in the entertainment area. Similar solutions are presented by
Storaasli et al. [21] and by Li et al. [22].

3. Compute Unified Device Architecture (CUDA)

CUDA [10] is a programming framework for writing and
running general-purpose applications on the nVIDIA GPU.
This framework allows us to efficiently run highly-threaded
applications on the GPU, regarding it as a massively parallel
machine that computes threads on hundreds of processing
elements. The kernel, namely the program running for ev-
ery thread but each with a different thread ID, can be written
in the C-like language.

Figure 1 illustrates an overview of the hardware model
in CUDA. This model mainly consists of two parts: the
GPU itself and off-chip video memory, which is called as de-
vice memory. The GPU has a set of multiprocessors (MPs),
each including a set of stream processors (SPs) and shared
memory. As we mentioned before, shared memory is use-
ful to save the memory bandwidth between SPs and off-chip
memory. During kernel execution, each thread is assigned to
an SP in order to compute threads in a SIMD fashion. Thus,
every SP within the same MP executes the same instruction
but operates on a different thread at every clock cycle.

Threads have to be structured into a hierarchy to batch
them to MPs. In this hierarchy, a group of threads is called
as a thread block. This hierarchical structure allows threads
within the same thread block to share data in fast, on-chip
shared memory. However, threads belonging to different
thread blocks are not allowed to share data, because thread
blocks are independently assigned to each of MPs. There-
fore, developers must write their code such that there is no
data dependence between different thread blocks.

Table 1 summarizes a hierarchy of memory resources
in CUDA. Shared memory is as fast as registers while video
memory takes 400 to 600 clock cycles to access non-cached
data [10], [23]. However, the capacity of shared memory
is currently limited by 16 KB per MP. In contrast, recent
high-end GPUs have at least 1 GB of video memory, which
can be used as constant, texture, global, and local memory.

Fig. 1 Hardware model in CUDA. SP denotes stream processor in this
figure. The number of registers and that of multiprocessors depend on GPU
generation.



MUNEKAWA et al.: ACCELERATING SMITH-WATERMAN ALGORITHM ON GPUS
1481

Table 1 Memory resources available in CUDA. Latency is presented
in clock cycles. The cache working set is 8 KB per MP. The latency of
constant memory depends on the locality of data access. Accesses to global
memory can be coalesced if satisfying memory alignments [10].

Memory Capacity Cache Latency Access
Register 8 K/16 K per MP

N/A
1 R/W per thread

Shared 16 KB per MP 1 R/W per block
Constant 64 KB

Yes 30–600 RTexture
Global 1 + GB

No
400–600 R/W

Local 400–600 R/W per thread

Constant memory and texture memory are cached but not
writable by SPs. They are writable by the CPU in advance
of kernel launch. Texture memory has a larger space than
constant memory.

The remaining local memory and global memory are
not cached but writable by SPs. Global memory is the only
space that can be used to send computational results back
to the CPU. Note here that satisfying memory alignment
requirements [10] is important to allow memory accesses to
be coalesced into a single access. This memory coalescing
technique increases the effective memory bandwidth by the
order of magnitude. Local memory is implicitly used if the
CUDA compiler consumes the register space. Since local
memory cannot be accessed in a coalesced manner, it is im-
portant to avoid such implicit, inefficient access.

4. Smith-Waterman Algorithm

The SW algorithm [4] is based on a dynamic programming
approach that obtains the optimal local alignment between
two sequences. In general, this pairwise algorithm is itera-
tively applied to the query and each subject sequence in the
database. Thus, we must process the algorithm MN times
to deal with N query sequences for a database of M subject
sequences. The algorithm finds similar subsequences in two
steps as follows.

1. Matrix filling step, which computes a similarity matrix
H by comparing the two sequences.

2. Backtracing step, which locates similar subsequences
from matrix cells with higher scores.

The former step must be accelerated because it involves
computation by more than an order of magnitude as com-
pared with the latter step. In contrast, the latter step can be
quickly processed on the CPU [15] because we are usually
allowed to focus on only several subsequences in practical
situations. For example, backtracing will start from only ten
matrix cells if top ten similar subsequences are needed as
the alignment result for the query.

Let A denote a query sequence a1a2 . . . an of length n.
Let B denote a subject sequence b1b2 . . . bm of length m to
be compared with the query sequence A. The algorithm then
computes an m× n-cell matrix H to obtain the similarity for
any pair of subsequences. Let Ei, j and Fi, j be the maximum
similarity involving the first i-th symbols in A and the first
j-th symbols in B, respectively. The maximum similarity

Fig. 2 Example of matrix H filled by Smith-Waterman algorithm. Un-
derlined characters represent the most similar subsequences. A linear gap
penalty of Ginit = Gext = 1 is used with a scoring matrix: W(ai, b j) = 2 if
ai = b j; and W(ai, b j) = −1 otherwise.

