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Fixed-Width Group CSD Multiplier Design

Yong-Eun KIM†, Kyung-Ju CHO††a), Nonmembers, Jin-Gyun CHUNG†††, Member,
and Xinming HUANG††††, Nonmember

SUMMARY This paper presents an error compensation method for
fixed-width group canonic signed digit (GCSD) multipliers that receive
a W-bit input and generate a W-bit product. To efficiently compensate
for the truncation error, the encoded signals from the GCSD multiplier are
used for the generation of the error compensation bias. By Synopsys simu-
lations, it is shown that the proposed method leads to up to 84% reduction
in power consumption and up to 78% reduction in area compared with the
fixed-width modified Booth multipliers.
key words: fixed-width, GCSD multiplier, quantization error, digital arith-
metic

1. Introduction

In some DSP applications such as FFT and pulse-shaping
filters, multiplications are performed only with a few pre-
determined coefficients which are time-varying in period-
ical order. In these applications, multipliers should have
programmability. When a few coefficients share a multi-
plier, modified Booth encoding, which halves the number
of partial products, is generally used. To further reduce the
number of partial products, the group canonic signed digit
(GCSD) multiplier in [1] was recently proposed based on
the variation of canonic signed digit (CSD) encoding [2] and
partial product sharing algorithm. This multiplier provides
an efficient design when the multiplications are performed
only with a few predetermined coefficients (e.g., FFT).

In many multimedia and digital signal processing
(DSP) applications, it is desirable to maintain fixed-with
property through multiplication operations to avoid quick
growth in word size. For example, the (2W − 1)-bit product
obtained from two W-bit operands is quantized to W-bits
by eliminating the (W − 1)-least-significant bits (LSBs). In
practice, fixed-width multipliers can be designed based on
Baugh-Wooley, modified Booth and CSD algorithms. In
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typical fixed-width multipliers, the adder cells required for
the computation of the (W − 1)-LSBs are eliminated and er-
ror compensation biases are introduced to the retained adder
cells.

In order to reduce the truncation error, various er-
ror compensation methods for fixed-width multipliers have
been proposed [3]–[9]. Error compensation biases of these
methods can be classified into constant biases [3] and adap-
tive biases [4]–[9]. While a constant bias is generated inde-
pendent of the truncated partial product bits and is fixed for
a given input word size, an adaptive bias is determined de-
pending on each input. Thus, adaptive bias methods achieve
better computation accuracy than the constant bias method.

In this paper, we propose an error compensation
method for low-error fixed-width GCSD multiplier. To ef-
ficiently compensate for the truncation error with reduced
hardware complexity, the encoded signals from the GCSD
multiplier are used for the generation of error compensation
bias.

This paper is organized as follows. After a brief re-
view of the GCSD multiplier in Sect. 2, we propose an error
compensation bias design method for GCSD multipliers in
Sect 3. In Sect. 4, two application examples of the proposed
fixed-width multiplier design method are presented. Finally,
short statements conclude this paper.

2. GCSD Multiplier

Figure 1 shows the N-point radix-24 single-path de-
lay feedback (SDF) FFT architecture [10]. In the first
and the third multiplication blocks, three coefficients
{cos(π/8), cos(π/4), and sin(π/8)} are multiplied by an
complex input signal in periodical order as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
y0

y1

y2

y3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
cos(π/8) − j sin(π/8)
cos(π/4) − j sin(π/4)
sin(π/8) − j cos(π/8)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (xr + jxi). (1)

In general, the multiplications in (1) can be imple-
mented using a programmable multiplier such as the mod-
ified Booth multiplier. If the coefficient word-length is W,
the number of the partial products obtained by the modified
Booth algorithm is W/2.

To further reduce the number of partial products, the
following coefficient grouping algorithm can be used [1]:
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Fig. 1 Radix-24 SDF FFT architecture.

Table 1 CSD representation and grouping of coefficients.

Table 2 New representation of CSD coefficients using control signals.

1. If the number of given 2’s complement coefficients
is Nc with the word length of Nw bits, the coefficients
are arranged as an Nc × Nw table.

2. The coefficients in the table are converted to CSD en-
coded representations.

3. Starting from the first column, a group is defined such
that each row in a group contains at most one nonzero
digit. A group should contain as many columns as pos-
sible so that the number of groups is minimized.

