
1512
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

PAPER

Incremental Digital Content Object Delivering in Distributed
Systems

Lung-Pin CHEN†a), Nonmember, I-Chen WU††, Member, William CHU†,
Jhen-You HONG†, and Meng-Yuan HO†, Nonmembers

SUMMARY Deploying and managing content objects efficiently is
critical for building a scalable and transparent content delivery system. This
paper investigates the advanced incremental deploying problem of which
the objects are delivered in a successive manner. Recently, the researchers
show that the minimum-cost content deployment can be obtained by reduc-
ing the problem to the well-known network flow problem. In this paper, the
maximum flow algorithm for a single graph is extended to the incremental
growing graph. Based on this extension, an efficient incremental content
deployment algorithm is developed in this work.
key words: content delivery network, incremental algorithm, maximum
flow

1. Introduction

In a content delivery system, a service provider is a host
responsible for distributing content objects to the client ma-
chines. Intrinsically, an object can be delivered via a di-
rect network transmission. However, with such a naive ap-
proach, an object has to be entirely retransmitted even if
only a small change has been made.

In many Internet applications, it is useful to enhance
the performance of content delivery by involving client-side
computations. For example, transcoding operation [1], [2]
is a client-side computation to construct an object based on
its predecessors. The total cost of deploying a set of con-
tent objects can be reduced by taking the trade-off between
direct transmission and client-side transcoding. In [1], the
content delivering problem is modeled as a combinatorial
optimization problem which can be transformed to the well-
known network flow problem [3]–[8]. Based on this trams
formation, the optimal content deployment strategy can be
efficiently obtained by using the existing network flow algo-
rithms [1], [9], [10].

Due to the diversity of Internet applications, it would
be desirable to provide an efficient way of incrementally de-
ploying the content objects between clients and servers over
networks. For example, in an e-learning system, usually
a user accesses the course content in an incremental man-

Manuscript received October 22, 2009.
Manuscript revised February 25, 2010.
†The authors are with the Department of Computer Science

and Information Engineering, Tunghai University, Tai-Chung,
Taiwan.
††The author is with the Department of Computer Science and

Information Engineering, National Chiao-Tung University, Hsin-
Chu, Taiwan.

a) E-mail: lbchen.con@gmail.com
DOI: 10.1587/transinf.E93.D.1512

ner, according to the learning progress, instead of access-
ing the entire course content at one shot. In this paper, we
study the incremental content object deployment problem.
We first introduce the notion of incremental flow networks,
which is a sequence of incrementally growing flow networks
(N1,N2, · · · ,Nk). Then, we show that an incremental content
object deployment problem can be efficiently solved by us-
ing our new incremental maximum flow algorithm.

The rest of this paper is organized as follows. In Sect. 2,
we define the basic and incremental content delivery prob-
lems. Section 3 discusses the maximum flow algorithms.
Section 4 discusses our incremental content deployment al-
gorithms. Finally, experimental results and conclusions are
discussed in Sect. 5 and 6.

2. Problem Definition

2.1 Basic Content Deployment Problem

A service provider (also referred to as a server) is a network
host that maintains the content database and handles the re-
quests issued by the clients (i.e. users) over Internet. We
assume that the content database is built by a digital content
manager and is given ahead of processing time. Also, it is
assumed that some directory service is provided to facilitate
clients to explore and contact the service provider.

The content database is modeled as an ODG (object
dependency graph) G = (U, F, I, J, net, comp), where each
a ∈ U refers to a content object (or, simply, object) and each
link (a, b) ∈ F refers to the dependency relation from object
a to b [1]. We assume that the dependency relation induced
by F is acyclic. In the ODG G, I is the set of initial objects
which have no predecessor in the graph. Also, J is the set
of objects which are designated as the target objects to be
delivered to the client host. Note that I ⊂ U and J ⊂ U.

For each object a in G, there are two costs associated
with it: the cost of transmitting object a from the server to
the client, denoted by net(a), and the cost of transcoding
object a from all of its predecessors, denoted by comp(a).

Content Deployment

Upon receiving a request for accessing target objects J, the
server calculates a strategy called content deployment for
deploying the target objects. Let UN and UC refer to the sets
of objects that are deployed via network transmission and

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

CHEN et al.: INCREMENTAL DIGITAL CONTENT OBJECT DELIVERING IN DISTRIBUTED SYSTEMS
1513

client-side computation, respectively. Also, let UO refer to
the objects that are not deployed. A content deployment is
a partition (UO,UN ,UC) on ODG G = (U, F, I, J, net, comp)
that satisfies the following properties:

• All the target objects must be deployed, i.e. J ⊆ {UN ∪
UC}.
• If an object is deployed via a client-side computation,

then all of its predecessors must be also deployed to the
client. That is, for all b ∈ U and (a, b) ∈ F, b ∈ UC ⇒
a ∈ {UN ∪ UC}.

The cost of content deployment D = (UO,UN ,UC) is de-
fined as cost(D) =

∑
v∈UN

net(v)+
∑

v∈UC
comp(v). The min-

imum content deployment of G, referred to by MinD(G), is
the one with the minimum cost among all the feasible con-
tent deployments.