Hi, j of two subsequences ending in ai and b j, respectively,
is then recursively defined as follows:

Hi, j = max{0, Ei, j, Fi, j,Hi−1, j−1 +W(ai, b j)}, (1)

where W(ai, b j) represents a scoring matrix. In general, the
scoring matrix is experimentally determined as W(ai, b j) >
0 if ai = b j and W(ai, b j) < 0 if ai � b j. Similarities Ei, j and
Fi, j are given by:

Ei, j = max{Hi, j−1 −Ginit, Ei, j−1 −Gext}, (2)

Fi, j = max{Hi−1, j −Ginit, Fi−1, j −Gext}, (3)

where Ginit and Gext are penalties for opening a new gap and
for extending an existing gap, respectively. The values for
Hi, j, Ei, j, and Fi, j are defined as zero if i < 1 or j < 1.

Figure 2 shows an example of matrix H filled by the
SW algorithm. In this example, two sequences TCTCGAT
and GTCTAC are aligned using a linear gap penalty. The
most similar subsequences (TCTC and TCTAC) are deter-
mined by backtracing from cell H4,6 with the highest score.

To compute Eq. (1), we have to fetch two characters
and three integers if the scoring matrix W is encoded as con-
stants, execute four arithmetic instructions if max() is imple-
mented as a binary operator, and then write an integer. Simi-
larly, Eqs. (2) and (3) fetch four integers if penalties Ginit and
Gext are implemented as constants, execute six arithmetic in-
structions, and then write two integers. Since a matrix has
mn cells, the SW algorithm accesses at least 42 mn byte data
and executes at least 10 mn arithmetic instructions during a
pairwise alignment.

5. Proposed Method

We now describe our CUDA-based method accelerated on a
cluster of GPUs. The problem parallelized by the proposed
method is to process N query sequences with a database of
M subject sequences. We first present our parallelization
strategy and memory allocation scheme to explain how we
adapt the algorithm to our target platform. We then describe
the data reuse scheme and the pipeline technique.



1482
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

5.1 Parallelization Strategy

Since the SW algorithm solves a pairwise alignment, there
is no data dependency between different pairs of sequences.
Therefore, the problem of MN alignments can be classified
into an embarrassingly parallel problem. This motivates us
to exploit a coarse-grained parallelism by a master/worker
paradigm, which can efficiently parallelize this type of prob-
lem on cluster systems.

Figure 3 shows how our master/worker paradigm as-
signs alignment tasks to computing nodes in the cluster. A
task here is associated with alignments between a query
sequence and M subject sequences in the database. Note
here that we assume that all nodes have the entire database.
The database is not decomposed into smaller portions be-
cause such a decomposition involves a post-processing step
to merge scores into a list, which must be then used to as-
sign backtracing tasks to a part of nodes. In contrast, our
per-query strategy allows backtracing tasks to be integrated
into matrix filling tasks, simplifying task distribution pro-
cess on the master node.

In our master/worker paradigm, worker nodes further
exploit the parallelism in each task to accelerate alignments
on the GPU. Since each task corresponds to M pairwise
alignments, a naive strategy may parallelize the task using
M threads. Although this strategy may increase the align-
ment throughput, it cannot accelerate each of pairwise align-
ments because each is processed in serial. Furthermore, the
kernel cannot be launched until loading the last entry in the
database. Therefore, we have decided to exploit not only
the coarse-grained parallelism but also the fine-grained par-
allelism in a pairwise alignment. In addition, we overlap
kernel execution with database access to minimize the en-
tire execution time. For this reason, our kernel aligns the
query sequence with L (< M) subject sequences at a time.
Thus, the kernel is iteratively launched with different L sub-
ject sequences until reaching the last entry in the database.

The fine-grained parallelism we exploited is the same
one used in Liu’s OpenGL-based method [15]. According

Fig. 3 Master/worker paradigm running on P nodes. The master node
assigns alignment tasks to worker nodes, which have M subject sequences
in the database. A task here is associated with a query sequence.

to Eqs. (1)–(3), their method computes matrices E, F and
H in antidiagonal order. Since each matrix have m + n − 1
antidiagonals, this method involves m+ n− 1 iterations (i.e.,
serialization). However, each antidiagonal is computed in
parallel with a maximum parallelism of n.

Figure 4 shows how we adapt Liu’s method to the
CUDA framework. Our kernel generates L thread blocks
and assigns a pairwise alignment to each of them. On the
other hand, each of n threads in a thread block is respon-
sible for computing a row in matrices E, F and H. Thus,
a kernel invocation computes L matrices using nL threads
in order to process L pairwise alignments. After this kernel
launch, the highest score S i,l is obtained for every row i of
the l-th matrix H, where 1 ≤ i ≤ n and 1 ≤ l ≤ L. These
scores are then used to screen out sequences that should not
be processed at the succeeding backtracing step.