By applying the grouping algorithm to the three coef-
ficients in (1) with Nw = 14, the CSD coefficient table with
5 groups is obtained as shown in Table 1. Each group Gi

generates a corresponding partial product Pi. Thus, the mul-
tiplication result (Y) is obtained as

Y = P4 + 2−2P3 + 2−4P2 + 2−6P1 + 2−8P0. (2)

In Table 1, the number of partial products required by
the grouping algorithm is only 5, while the modified Booth
encoding requires 7 (= Nw/2) partial products. Thus the
grouping algorithm reduces the number of partial products
by 2, which can lead to lower power consumption and higher
speed. Each group includes at least two columns by the
grouping algorithm since CSD coding does not allow any
consecutive nonzero digits. Thus, the number of partial

products generated by the grouping algorithm is always less
than or equal to that of the modified Booth encoding.

If the nonzero digit locations of two groups are the
same as in G4 and G1 in Table 1, the two groups can share
PP generation circuits. The sign difference in the first rows
of G4 and G1 can be taken care of later by additional comple-
menting circuits. For any row in a group that contains only
0’s, the corresponding PP is 0. In this case, the zero digits
in the row can be changed to nonzero digits to share the par-
tial product generation circuits, since the output value can
be easily changed back to 0 using a control signal. By the
partial product sharing algorithm in [1], a new representa-
tion of each group in Table 1 can be obtained using control
signals as shown in Table 2, where Si, Ni and Zi are shift,
negation, and zero control signals, respectively.

In conventional approach, the coefficient look-up table
(LUT) has 14 columns if the coefficient word-length is 14.
In GCSD multipliers, encoded values are stored instead of
binary coefficients. In [11], a look-up table (LUT) reduc-
tion method for modified Booth encoded coefficients was
proposed. By similar approach, the number of columns of
Table 2 can be reduced to 7. Thus, in this case, LUT size
is reduced by 50% compared with conventional approaches.
By Synopsys simulations, it is shown that the GCSD method
reduces the area, power consumption and propagation de-
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lay by 41%, 45% and 12%, respectively, compared with the
conventional modified Booth multiplier [1].

3. Fixed-Width GCSD Multiplier

For the coefficient Table 1 with Nw = 14, the correspond-
ing partial product array for the GCSD multiplier can be
obtained as shown in Fig. 2. The partial product array can
be divided into MP and LP as shown in Fig. 2, where MP
and LP mean more significant and less significant parts, re-
spectively. Then, if S MP and S LP represent the sums of
the elements in MP and LP, respectively, we can express
(2W − 1)-bit ideal product PI as

PI = S MP + S LP. (3)

In typical fixed-width multipliers, the adder cells re-
quired for S LP are omitted and appropriate biases are in-
troduced to the retained adder cells based on a probabilistic
estimation. Thus, the W-bit quantized product PQ can be
expressed as

PQ = S MP + σ × 2−(W−1), (4)

where σmeans the error compensation bias. Note that σ ap-
proximates the carry signals propagated from LP to MP.

To generate error compensation bias more efficiently,
the truncated bits in LP can be further divided into LPmajor

and LPminor depending on their effects on the truncation er-
ror. Then, S LP can be expressed as

S LP = S LPmajor + S LPminor. (5)

As an example, in Fig. 2, S LPmajor and S LPminor can be
expressed as

S LPmajor = p0,12+ p1,6+ p2,4+ p3,2+ p4,0,

S LPminor = 2−1(p0,11+ p1,5+ p2,3+ p3,1)

+2−2(p0,10+ p1,4+ p2,2+ p3,0+N3Z3)+ · · ·
+2−12(p0,0+N0), (6)

where pi, j means the jth partial product bit of partial prod-
uct Pi.

Theoretically, the most accurate error compensation
bias can be obtained by true rounding as

σtrue =

[
S LP

2

]
r

, (7)

Fig. 2 MP and LP in a partial product array of GCSD multiplier.

where [t]r denotes the rounding operation of t.
Let 2−Li be the weight of the LSB of the partial prod-

uct Pi. Also, let Mi be the required number of shift-left bit
positions for the partial product Pi. As an example, for G0

in Table 1, coefficient sin(π/8) has a nonzero digit at the last
column of G0. Thus M0 is defined to be 0 for sin(π/8) since
no shift operation is required in this case. On the other hand,
cos(π/8) has a nonzero digit at the second column of G0.
Thus for cos(π/8), M0 is defined to be 4 since shift-left by
4 bit positions are required in this case. Using Table 1,
Table 2 and Fig. 2, the possible values of LPminor(Pi) can
be obtained depending on the control signals as shown in
Fig. 3. If Ni=1, the input signals are negated as can be seen
in Fig. 3. When Zi = 0, partial product bits are changed to 0.