The notion of ODG provides a generic framework for
interpreting various Internet applications. Consider the ex-
ample demonstrated in Fig. 1 regarding to an e-book of pro-
gramming language. The server owns the original copies of
content objects of the e-book, all are stored in XML format.
According to the ODG problem model, a target object, say
X, can be delivered from the server to a client via directly
transmission. The cost net(X) refers to the transmission cost
of object X. According to the problem model, the target
X can also be delivered via client-side computation. If this
strategy is adopted, the server delivers the predecessor doc-
uments of X (in XML format) and the XML transformation
script of X. Then, the client computes document X by ex-
ecuting the XML transformation script. The cost comp(X)
refers to the time required to perform the XML transforma-
tion script for generating object X.

In the example demonstrated in Fig. 1, the e-book con-
tains three computer language topics, data type, flow con-
trol, and function, each with three types of objects, Content,
Display, and Quiz. A Content object represents the knowl-
edge of a topic which essentially can not be derived from
other objects. Thus, their comp costs are set to∞, as shown

Fig. 1 An object dependency graph of an e-book of programming lan-
guage.

in the figure. Moreover, their net costs should be set propor-
tional to the object size as well as the network bandwidth to
reflect the transmission costs.

In Fig. 1, a Quiz object represents the learning assess-
ment document, and a Display object represents the Con-
tent object in HTML-format to be rendered in client-side
Web browsers. In ODG, a link from node X to Y means that
a portion of Y can be derived from X. For example, the link
from Display1 to Display3 in Fig. 1 indicates that some parts
in lesson data type can be reused in lesson function (e.g. is-
sues about parameter passing). Consider the scenario that
a user is intended to access Display3 object (topic function
in the e-book) via his/her Web browser. According to the
structure of ODG, Display3 objects can be directly deliv-
ered or can be computed from the predecessor objects, Con-
tent3, Quiz3, and Display1 objects. In the first strategy is
adopted, Display3 object in HTML format is delivered. On
the other hand, if the second strategy is adopted, the XML
transformation script for Display3 object as well as the pre-
decessor’s documents must be made available to the client.

2.2 Incremental Content Deployment Problem

In many Internet applications, one may query the content
object database in an incremental order, instead of access
randomly. For example, in the above-mentioned e-book ap-
plication, the user usually accesses the topics in the order
of data type, flow control, function. A sequence of requests
with such properties is called incremental and is formally
defined in this subsection.

For an ODG G, if there is a path from object a to object
b in G, denote it by a ≺ b. (Note that a ≺ b implies that
b ⊀ a since the graph G is acyclic.) Let A ⊆ U be a set
of objects. The set of all objects with paths to (or from) at
least one member in A are called the upstream objects of A
and referred to by P(A) (or the downstream objects of A,
referred to by S(A)). For two object sets A and B, A ≺ B if
and only if every object in A is the upstream of some object
in B, that is, P(A) ⊂ P(B) and S(B) ⊂ S(A). An illustration
is shown Fig. 2.

A sequence of ODGs (G1,G2, · · · ,Gk), Gi =

(U, F, I, Ji, net, comp), is incremental if these graphs are all
the same except that the target sets are evolved in an suc-
cessive manner. Formally, (G1,G2, · · · ,Gk) is incremental
if I ≺ J1 ≺ J2 ≺ · · · ≺ Jk. Furthermore, we assume that
the target object sets are strictly incremental, that is, direct
edge between P(Ji) and S(Ji) is not allowed. The minimum

Fig. 2 Illustration of target object sets Ji and Ji+1 with strictly incremen-
tal property Ji ≺ Ji+1.

1514
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

incremental content deployment problem is to find the min-
imum content deployment for each member graph Gi in an
incremental ODG (G1,G2, · · · ,Gk).

3. Incremental Maximum Flow Algorithms

This section briefly reviews the maximum flow algo-
rithm [4] and explains its relationship to the incremental
maximum flow algorithm. Readers may reference [4] for
the minor details of the preflow algorithms.

3.1 Flow Network

A flow network N = (V, E, S ,T, cap) is a five tuple in which
(V, E) is a directed graph where each edge (u, v) ∈ E is asso-
ciated with the non-negative capacity cap(u, v). In the flow
network, S ⊂ V are designated as source vertices and T ⊂ V
are designated as sink vertices. A source (or sink) vertex
only has outgoing (or incoming) edges.