Note here that it is important to sort subject sequences
by their length m before the matrix filling step [15] because
it balances the workload between thread blocks. Otherwise,
every thread block is required to process a different number
m + n + 1 of iterations to fill matrices.

5.2 Memory Allocation Scheme

The memory allocation scheme is the key factor that deter-
mines the kernel performance. In order to maximize the
performance, our method computes matrices E, F and H
mainly by fast on-chip memory. Since on-chip memory is
not large enough to store the entire of matrices, our method
avoids storing the entire of matrices during the matrix fill-
ing step. Instead of this, the method allocates the minimum
amount of memory to compute the highest scores. For ex-
ample, Eqs. (1)–(3) imply that cells on the k-th antidiagonal
of matrix H can be computed from the last two antidiago-
nals, namely the (k − 1)-th and the (k − 2)-th antidiagonals
of matrices E, F and H, where k = i + j. In this way, the
memory usage can be reduced from O(mn) to O(n).

Fig. 4 Parallel matrix filling for L pairwise alignments. Matrix cells on
the same antidiagonal are illustrated here in a column. Given a query se-
quence a1a2 . . . an and L subject sequences, cells on the k-th antidiagonals
of L matrices are computed in parallel, where 1 ≤ k ≤ m + n − 1. Thus,
matrix cells are computed by nL threads from left to right in this figure.



MUNEKAWA et al.: ACCELERATING SMITH-WATERMAN ALGORITHM ON GPUS
1483

Note here that lacking the entire matrix H is not a crit-
ical problem in practical situations because the backtracing
step is usually done for several sequences and not for all MN
sequences. That is, once the most of sequences are screened
out by their scores, necessary matrices can be quickly com-
puted by performing only several alignments.

Since on-chip memory consists of registers and shared
memory, we have to determine which antidiagonals should
be stored in shared memory. As shown in Fig. 4, our paral-
lelization strategy assigns a row to each thread. In this strat-
egy, the (k−1)-th antidiagonal of matrix H and that of matrix
F are accessed by multiple threads that compute cells on the
k-th antidiagonal, where 1 ≤ k ≤ m + n − 1. Therefore, we
have decided to store them in shared memory. On the other
hand, the remaining antidiagonals are accessed only by the
responsible thread. Therefore, such antidiagonals should be
stored in registers.

With respect to the query sequence, it is accessed only
once by threads. Therefore, we store them in global memory
and load them in a coalesced manner. On the other hand,
we incorporate cache effects by storing M subject sequences
in texture memory, because threads do not load them in a
coalesced manner. Since subject sequences have different
lengths, each of length m is stored in constant memory as
an integer value. Thus, the kernel consumes 4L + n bytes
of constant memory in total. We currently use L = 8192
according to the capacity of constant memory (see Table 1).
The highest scores S i,l are stored in global memory to send
them back to the CPU. Finally, the scoring matrix W can be
stored in shared memory or texture memory. We currently
encode the scoring matrix W in the kernel code.

Figure 5 shows a pseudocode of the proposed ker-
nel. Let tid and bid denote the thread ID and the block
ID, respectively. This kernel is launched for every thread
〈tid, bid〉, where 0 ≤ tid < n and 0 ≤ bid < L. In this kernel,
the antidiagonals of matrices are swept by the k loop at line
10. Note here that every thread does not always update its
responsible row at each iteration. For example, only the first
threads 〈tid, bid〉 = 〈0, ∗〉 are allowed to compute the antidi-
agonals of L matrices when k = 1. Such flow controls are
realized by the branch instruction at line 12. Threads that
are allowed to compute a cell Hi, j fetch the symbol b j from
texture memory at line 14, and then compute the cell Hi, j at
line 18. After this, they update the responsible antidiago-
nals at lines 22–24 for the next iteration. Since this update
is done using shared memory, synchronization is needed be-
fore proceeding to the next iteration. Finally, every thread
copies the highest score S tid+1,bid+1 of its responsible row
tid + 1 to global memory at line 28. The highest scores are
written in a coalesced manner. This memory coalescing can
be realized if all of the first threads 〈0, ∗〉 write the responsi-
ble score to an offset address of a multiple of 16. Therefore,
we use size = 16�n/16� at line 28.

5.3 Data Reuse Scheme

Our data reuse scheme aims at reducing the number of tex-

Fig. 5 Pseudocode of naive version of proposed kernel. This naive kernel
uses shared memory but does not reuse data for the sake of simplicity. The
thread 〈tid, bid〉 is responsible for the (tid+1)-th row of matrix H computed
for the (bid + 1)-th subject sequence.

ture fetches needed for matrix computation. To realize this,
we pack query and subject sequences into vector data for-
matted in type char4 [10], as shown in Fig. 6 (b). Accord-
ingly, the optimized kernel now assigns four succeeding
rows to each thread, performing per-vector computation.
Therefore, a thread block consists of �n/4� threads in this
kernel. Since thread blocks are currently allowed to have a
maximum of 512 threads per block [10], the kernel requires
n ≤ 2048 to run.