Assume that each bit xi of input X has the uniform
probability distribution. Then, the expected value of xi is

E[xi] = 1/2. (8)

Then, it can be shown that the expected value of
S LPminor(Pi) can be computed as

E[S LPminor(Pi)]

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, Zi = 0

2−1(1 − 2− f (Li−Mi)), Zi � 0, Ni = 0
2−1(1 + 2− f (Li−Mi)), Zi � 0, Ni � 0,

(9)

where

f (Li − Mi) =

{
Li − Mi, for Li > Mi

0, for Li ≤ Mi.
(10)

The error compensation bias of fixed-width modified
Booth multiplier in [8] is defined as follows:

σ[8] = CE[S LPmajor +CA{S LPminor}], (11)

where CE[t] and CA[t] represent the exact carry value and
the approximate carry value of t, respectively. In (11),
CA{S LPminor} is the approximate carry value (a carry)
propagated from LPminor to LPmajor. In [8], the expect value
of S LPminor(Pi) is identified as

E[S LPminor(Pi)][8] =

{
0, y′′i = 0,
2−1, y′′i = 1.

(12)

where y′′i corresponds to Zi signal in this paper. The approx-
imate carry signal in [8] is defined as the rounded value of
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Fig. 3 Possible values of (a) LPminor(P0), (b) LPminor(P1), (c) LPminor(P2), and (d) LPminor(P3)
depending on the control signals.

E[S LPminor]. For given Nw, the approximate carry value of
the fixed-width modified Booth multiplier is computed as

a carry[8] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢
Nw/2−2∑

i=0

y′′i
2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥ . (13)

Thus, (11) can be rewritten as

σ[8] =

⌊
S LPmajor + a carry

2

⌋
, (14)

where �t� defines the largest integer less than or equal to t.
Note that in [8], only control signal Zi (or, y′′i ) is used

for the calculation of E[S LPminor]. However, in this pa-
per, we can compute more accurately the expected values
of the truncated bits in LPminor of the GCSD multiplier
since Li, Ni, Mi and Zi signals are used for the computation
of E[S LPminor]. As an example, for P0 in Fig. 3, the control
signals {L0,M0,N0,Z0} are varied as {12, 4, 0, 1}, {12, 5, 0, 1}
and {12, 0, 1, 1}, depending on the selected coefficient from
{cos(π/8), cos(π/4), sin(π/8)}. By (9), E[S LPminor(P0)] can
be computed as 2−1(1−2−8), 2−1(1−2−7), and 2−1(1+2−12),
respectively.

Let the partial products included in LPminor be PK ,
PK−1, . . . , P0. Since the LSB of Pi always has a smaller
weight than that of Pi−1 under any coefficient conditions,
the following relation holds:

0 ≤ f (LK−MK) < f (LK−1−MK−1) < · · · < f (L0−M0).

(15)

Thus, using (15) and CSD property, the maximum value of
E[S LPminor] can be obtained as

max{E[S LPminor]}
= 2−1 ×max

{(
1 + 2− f (LK−MK )

)
+
(
1 + 2− f (LK−1−MK−1)

)
+ · · · +

(
1 + 2− f (L0−M0)

)}
= 2−1 × (K + 1 + 20 + 2−2 + 2−4 + · · · + 2−2K)

= 2−1 × (K + 2 + 2−2 + · · · + 2−2K). (16)

The carry signals generated from LPminor are determined by
the integer part of the terms inside the parenthesis in (16).
Thus, 2− f (LK−MK ) can have an effect on the carry signals gen-
erated from LPminor to LPmajor but

∑K−1
i=0 2− f (Li−Mi) has no

effect on the carry signals.
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In addition, for the partial product PK , when MK is
larger than or equal to LK , the partial product bits inside
the LPminor are filled with 0’s. Thus, when the partial prod-
uct PK is negated (i.e., NK = 1), a carry signal is propagated
to LPmajor.

Based on these observations, E[S LPminor] can be eas-
ily computed as

E[S LPminor] = 2−1 × {g(LK−MK)·2NK

+g(LK−MK)·ZK ·NK+ZK−1+· · ·+Z0},
(17)

where

g(LK − MK) =

{
1, for LK ≤ MK

0, for LK > MK ,
(18)

In this paper, the rounded value of E[S LPminor] is
defined as the approximate carry value propagated from
LPminor to LPmajor. As an example, from Fig. 3 (d), it can
be seen that L3 (= 2) is larger than M3 (= 0 or 1). Thus,
by (17), the approximate carry value is decided as

a carry =

⌈
1
2

(Z3 + Z2 + Z1 + Z0)

⌉
, (19)

where �t� defines the smallest integer greater than or equal
to t. In general, (19) can be implemented as shown in
Fig. 4 (a). However, since the number of nonzero Zi sig-
nals in Table 2 is either 3 or 4, the values of a carry signals
for the three coefficients are always 2. Thus, in this case,
no additional hardware is required for the generation of the
approximate carry signals as shown in Fig. 4 (b).