A flow f of N is a function from edges to non-negative
values which represents the units of flow been sent from the
sources to the sinks without exceeding the edge capacities.
Formally, f is a flow on N if and only if the following prop-
erties are satisfied†:

1. (Capacity constraint) f (u, v) ≤ cap(u, v), and
2. (Flow conservation) IN(u) = OUT (u) for each vertex

u ∈ V \ {S ,T },
where IN(u) =

∑
v,(v,u)∈E f (v, u) and OUT (u) =∑

v,(u,v)∈E f (u, v).
A cut of flow network N is a partition (X,Y) on the ver-

tices of N such that all the source nodes are in X-part and
all the sink nodes are in Y-part. The cost of cut C = (X,Y)
is defined as cost(C) =

∑
∀(u,v),u∈X,v∈Y cap(u, v). Note that

the only the edges from X to Y contribute their capacities to
the cut cost (while those reversed edges from Y to X are ex-
cluded). The minimum cut of N, referred to by MinCut(N),
is the one with the minimum cost among all cuts of N. Ford
and Fulkerson prove the following max-flow-min-cut theo-
rem [3].

Theorem 3.1: Given a flow network, its maximum flow
value and minimum cut cost are equal.

3.2 Generic Preflow Algorithm

A preflow f on a flow network is a flow except that the total
flow into a non-source non-sink vertex u can exceed that out
of u. Namely, for all u ∈ V \ {S ∪T }, IN(u) ≥ OUT (u). The
difference between the total flow into and out of u is called
the excess flow and denoted by ex(u) = IN(u) − OUT (u). A
non-source non-sink vertex u is called active if ex(u) > 0.
Also, an edge (u, v) with f (u, v) < cap(u, v) is called a resid-
ual edge. Clearly, there is still at most cap(u, v) − f (u, v)
units of flow can be sent via edge (u, v) without violat-
ing the capacity constraint. For the preflow f defined on

a network N = (V, E, S ,T, cap), the graph induced by the
residual edges is called a residual network and is defined as
R(N, f) = (V, E f , S ,T, r f) where r f (u, v) = cap(u, v)− f (u, v)
and E f = {(u, v) | r f (u, v) > 0, (u, v) ∈ E}.

A path in the residual graph is called a residual path.
Ford and Fulkerson [3] proved Theorem 3.2.

Theorem 3.2 ([3]): A preflow f is a maximum flow of net-
work N if and only if there is no residual path from sources
to sinks on N.

In order to maintain the preflow efficiently, a labeling
function d is used to estimate how close the vertices are to
the sinks. For a network N = (V, E, S ,T, cap), a valid label-
ing function d is a V → Z function, such that d(v) ≤ d(w)+1
for each residual edge (v,w). Also, d(s) = n for each source
s ∈ S , d(t) = 0 for each sink t ∈ T .

Hereinafter, let n and m denote the number of vertices
and edges of N, respectively. The generic preflow algo-
rithm [4] is a class of maximum flow algorithms that main-
tain a preflow and work by repeatedly choosing active ver-
tices and sending excess flows along residual paths towards
sinks. Until no residual path can be found in the flow net-
work, based on Theorem 3.2, the preflow becomes a max-
imum flow. The generic preflow algorithm is described in
Algorithm 1.

Multiple-Sink Flow Network

In order to develop our new incremental algorithms, flow
network with multiple sinks is needed. Suppose that N =
(V, E, S ,T = {t1, t2, · · · , tk}, cap), k ≥ 1, is a single-source
multi-sink flow network to be solved. In [5], it has been
shown that N can be transformed to a single-sink network

Algorithm 1 Generic Preflow
(N = (V, E, S ,T, cap))

1. (Init) Clear all the flow values and labels to 0. For all s ∈ S , send
cap(s, u) units of flow from s to u for all (s, u) ∈ E. Set d(s) = n and
d(v) = 0 for all sources s and non-sources v.

2. Repeatedly perform the following operations until no active vertex
exists:

• Select an active vertex u among the non-source non-sink ver-
tices in N.

• (PushRelabel) Choose and apply one of the following appli-
cable operation on u:

a. Push(v,w)
Applicable: If vertex v is active, (v,w) is a residual edge,
and d(v) = d(w) + 1.
Action: Send min(ex(v), cap(v,w)− f (v,w)) units of flow
from v to w.

b. Relabel(v)
Applicable: If v is active and for every residual edge
(v,w), the condition d(v) ≤ d(w) holds.
Action: Increase d(v) by letting d(v) = 1 +
min{d(w) | (v,w) is a residual edge}.

†For simplicity, this paper does not mention the skew symmetry
condition which is employed in many related articles.

CHEN et al.: INCREMENTAL DIGITAL CONTENT OBJECT DELIVERING IN DISTRIBUTED SYSTEMS
1515

by adding a super sink t̂ and ∞-capacity edges to connect
each of t1, t2, · · · , tk to t̂.

In the above transformation, all the flow in original
sinks t1, t2, · · · , tk can be sent to the super sink t̂ via the ∞-
capacity edge. Conversely, the flow entering the super sink
t̂ must be emitted from the original sinks. Thus, clearly,∑

(v,t̂)∈E f (v, t̂) =
∑

(v,t)∈E, t∈{t1,t2,···,tk} f (v, t) for any flow f on
the network. Thus, the total flow enters the sinks t1, t2, · · · , tk
is the same as that enters t̂. In this paper, we do not in-
cur the extra super sink, instead, we simply manipulate
t1, t2, · · · , tk as sink node in a way the same as that in the
original Goldberg-Tarjan’s preflow algorithm [4].