The optimized kernel fetches vector data instead of
scalar data. An important point here is that it is better to
incorporate a lookahead of database symbols to compute
4 × 4 cells at each iteration (see Fig. 6 (c)). Otherwise, as
shown in Fig. 6 (b), the computation is restricted to only six
cells because the responsible thread has not yet loaded the
database symbols needed for that computation. Since four
rows are computed at each iteration, the number of itera-
tions reduces from m + n − 1 to �(m + n − 1)/4� if using the
lookahead.

The data reuse scheme also contributes to reduce the
amount of data fetched from off-chip memory. At each iter-
ation, the naive kernel fetches a symbol b j of the subject se-
quence to compute a matrix cell Hi, j. In contrast, the vector
kernel with the lookahead technique fetches four succeeding
symbols of the database sequence and computes 16 matrix
cells per iteration. Therefore, the vector kernel reduces tex-



1484
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

(a) (b) (c)

Fig. 6 Data reuse scheme with vectorization and lookahead techniques. (a) the naive scheme, (b) the vector scheme, and
(c) that with lookahead, each showing matrix cell(s) computed by a single thread at a single iteration of the k loop. The naive
scheme can be vectorized to reduce the number of texture fetches and to achieve a higher parallelism. Lookahead of the
database sequence, b5b6b7b8 in this example, allows us to compute 4 × 4 matrix cells per fetch. Without this lookahead, the
computation is restricted to only six cells located in the lower triangular area.

(a)

(b)

Fig. 7 Pseudocode of CPU program. (a) Non-pipelined code and (b)
pipelined code.

ture fetches by 75% as compared with the naive kernel. Fur-
thermore, it also reduces the number of branch instructions
at line 12 in Fig. 5, due to the less number of iterations.

5.4 Pipelined Alignment

Although our kernel is optimized to CUDA-compatible
GPUs for higher alignment throughput, it is not sufficient
to minimize the execution time. This motivates us to fo-
cus on the CPU code, which loads many sequences from
the database and then launches the kernel. For example, we
find that 50% of execution time is spent for database access
when processing a query sequence of length n = 255. This
ratio will increase in the future because the GPU doubles the
performance at every release [9].

Figure 7 shows how we modify the CPU code to realize
pipelined alignments. The naive code launches the kernel at
line 4 in Fig. 7 (a). After this launch, control will be imme-

diately returned to the CPU because the launch is processed
in asynchronous way. However, the readback operation at
line 5 makes the CPU idle until completing the kernel exe-
cution. To solve this idle problem, we change the execution
order as shown in Fig. 7 (b). In this pipelined code, subject
sequences for the next L alignments are loaded just after the
kernel launch for the current alignments. The same pipeline
behavior can be realized by using streams [10]. However,
we currently avoid using streams because it is not supported
in GeForce 8800 series cards.

Let t1, t2 and t3 be the execution time for a launched
kernel, and that for data download and readback, and that
for database access of L subject sequences. Let T be the
execution time needed for the entire of MN pairwise align-
ments. The execution time T of the non-pipelined method is
then given by �M/L�(t1 + t2 + t3). In contrast, the pipelined
method reduces this to (�M/L�−1)(max(t1, t3)+t2)+t1+t2+t3.
The last three terms t1 + t2 + t3 here represent the cost of the
first and last iterations, which cannot be entirely overlapped
with kernel execution.

6. Experimental Results

In order to evaluate the performance of our method, we
have implemented the method using Visual Studio 2005
and CUDA [10]. The implementation is benchmarked on
a single machine and on a cluster of 32 GPUs. We first
show timing results on a single machine, with a breakdown
analysis of execution time and a comparison to a previ-
ous method [15], [24] implemented using the OpenGL li-
brary [16] and C for graphics (Cg) [25]. We then demon-
strate how the performance scales on a cluster system.

6.1 Setup

Experiments are conducted using query sequences of length
n ranging from 63 to 511 amino acids. All queries are run



MUNEKAWA et al.: ACCELERATING SMITH-WATERMAN ALGORITHM ON GPUS
1485

Table 2 Machine specification. The master node and 32 worker nodes
are interconnected by a 1 Gb/s Ethernet network. Arithmetic performance
is presented by integer performance in giga instructions per second (GIPS).
Bandwidth represents the theoretical bound of off-chip memory.