The proposed error compensation bias is computed
using S LPmajor and a carry. When the number of nonzero
Zi signals is odd, the effect of rounding error can be large
in the computation of a carry signal. To alleviate this prob-
lem, we propose an error compensation bias for fixed-width
GCSD multipliers as follows:

If NNZPP = odd, then

σprop =

⌊
S LPmajor + a carry

2

⌋
,

else

σprop =

⌈
S LPmajor + a carry

2

⌉
, (20)

Fig. 4 Approximate carry generation circuits.

where NNZPP is the number of nonzero Zi signals.
In GCSD multipliers, the number of the different coef-

ficients in a group is assumed to be small. Thus, the coef-
ficient selection signals (or, address) need only a few bits.
Using this property, the approximate carry signals can be
designed using the address bits. For example, if the word
length Nw of the coefficients in Table 1 is 12, the approxi-
mate carry value can be obtained as follows:

a carry =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2, for cos(π/8), a1a0 = 00,
2, for cos(π/4), a1a0 = 01,
1, for sin(π/8), a1a0 = 10,

(21)

where a1a0 means the address for the coefficients. Since
the maximum value of a carry is 2 in (21), a carry can be
represented as

a carry = 2a carry1 + a carry0. (22)

From (21), the following expression can be obtained using
Karnaugh map:

a carry1 = a1,

a carry0 = a1a0. (23)

In general, the implementation using address bits requires
smaller area compared with the implementation based on
coefficient control signals when the number of coefficients
is small.

4. Performance Comparisons

To evaluate the performance of the proposed fixed-width
GCSD multiplier, we compute the maximum absolute
error εmax, the average of absolute error εavg and the vari-
ance of error εvar for all the possible 2W input values of X as
follows

εabs = |PI − PQ|,
εmax = max(|εabs|),
εavg = 2−W

∑
εabs,

εvar = 2−W
∑

(ε − εavg)2. (24)

Table 3 shows the simulation results of the fixed-width
GCSD multiplier for the input word size W = 14. Let
Mtrue and Mpost denote the fixed-width multiplier by the true
rounding and post-truncation, respectively. For the compu-
tation of Mtrue and Mpost, all the possible bits are required
during the multiplication and the final product is obtained
by rounding or truncating the least significant (W − 1)-bits
from the exact (2W − 1)-bit result. Also, Table 4 compares
the Synopsys simulation results using MagnaChip 0.18-μm
CMOS technology. Notice that, compared with the fixed-
width modified Booth multiplier, the proposed GCSD fixed-
width multiplier can reduce about 10% average error. In
addition, the proposed multiplier leads to 29%, 36% and
9% reduction in area, power consumption and propagation
delay, respectively.



1502
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

As another example, the proposed algorithm is applied
to the following coefficients used in the pulse-shaping filter
design for CDMA [11]:

a1a0(00): 1111111010,

a1a0(01): 1111111000,

a1a0(10): 1111110111,

Table 3 Comparison of the error performances for FFT applications.

Table 4 Synopsys simulation results for FFT applications.

Fig. 5 Partial product array of the GCSD multiplier for pulse-shaping filters.

Table 5 Comparison of the error performances for pulse-shaping filters.

Table 6 Synopsys simulation results for pulse-shaping filters.

a1a0(11): 1111111100. (25)

Figure 5 shows the partial product array correspond-
ing to the GCSD multiplier. Table 5 compares the error
performances of several methods and Table 6 compares the
Synopsys simulation results. In this case, although the error
performances of the proposed method and the method in [8]
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are almost the same, the proposed multiplier leads to 78%,
84% and 53% reduction in area, power consumption and
propagation delay, respectively.

5. Conclusions

In this paper, an efficient error compensation method for
fixed-width GCSD multipliers is proposed. To compute
the error compensation bias more accurately, the encoded
signals from the GCSD multiplier are used for the bias
generation.

The simulation results show that the proposed method
leads to significant reduction in area, power consumption,
and delay time compared with the fixed-width modified
Booth multipliers.
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