3.3 Abstraction of Generic Preflow Algorithm

In this subsection, we provide a high-level abstraction for
the flow network algorithms. The abstraction is helpful on
developing the incremental algorithms.

In the generic preflow algorithm, after performing
a push/relabel operation, the state of the data structures
changes, as defined as follows.

Definition 3.1: A state q with respect to a flow
network N is a three tuple q = (N, f , d), where f
is a preflow and d is a labeling function.

An execution of generic preflow algorithm can be rep-
resented as an operation-state sequence

I = (q0, (op1, q1), (op2, q2), · · · , (opL, qL)) (1)

where qi is the state immediately after applying i-th op-
eration opi, and L is the total number of operations per-
formed. The first q0 and last qL refer to the state be-
fore and after executing all the L operations. Hereinafter,
such sequence I is called a preflow instance (or simply
instance) of generic preflow algorithm. A segment in a
preflow instance is called a sub-instance. An instance
I = (q0, (op1, q1), (op2, q2), · · · , (opL, qL)) is called a pre-
fix of another instance I′ = (q′0, (op′1, q′1), (op′2, q′2), · · · ,
(op′xL′ , q′L′)) if L ≤ L′, and op j = op′ j for all j, 0 ≤ j ≤ L.

The generic preflow algorithm provides us with a very
useful guideline: the push/relabel operations can be selected
and executed in the arbitrary order without violating the ap-
plicable conditions. Lemma 3.1 summarizes this properties.

Lemma 3.1: For a flow network N, performing Init func-
tion on N leads to a valid state q for N. For any active vertex
in q, there must be one applicable push/relabel operation by
executing which another valid state can be obtained and in
turn the next active vertex can be selected and manipulated.
For generic preflow algorithms, any preflow instance select-
ing active vertices in the order without violating the appli-
cable conditions is capable of finding the maximum flow.

Proof. This lemma holds based on [4].

3.4 Incremental Maximum Flow Algorithm

A sequence of flow networks (N1,N2, · · · ,Nk) is incremen-
tal if Ni and Ni+1 are the same except that some sink nodes
in Ni turn to non-sink in Ni+1. Formally, assume that Ni =

(V, E, S ,Ti, cap), then, (N1,N2, · · · ,Nk) is a sequence of in-
cremental flow networks if and only if Ti+1 ⊆ Ti for each i,
1 ≤ i < k. The incremental maximum flow problem is to find
the maximum flow for each network N1,N2, · · · ,Nk.

Hereinafter, let \ be the set minus operator. For two
sets S and S ′, define that S \ S ′ = {a | a ∈ S and a �
S ′}. The preflow algorithm selects the active vertices from
non-source non-sink nodes in the flow network. For Ni =

(V, E, {s},Ti, cap), these nodes are called the active area and
denoted by Ai = V \ {s ∪ Ti}. Since Ni = Ni+1 but Ti+1 ⊆ Ti,
we can derive that

Ai+1 = V \ {s ∪ Ti+1}
= V \ {s ∪ Ti ∪W} (2)

= Ai ∪W

where W = Ti \ Ti+1 refers to the nodes that are sinks in Ni

but turn to non-sinks in Ni+1.
To illustrate the state transition of the vertices in active

areas, let us inspect the active area A2 of network N2 shown
in Fig. 3 (b)(c). The set A2 is partitioned as A2 = A′2 ∪ A′′2 ,
where A′2 = A1 and A′′2 = A2 \ A1. Since A1 ⊆ A2, the parti-
tion A′2∪A′′2 is mutually exclusive. When selecting the active
vertices, those vertices in A′2 are preferentially considered
(see sub-figure (b)). The set A′′2 is considered only when no
active vertices is presented in A′2 (see sub-figure (c)). Intu-
itively, since A′2 = A1, this strategy allows the computations

Fig. 3 Illustration of preflow instances of networks: (a) N1, (b) first stage
for N2, and (c) second stage for N2.

1516
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

in stage 1 (for N1) to be reused in stage 2.
Lemma 3.2 proves that in the incremental maximum

flow problem, the computations in stage i can be fully reused
in the next stage i + 1.

Lemma 3.2: Assume that (N1,N2, · · · ,Nk) is a sequence of
single-source multi-sink flow networks. For each pair of
consecutive Ni and Ni+1, 1 ≤ i < k, there is an preflow
instance I for Ni and instance I′ for Ni+1 such that I is a
prefix of I′.
Proof. Let Ni = (V, E, {s},Ti, cap) and Ni+1 =

(V, E, {s},Ti+1, cap). Assume that I = (q0, (op1, q1),
(op2, q2), · · · , (opL, qL)) is a preflow instance that finds the
maximum flow on Ni. Based on I, we can construct the
following sub-instance

I′ = (q′0, (op1, q′1), (op2, q′2), · · · , (opL, q′L))

for Ni+1, where for each j, operation op j is the same as that
in I, and state q′ j = (Ni+1, f , d) is the same as q j = (Ni, f , d)
in I but change Ni to Ni+1.