Item Standalone Cluster system
system Master node Worker node

CPU Core i7 940 Xeon X5450 Xeon (Nocona)
2.93 GHz 3 GHz 2.8 GHz

RAM 3 GB 8 GB 2 GB
GPU GTX 280 — 8800 GTX
VRAM 1024 MB — 768 MB
Arithmetic 311 GIPS — 173 GIPS
Bandwidth 141.7 GB/s — 86.4 GB/s
Driver 178.28 — 169.09
CUDA 2.0 — 1.1
OS Windows XP Windows XP (x64) Windows XP

Table 3 Performance comparison with OpenGL-based method [15]. Ex-
ecution time and alignment throughput are measured using a query se-
quence (N = 1).

Query length Execution time T (s) Throughput P (GCUPS)
n Proposed OpenGL Proposed OpenGL
63 2.03 7.48 2.81 0.76

127 2.07 10.88 5.55 1.06
191 2.30 14.54 7.52 1.19
255 2.79 18.25 8.32 1.27
319 3.76 22.10 7.68 1.31
383 4.36 25.88 7.96 1.34
447 5.06 29.82 8.00 1.36
511 5.70 34.14 8.12 1.36

against the SWISS-PROT database [2], which is approxi-
mately 121 MB in file size, containing 250,143 (= M) en-
tries with a total of 90,588,910 amino acids. Thus, the
length m of subject sequences is 362 amino acids in aver-
age. The subject sequences are sorted according to length
m in advance. Alignments are carried out with an affine gap
penalty Ginit = 10,Gext = 2 and a scoring matrix W such
that W(ai, b j) = 2 if ai = b j and W(ai, b j) = −1 otherwise.

Table 2 summarizes the machine specification used for
experiments. For a single-GPU environment, we use a Win-
dows PC equipped with a Core i7 940 CPU and an nVIDIA
GeForce GTX 280 card. On the other hand, our GPU-
equipped cluster consists of a master node and 32 worker
nodes, each with a GeForce 8800 GTX card. All nodes are
interconnected by a 1 Gb/s Ethernet network. Since pairwise
alignments can be classified into an integer application, the
arithmetic performance in Table 2 is presented in giga in-
structions per second (GIPS).

6.2 Single GPU Performance

Table 3 shows the execution time T and the throughput
P = Mmn/T for query sequences with different lengths n.
The execution time T includes the GPU time T1 for kernel
execution, the transfer time T2 for data download and read-
back, and the CPU time T3 for database access and other
CPU-related overheads. The performance is measured us-
ing the proposed method and the previous OpenGL-based
method [15], [24].

Table 4 Effective kernel performance of proposed method and that of
OpenGL-based method [15].

Query length Arithmetic (GIPS) Bandwidth (GB/s)
n Proposed OpenGL Proposed OpenGL
63 65.7 22.7 256.9 88.9

127 86.5 27.7 338.2 108.4
191 93.2 29.2 364.6 114.3
255 94.7 30.0 370.5 117.3
319 83.0 30.2 324.7 118.3
383 85.4 30.4 334.2 119.0
447 85.8 29.8 335.7 116.5
511 88.1 29.3 344.7 114.6

The proposed method is up to 6.5 times faster than
the OpenGL-based method. The performance reaches
8.32 GCUPS when processing a query sequence of length
n = 255. On the other hand, a previous CUDA-based
method achieves 1.8 GCUPS on a GeForce 8800 GTX
card [8]. We also measured the performance on the same
card and found that the performance reaches 4.42 GCUPS
when n = 255. Although this is not a fair comparison
due to different CUDA/driver versions, our on-chip method
achieves a 2.5X speedup over the off-chip method.

We next analyze the efficiency of the kernel with re-
spect to arithmetic performance and memory bandwidth.
In this analysis, the arithmetic performance is given by
10 mn · M/T1 (see Sect. 4). Similarly, the effective band-
width is given by 42 mn · M/T1. As shown in Table 4,
the proposed method achieves at least 2.8 times higher ef-
fective performance than the OpenGL-based method. This
speedup is close to that of the CUDA-based method [8] men-
tioned above. Since on-chip memory cannot be explicitly
used in the OpenGL framework, the OpenGL-based kernel
has to store matrices in textures. Therefore, the OpenGL-
based kernel shows almost the same speedup as the CUDA-
based kernel that mainly uses off-chip memory. The kernel
speedup of 2.8X also indicates that there is a gap between
the entire speedup of 6.5X. This can be explained by the dif-
ference of the CPU overhead needed for kernel execution.

With respect to the effective bandwidth, our kernel ex-
ceeds the theoretical bandwidth of off-chip memory. In
contrast, the performance of the OpenGL-based method is
limited by the theoretical bandwidth of 141.7 GB/s. In our
method, the amount of data fetched from off-chip memory
is first reduced to 1/35 by the shared memory scheme and
further is reduced to 1/4 by the data reuse scheme. Thus,
the explicit use of registers and shared memory reduces the
amount of data fetches to 1/140 in total. In this way, CUDA
allows us to increase the ratio of computation to memory
access in order to overcome the bandwidth issue typically
appeared in various OpenGL-based applications [15], [26],
[27].