According to Eq. (2), Ni+1 has larger active area than
Ni, i.e. Ai+1 = Ai ∪W. Partition Ai+1 into Ai+1 = A′i+1 ∪ A′′i+1,
where A′i+1 = Ai and A′′i+1 = W. The partition is mutually
exclusive because Ai ⊂ Ai+1. Since Ni+1 and Ni have exactly
the same graph structure and edge costs, the fact that I is a
preflow instance (for Ni) manipulating active vertices in Ai

implies that I′ is a valid preflow sub-instance manipulating
the vertices in A′i+1 = Ai for Ni+1.

From Lemma 3.1, executing the sub-instance I′ leads
to a valid state q′L on Ni+1. Starting from state q′L, we can
apply push/relabel operations, until no active vertices can be
found. Let

I′′ = (q′L, (opL+1, q′L+1), (opL+2, q′L+2),

· · · , (opM , q′M))

be the sequence of operations applied after q′L. The conca-
tenance of I′ and I′′ forms a preflow instance for network
Ni+1. Also, I is a prefix of the concatenated sequence be-
cause I′ and I have the same operation sequence. Thus the

Algorithm 2 Incremental Preflow
(N1,N2, · · · ,Nk)
1: Let Ni = (V, E, {s}, Ti, cap). If N1,N2, · · · ,Nk are not incremental flow

networks, return an error.
2: for stage i = 1 to k do
3: if i = 1 then
4: Let state q0

1 = {N1, f , d} be the state right after invoking function
Init() on N1 (given in Algorithm 1).

5: else
6: Let q0

i = q(last)
i−1 but change Ni−1 to Ni

7: end if
8: Invoke function PushRelabel() on state q0

i (given in Algorithm 1).

9: Let q(last)
i = {Ni, f , d} be the final state after invoking PushRela-

bel().
10: end for
11: return the maximum flow values of final states q(last)

i of all stages
i = 1, 2, · · · , k.

lemma follows.
Based on Lemma 3.2, the operation sequence of stage

i can be a prefix of that of next stage i+ 1. This confirms the
correctness of Algorithm 2, in which (line 6) the initial state
of stage i + 1 is directly cloned from the final state of stage
i. With this incremental approach, the total time to solve
the k problems over N1,N2, · · · ,Nk is the same as that to
solve the last problem over Nk. As shown in [4], the generic
preflow runs in O(n2m) time, where n and m are the number
of vertices and edges, respectively.

4. Content Deployment Algorithms

4.1 Basic Content Deployment Algorithm

The basic content deployment problem is to find an opti-
mal way to delivery a set of target objects. When deploy-
ing, some objects are useless and can be disregarded to
speedup the calculation. For example, observing the ODG
in Fig. 4, if J = {4, 5} is the target then each object in
{6, 7, 8} is neither itself a target object nor an upstream of
any target object. Clearly, such objects can be disregarded
when deploying the target objects. Formally, in an ODG
G = (U, F, I, J, net, comp), the target objects as well as their
upstream objects (i.e.P(J)∪J) are called useful objects, and
those downstream objects of J (i.e. S(J)) are called useless
objects.

A basic content object deployment problem can be
solved by reducing it to the flow network problem. The
reduction is described in Algorithm 3 and explained below.
Note that the reduction is simplified from that in [1] but with
some extension for the incremental properties.

An illustration of the reduction is shown in Fig. 4. Let

Fig. 4 (a) An object dependency graph G. (b) The reduced flow network
N. Note that the useless objects in G are not transformed in N.

CHEN et al.: INCREMENTAL DIGITAL CONTENT OBJECT DELIVERING IN DISTRIBUTED SYSTEMS
1517

Algorithm 3 Basic Content Deployment(G = (U, F, I, J,
net, comp))

1. (Reduction) Perform the following vertex-to-edge transformation
from ODG G = (U, F, I, J, net, comp) to flow network N =

(V, E, S ,T, cap):

a. For each object a in G, add two nodes abegin and aend ,
and two edges (abegin, aend) and (aend , abegin) to N. Let
cap(abegin, aend) = net(a) and cap(aend , abegin) = ∞.

b. For each precedence relation (a, b) in G, add an (aend , bbegin)
in N and let cap(aend , bbegin) = ∞.

c. Add a source node s to N. For each object a, add edge
(s, abegin) to N. Let cap(s, abegin) = comp(a).

d. Set the set of sink nodes T = {aend | a ∈ J} ∪ {abegin, aend | a ∈
S(J)}.

2. After the flow network N is constructed, find the minimum cut C =
(X, Y) of N by using the existing maximum flow algorithms.

3. (Mapping) Construct the minimum deployment D = (UO,UN ,UC)
based on the following mapping:

• Object a ∈ UO ⇔ (abegin ∈ X and aend ∈ X in N)
• Object a ∈ UN ⇔ (abegin ∈ X and aend ∈ Y in N)
• Object a ∈ UC ⇔ (abegin ∈ Y and aend ∈ Y in N)

4. returnD

G = (U, F, I, J, net, comp) be an ODG and let N be the flow
network reduced from G by invoking Algorithm 3. Here-
inafter, a cut in N without cutting any∞-cost edges is called
a feasible cut. Clearly, a minimum cut must be feasible.

For each pair of nodes (abegin, aend) in N, there are only
three cases the nodes are partitioned by a feasible cut C =
(X,Y), as described follows:

M1 (abegin ∈ X and aend ∈ X): For this case, a ∈ UO and no
cost is contributed to the cut cost.

M2 (abegin ∈ X and aend ∈ Y): For this case, a ∈ UN and the
value cap(abegin, aend) = net(a) is contributed to the cut
cost.

M3 (abegin ∈ Y and aend ∈ Y): For this case, a ∈ UC and the
value cap(s, abegin) = comp(a) is contributed to the cut
cost.

Note that the case (abegin ∈ Y and aend ∈ X) can not happen
since if so the reverse edge (aend, abegin), with capacity ∞,
will be cut, which contradicts to that C is feasible.

An example of rules M1-M3 is illustrated in Fig. 4. In
sub-figure (a), objects 2, 3, 5 are in UN , based on rule M2,
their corresponding edges (2b, 2e), (3b, 3e), (5b, 5e) are cut by
C in figure (b). Thus, cost net(2) + net(3) + net(5) is added
to the cut cost. Also, objects 4 are in UC , based on rule M3,
the corresponding nodes 4b, 4e are located in the right-hand-
side of cut C. Thus, cost comp(4) is added to the cut cost.
The useless objects {6, 7, 8} are disregarded.

Lemma 4.1: Let G be an ODG without useless objects,
and let N be the reduced flow network of G. Then,
cost(MinC(N)) = cost(MinD(G)).

Proof. The condition holds based on the mapping rules M1-
M3 [1]. The details of proof are ignored in this paper.

4.2 Incremental Content Deployment Algorithm

Now we are ready to discuss our incremental content de-
ployment algorithm, which is simply a composition of the
non-incremental algorithm. The incremental algorithm is
described as follows:

1. Reduce the incremental ODGs (G1,G2, · · · ,Gk) to the
incremental flow networks (N1,N2, · · · ,Nk). Note that
Gi may have useless objects.

2. Find the minimum cut Ci of Ni, i = 1, 2, · · · , k, by in-
voking Algorithm 2. Then, construct deployment Di

from Ci based on mapping rules M1-M3.
3. (PostProcessing) For each stage i = 1, 2, · · · , k, after

performing Step 2, every useless object is assigned to
the set UC inDi (according to rule M3). However, use-
less objects are supposed to be non-deployed. In order
to obtain a correct solution, directly moving the useless
objects from UC to UO inDi.

4. return (D1,D2, · · · ,Dk).

Different with the previous non-incremental algorithm
which simply disregards useless objects (see Lemma 4.1),
the useless objects are invloved in the above incremental al-
gorithm.

When reducing ODG Gi to the flow network Ni, each
object a in Gi is transformed to two vertices {abegin, aend} in
Ni. For an object set B in Gi, let V̂begin(B) = {abegin | a ∈ B}
and V̂end(B) = {aend | a ∈ B} be the vertices in Ni transformed
from objects in B. Also, let V̂(B) = V̂begin(B) ∪ V̂end(B).
Recall that in the ODG Gi, P(Ji) ∪ Ji refers to the useful
objects while S(Ji) refers to the useless objects. Mapping to
the flow network Ni = (V, E, {s},Ti, cap), V = {s} ∪ Ai ∪ Ti

where s is the source node, and

Ai = V̂(P(Ji)) ∪ V̂begin(Ji) (3)

Ti = V̂end(Ji) ∪ V̂(S(Ji))

Figure 5 gives an intuitive illustration. In the figure, the tar-
gets for ODGs G2 and G3, are J2 = {4, 5} and J3 = {6, 7}.
Also, useless objects are S(J2) = {6, 7, 8} and S(J3) =
{8}. Note that useless objects {6, 7} in G2 turn to useful
in G3. Mapping to the flow networks, T2 = {4e, 5e} ∪
{6b, 6e, 7b, 7e, 8b, 8e} and T3 = {6e, 7e} ∪ {8b, 8e}. This im-
plies that sinks {4e, 5e, 6b, 7b} in N2 turns to non-sink in N3

and confirms that N2 and N3 are incremental.
Lemma 4.2 proves the above property formally.

Lemma 4.2: Consider a sequence of incremental ODGs
(G1,G2, · · · ,Gk). Let Ni be the reduced flow network of Gi.
Then, (N1,N2, · · · ,Nk) is a set of incremental flow networks.