The results presented above indicate that the proposed
method eliminates the performance bottleneck by on-chip
memory but it now suffers from computation (i.e., the in-
struction issue rate). To confirm this, we measure the per-
formance for n = 255 on a GeForce 9800 GTX card and
on a GeForce 8800 GTX card. The former has 17% higher



1486
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

(a) (b)

Fig. 8 Comparison of execution time between (a) non-pipelined method and (b) pipelined method.

clock rate but 19% lower memory bandwidth than the lat-
ter. We then find that our method increases the through-
put by 16% (from 4.42 to 5.51 GCUPS) but the OpenGL-
based method decreases the throughput by 10% (from 1.05
to 0.95 GCUPS). Thus, an interesting point here is that the
performance bottleneck can vary according to the under-
lying programming model though the same parallelization
strategy is implemented on the same hardware.

According to these results, we think that our kernel
may be further improved by reducing the number of instruc-
tions. For example, the kernel executes many instructions
for control flows and index computation, in addition to the
essential arithmetic instructions analyzed in Sect. 4. To con-
firm this, we investigated the assembly code and found that
66% of GPU cycles are spent on control flow instructions,
data access instructions, and synchronization instructions.
It also should be noted here that the instruction through-
put can be decreased by 33% if shared memory is used in
the kernel [23]. Thus, shared memory is useful to accelerate
memory-intensive applications but the instruction issue rate
can limit the kernel performance.

Finally, we investigate the impact of our pipelined
method in terms of execution time. Figure 8 shows the ex-
ecution time of the non-pipelined method and that of the
pipelined method. Since the pipelined method overlaps ker-
nel execution with database access, the execution time T
in Fig. 8 (a) is reduced by 21–39%, as shown in Fig. 8 (b).
In more detail, we observe T1 > T3 when n ≥ 191 while
T1 < T3 when n ≤ 127. In both cases, the execution time T
is roughly reduced by min(T1,T3). To confirm this, we com-
pare the measured time with the estimated time presented in
Sect. 5.4. We then find that the timing gap between them is
at most 175 ms, which corresponds to at most 7% of the ex-
ecution time T . This pipeline overhead becomes relatively
small as we increase n, because time T increases with length
n.

6.3 Cluster Performance

We performed hundreds of database searches using the

Fig. 9 Execution time and speedup on cluster system. Alignments are
done for 256 query sequences of length 63–511.

GPU-equipped cluster system presented in Table 2. A
search job here consists of N query sequences, which are
then decomposed into N independent tasks. Each task is
assigned to computing nodes in the cluster using the mas-
ter/worker paradigm. We assume that the database is dis-
tributed to every node in advance of job execution. The
master/worker framework is implemented using Windows
Sockets API.

Figure 9 shows the execution time T and the speedup
S measured using P worker nodes using 256 (=N) query se-
quences. The execution time here corresponds to the elapsed
time from start to end: from when the master node receives a
job to when all alignment results are sent back to the master.
Thus, it includes the communication time needed for task
distribution but not for database distribution. The speedup
S represents the acceleration ratio over the standalone sys-
tem, which does not use the master/worker paradigm. The
length n of query sequences ranges from 63 to 511, as we
used in Sect. 6.2. Thus, tasks have eight different granulari-
ties depending on n.

As shown in Fig. 9, our 32-node cluster system reduces
the execution time from 41 minutes to 88 seconds, achieving
a 28X speedup when P = 32. The efficiency S/P ranges
from 88% to 92%. Since we have more overheads as we
increase P (as T decreases), the efficiency S/P decreases
with the increase of P. For example, such overheads include



MUNEKAWA et al.: ACCELERATING SMITH-WATERMAN ALGORITHM ON GPUS
1487

the communication between the master and workers, which
accounts for 13% of execution time when P = 32.

By comparing the standalone performance with the
single-worker performance (P = 1), we can understand
the impact of overheads incurred on the master node. The
timing gap between them is approximately three minutes
mainly spent by task distribution and result collection. Al-
though we show that the performance scales well in our 32-
node system, some optimization techniques should be ap-
plied to the master node in order to achieve higher efficiency
on large systems.

Figure 10 shows the alignment performance measured
on the cluster system. Our system increases the perfor-
mance from 2.68 GCUPS to 75.6 GCUPS when using 32
nodes (P = 32). This performance can be further increased
by overlapping communication with computation on worker
nodes. This overlap will achieve 10% higher performance
because communication time is at most 8 seconds while the
entire time T is 88 seconds when P = 32.

Figure 11 shows the speedup S measured with differ-
ent numbers of query sequences. We obtain relatively high
speedups when N ≥ 2P. On the other hand, lower speedups
are observed when N ≤ P, because alignment tasks are con-
structed according to a per-query strategy. In such cases,
we need another strategy to distribute alignment workload
equally to P workers. For example, the database should
be decomposed into smaller P portions, which are then dis-

Fig. 10 Alignment performance with different numbers of worker nodes.

Fig. 11 Speedup measured using different numbers of query sequences.
The number N is altered from 8 to 256 query sequences.

tributed to workers. The appropriate strategy should be se-
lected by comparing N with P when the master node re-
ceives alignment jobs from users.

7. Conclusion

We have presented a fast method capable of accelerating
the SW algorithm for biological database search on a clus-
ter of CUDA-compatible GPUs. Our method is based on
a preliminary method [1] that first uses on-chip memory to
save the bandwidth between the GPU and off-chip memory.
The number of data fetches is also reduced by applying a
data reuse technique to query and subject sequences. We
further minimize the execution time by a pipelined method
that overlaps kernel execution with database access. Finally,
the method is integrated into a master/worker framework to
scale the performance with the number of GPUs.

The experimental results show that the proposed
method achieves a peak performance of 8.12 GCUPS using
a GeForce GTX 280 card. This performance is 6.5 times
higher than an OpenGL-based method [15], [24]. With re-
spect to the kernel performance, using on-chip memory con-
tributes to a 2.5X speedup over an off-chip kernel [8]. We
also show that the performance bottleneck varies depend-
ing on the underlying programming model. In particular,
the performance of the CUDA-based kernel can be limited
by the instruction issue rate if shared memory is used for
memory-intensive applications. The master/worker frame-
work also demonstrates a scalable performance on a 32-
node cluster system. The performance reaches 75.6 GCUPS
when using 32 GeForce 8800 GTX cards.

One future work is to extend our method to deal with
longer queries with a length of more than 2048 amino acids.
We are also planning to enhance the cluster system to se-
lect the appropriate parallelization strategy according to the
number of queries and that of available computing nodes.

Acknowledgements

This work was partly supported by JSPS Grant-in-Aid for
Scientific Research (A)(2)(20240002), Young Researchers
(B)(19700061), and the Global COE Program “in silico
medicine” at Osaka University.

References

[1] Y. Munekawa, F. Ino, and K. Hagihara, “Design and implemen-
tation of the Smith-Waterman algorithm on the CUDA-compatible
GPU,” Proc. 8th IEEE Int’l Conf. Bioinformatics and Bioengineer-
ing (BIBE’08), (CD-ROM), Oct. 2008.

[2] A. Bairoch and R. Apweiler, “The SWISS-PROT protein sequence
data bank and its supplement TrEMBL,” Nucleic Acids Research,
vol.25, no.1, pp.31–36, Jan. 1997.

[3] “Uniprotkb/swiss-prot release 57.6 statistics,” July 2009.
http://au.expasy.org/sprot/relnotes/relstat.html

[4] T.F. Smith and M.S. Waterman, “Identification of common molec-
ular subsequences,” J. Molecular Biology, vol.147, pp.195–197,
1981.



1488
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

[5] D.A. Benson, I. Karsch-Mizrachi, D.J. Lipman, J. Ostell, B.A. Rapp,
and D.L. Wheeler, “GenBank,” Nucleic Acids Research, vol.28,
no.1, pp.15–18, Jan. 2000.

[6] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman,
“Basic local alignment search tool,” J. Molecular Biology, vol.215,
no.3, pp.403–410, Oct. 1990.

[7] W.R. Pearson, “Searching protein sequence libraries: Comparison
of the sensitivity and selectivity of the Smith-Waterman and FASTA
algorithms,” Genomics, vol.11, no.3, pp.635–650, Nov. 1991.

[8] S.A. Manavski and G. Valle, “CUDA compatible GPU cards as ef-
ficient hardware accelerators for Smith-Waterman sequence align-
ment,” BMC Bioinformatics, vol.9, no.S10, March 2008,

[9] J.D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A.E.
Lefohn, and T.J. Purcell, “A survey of general-purpose computation
on graphics hardware,” Comput. Graph. Forum, vol.26, no.1, pp.80–
113, March 2007.

[10] nVIDIA Corporation, “CUDA programming guide version 2.0,”
June 2008. http://developer.nvidia.com/cuda/

[11] M. Farrar, “Striped Smith-Waterman speeds database searches six
times over other SIMD implementations,” Bioinformatics, vol.23,
no.2, pp.156–161, Jan. 2007.

[12] A. Klimovitski, “Using SSE and SSE2: Misconceptions and reality,”
Intel Developer Update Magazine, March 2001.

[13] Y. Liu, D.L. Maskell, and B. Schmidt, “CUDASW++: Optimizing
Smith-Waterman sequence database searches for CUDA-enabled
graphics processing units,” BMC Research Notes, vol.2, no.73, May
2009.