Proof. Consider two consecutive ODGs Gi =

(U, F, I, Ji, net, comp) and Gi+1 = (U, F, I, Ji+1, net, comp).
Since Gi and Gi+1 are strictly incremental, the condition
Ji ≺ Ji+1 holds and implies that S(Ji+1) ⊂ S(Ji) and
P(Ji) ⊂ P(Ji+1). This further implies that {Ji+1 ∪ S(Ji+1)} ⊂

1518
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

Fig. 5 Incremental flow networks N1,N2,N3 that are reduced from ODG
in Fig. 4 (a) with target object J1 = {2, 3}, J2 = {4, 5}, and J3 = {6, 7}. For
each Ni, its sink nodes is Ti = {abegin | a ∈ Ji} ∪ {abegin, aend | a ∈ S(Ji)}.

{Ji ∪S(Ji)} (see Fig. 2 and Fig. 5). Therefore, the incremen-
tal property of (N1,N2, · · · ,Nk) can be established based on
Eq. (3):

⇒ {Ji+1 ∪ S(Ji+1)} ⊂ {Ji ∪ S(Ji)}
⇒ {V̂end(Ji+1) ∪ V̂(S(Ji+1))}

⊂ {V̂end(Ji) ∪ V̂(S(Ji))}
⇒ Ti+1 ⊂ Ti

(4)

Next, Lemma 4.3 shows the correctness of above incre-
mental algorithm.

Lemma 4.3: Consider a sequence of strictly incremental
ODGs (G1,G2, · · · ,Gk), where Gi = (U, F, I, Ji, net, comp).
Let Ni be the reduced flow network of Gi. Algorithm 3 finds
the minimum deployment of Gi with the following property:

• cost(MinC(Ni)) = cost(MinD(Gi)) + hi, where hi =∑
a∈S(Ji) comp(a), i = 1, 2, · · · , k.

Proof. Assume that Gi = (U, F, I, Ji, comp, net) and Ni =

(V, E, {s},Ti, cap). Let G′i be the ODG the same as Gi but
excluding the useless objects, and let N′i be the reduced flow
network of G′i . Analogously, N′i is the same as Ni but ex-
cluding the vertices corresponding to the useless objects and
their incident edges. Based on Lemma 4.1, the following
condition holds

cost(MinC(N′i)) = cost(MinD(G′i)) (5)

The main task of this proof is to examine the effect of in-
volving useless objects in G′i and N′i .

An edge in Ni is called a trivial edge if it directly con-
nects the source and a sink in the network. Clearly, the fol-
lowing property holds for this kind of edges:

P1 Every cut of Ni must cut all the trivial edges. Conse-
quently, the minimum cut value of Ni is equal to the
minimum cut value of N′ plus value h, where N′ is a
flow network the same as Ni but excluding the trivial
edges, and h is the sum of costs of trivial edges.

In Algorithm 3, for each useless object a ∈ S(Ji) in Gi, there
are two nodes {abegin, aend} and a trivial edge (s, abegin) in Ni.
Note that {abegin, aend} ⊆ V̂(S(Ji)) ⊆ Ti. Since the ODG Gi

is strictly incremental, there is no link from object in P(Ji)
to object in S(Ji) in the ODG. Mapping to Ni, there is no
edge connect V̂(P(Ji)) and V̂(S(Ji)). Therefore, in Ni, the
edges connect to V̂(S(Ji)) must be start from source s (those
edges between sink nodes are disregarded), as listed in Step
1c in Algorithm 3. The following property summarizes the
above properties:

P2 For each useless object a ∈ S(Ji) in Gi, there is a trivial
edge (s, abegin) with cost cap(s, abegin) = comp(a) in Ni.
Conversely, each trivial edge (s, abegin) in Ni implies
that a is an useless object in Gi. The total cost of trivial
edges is equal to

∑
a∈S(J) comp(a).

For example, in Fig. 5, if the target J2 = {4, 5} and use-
less objects are S(J2) = {6, 7, 8}, the corresponding nodes
V̂(S(J2)) is {6b, 6e, 7b, 7e, 8b, 8e}, and the trivial edges are
(s, 6b), (s, 7b), (s, 8b).

According to Property P1 and P2, we can derive that
the minimum-cut cost of Ni is equal to the minimum-
cut cost of N′i plus the total cost of trivial edges in Ni.
Thus, cost(MinC(Ni)) = cost(MinC(N′i)) + h, where h =∑

a∈S(J) comp(a). Combined with Eq. (5), this yields the
property cost(MinC(Ni)) = cost(MinD(G′i)) + h.

5. Experimental Results

In this section we discuss the experimental results of ap-
plying our incremental technique to the flow network prob-
lems. Our experiments aim to examine the correctness and
performance of the incremental techniques for various types
of graphs. In the experimentation, the sets of weighted di-
rected acyclic graphs, each with 10000 nodes, are generated
randomly, based on following rules. Each node in a graph
is numbered with an unique id. The initial node is num-
ber with 0. The edges are added to the graph iteratively.
When adding a new edge (u, v), the start node u is chosen
randomly from those nodes reachable form the initial node,
and the end node v is chosen from those nodes with id larger
than u’s id. By employing this rule we obtain acyclic and
connected graphs.