[14] L. Ligowski and W. Rudnicki, “An efficient implementation of Smith
Waterman algorithm on GPU using cuda, for massively parallel
scanning of sequence databases,” Proc. 8th Int’l Workshop High Per-
formance Computational Biology (HiCOMB’09), (CD-ROM), May
2009.

[15] W. Liu, B. Schmidt, G. Voss, and W. Müller-Wittig, “Streaming al-
gorithms for biological sequence alignment on GPUs,” IEEE Trans.
Parallel Distrib. Syst., vol.18, no.9, pp.1270–1281, Sept. 2007.

[16] D. Shreiner, M. Woo, J. Neider, and T. Davis, OpenGL Program-
ming Guide, fifth ed., Addison-Wesley, Reading, MA, Aug. 2005.

[17] A. Singh, C. Chen, W. Liu, W. Mitchell, and B. Schmidt, “A hybrid
computational grid architecture for comparative genomics,” IEEE
Trans. Inf. Technol. Biomed., vol.12, no.2, pp.218–225, March
2008.

[18] M.C. Schatz, C. Trapnell, A.L. Delcher, and A. Varshney, “High-
throughput sequence alignment using graphics processing units,”
BMC Bioinformatics, vol.8, no.474, Dec. 2007.

[19] G.M. Striemer and A. Akoglu, “Sequence alignment with GPU: Per-
formance and design challenges,” Proc. 23rd IEEE Int’l Parallel and
Distributed Processing Symp. (IPDPS’06), 10 pages (CD-ROM),
May 2009.

[20] P. Zhang, G. Tan, and G.R. Gao, “Implementation of the Smith-
Waterman algorithm on a reconfigurable supercomputing platform,”
Proc. 1st Workshop High-performance reconfigurable computing
technology and applications (HPRCTA’06), pp.39–48, Nov. 2007.

[21] O. Storaasli, W. Yu, D. Strenski, and J. Maltby, “Performance eval-
uation of FPGA-based biological applications,” Proc. Cray User
Group (CUG’07), May 2007.

[22] I.T. Li, W. Shum, and K. Truong, “160-fold acceleration of the
Smith-Waterman algorithm using a field programmable gate array
(FPGA),” BMC Bioinformatics, vol.8, no.185, June 2007.

[23] V. Volkov and J.W. Demmel, “Benchmarking GPUs to tune dense
linear algebra,” Proc. Int’l Conf. High Performance Computing, Net-
working and Storage (SC’08), (CD-ROM), Nov. 2008.

[24] F. Ino, Y. Kotani, and K. Hagihara, “Harnessing the power of idle
GPUs for acceleration of biological sequence alignment,” Proc. 2nd
Workshop Large-Scale Parallel Processing (LSPP’09), (CD-ROM),
May 2009.

[25] W.R. Mark, R.S. Glanville, K. Akeley, and M.J. Kilgard, “Cg: A
system for programming graphics hardware in a C-like language,”

ACM Trans. Graphics, vol.22, no.3, pp.896–897, July 2003.
[26] N. Galoppo, N.K. Govindaraju, M. Henson, and D. Manocha, “LU-

GPU: Efficient algorithms for solving dense linear systems on graph-
ics hardware,” Proc. Int’l Conf. High Performance Computing, Net-
working, Storage and Analysis (SC’05), (CD-ROM), Nov. 2005.

[27] F. Ino, S. Yoshida, and K. Hagihara, “RGBA packing for fast cone
beam reconstruction on the GPU,” Proc. SPIE Medical Imaging (MI
2009), (CD-ROM), Feb. 2009.

Yuma Munekawa received the B.E. de-
gree in information and computer sciences from
Osaka University, Osaka, Japan, in 2008. He
is currently working toward the M.E. degree at
the Department of Computer Science, Graduate
School of Information Science and Technology,
Osaka University. His current research interests
include high performance computing, grid com-
puting, and systems architecture and design.

Fumihiko Ino received the B.E., M.E., and
Ph.D. degrees in information and computer sci-
ences from Osaka University, Osaka, Japan, in
1998, 2000, and 2004, respectively. He is cur-
rently an Associate Professor in the Graduate
School of Information Science and Technology
at Osaka University. His research interests in-
clude parallel and distributed systems, software
development tools, and performance evaluation.

Kenichi Hagihara received the B.E., M.E.,
and Ph.D. degrees in information and computer
sciences from Osaka University, Osaka, Japan,
in 1974, 1976, and 1979, respectively. From
1994 to 2002, he was a Professor in the Depart-
ment of Informatics and Mathematical Science,
Graduate School of Engineering Science, Osaka
University. Since 2002, he has been a Professor
in the Department of Computer Science, Grad-
uate School of Information Science and Tech-
nology, Osaka University. From 1992 to 1993,

he was a Visiting Researcher at the University of Maryland. His research
interests include the fundamentals and practical application of parallel pro-
cessing.