In an ODG, an object a with net(a) ≤ comp(a) is
called a predetermined object. Clearly, predetermined ob-
jects must be deployed via directly network transmission re-
gardless of the status of other objects. Let α be the ratio
of the number of predetermined objects to the total number
of objects in ODGs. We examine how α value affects the
performance of the incremental algorithm. In the experi-
mentation, three α values (25%, 50%, and 75%) are tested.
Figure 6 plots the experimental results in terms of the incre-
mental technique and the ratio of predetermined objects in
the ODG. In the figure, the Y axis represents the execution
time of the program, while the X axis represents the stage
number of the incremental algorithm. Each measured value

CHEN et al.: INCREMENTAL DIGITAL CONTENT OBJECT DELIVERING IN DISTRIBUTED SYSTEMS
1519

Fig. 6 Experimental results for α = 25%, α = 50%, and α = 75%, where
α is the ratio of the number of predetermined objects to the total number of
objects in ODG. For each α value, a pair of curves for the results with and
without the incremental technique are plotted and marked with ‘inc’ and
‘non-inc’, respectively.

on Y axis is obtained by taking an average on 100 execu-
tion results. As shown in Fig. 6, the incremental technique
obviously improves the performance since the operations in
the earlier stages can all be reused. The experimental result
also shows that the incremental technique gains greater ben-
efits from ODGs with low α value. The effect of incremental
technique degenerates as α increases because high α value
indicates high ratio of predetermined objects in ODG and no
combinatorial optimization calculation is required for pre-
determined objects (they have only one optimal deploying
policy i.e. directly network transmission).

6. Discussion

In this paper, the maximum flow problem for a single graph
is extended to an incremental growing graph. This work
shows that the time complexity of deriving k maximum flow
values of incremental graphs N1,N2, · · · ,Nk is no more than
that of the single graph Nk. Based on this result, this work
develops the incremental content object deployment algo-
rithm. The experimental results show that our incremental
techniques dramatically improve the performance of the ob-
ject deployment algorithm. In this paper, the incremental
technique only works for strictly incremental graphs with
static costs, extending the technique to non-strictly incre-
mental graphs and dynamic costs will be the future works.

Acknowledgments

The authors would like to acknowledge the anonymous ref-
erees for their valuable comments. This work was supported
by contracts from National Science Council, Taiwan, ROC,
under Grant NSC-97-2221-E-029-022.

References

[1] X. Tang and S. Chanson, “Minimal cost replication of dynamic web
contents under flat update delivery,” IEEE Trans. Parallel Distrib.

Syst., vol.15, no.5, pp.431–441, May 2004.
[2] K.H.Y.L. Chin and W. Zhang, “Multimedia object placement for

transparent data replication,” IEEE Trans. Parallel Distrib. Syst.,
vol.18, no.2, pp.212–224, 2007.

[3] L. Ford and D. Fulkerson, “Maximal flow through a network,” Can.
J. Math., vol.8, pp.399–404, 1956.

[4] A. Goldberg and R. Tarjan, “A new approach to the maximum-flow
problem,” J. ACM, vol.35, no.4, pp.921–940, Oct. 1988.

[5] C.L.T.H. Cormen and R. Rivest, Introduction to Algorithms, The
MIT Press, 1989.

[6] R.A.T. Magnanti and J. Orlin, Network Flows: Theory, Algorithms,
and Applications, Prentice-Hall, 1993.

[7] K.H.K. Nakano and M. Sengoku, “The p-collection problem in
a flow network with lower bounds,” IEICE Trans. Fundamentals,
vol.E80-A, no.4, pp.651–657, April 1997.

[8] A.S. Fujishige and T. Takabatake, “A polynomial-time algorithm for
the generalized independent-flow problem,” J. Oper. Res. Soc. Jpn.,
vol.47, pp.1–17, 2004.

[9] L. Chen and I. Wu, “Detection of summative global predicates,”
IEICE Trans. Inf. & Syst., vol.E86-D, no.5, pp.976–980, May 2003.

[10] I. Wu and L. Chen, “On detection of bounded global predicates,”
Comput. J., vol.41, no.4, May 1998.

Lung-Pin Chen is an associate profes-
sor of Department of computer science and in-
formation engineering at Tung-Hai University,
Taiwan. He received his B.S. from Soochow
University in September 1991, M.S. from Na-
tional Chung-Cheng University in September
1993, and Ph.D. from National Chiao-Tung Uni-
versity in January 1999, all in computer science.
His research interests include internet/network
computing, XML database, and pervasive com-
puting.

I-Chen Wu is a professor in the Depart-
ment of Computer Science, at National Chiao
Tung University (NCTU). He received his B.S.
in Electronic Engineering from National Taiwan
University (NTU), M.S. in Computer Science
from NTU, and Ph.D. in Computer Science from
Carnegie-Mellon University, in 1982, 1984 and
1993, respectively. Dr. Wu developed a game
platform over Internet and helped start up a soft-
ware development company, ThinkNewIdea Inc
in Taiwan, in 2000. Dr. Wu also invented a new

game, named Connect6, a variation of the five-in-a-row game in 2005. He
has been the director of IGS-NCTU Joint Research Center at NCTU and
the president of Taiwan Connect6 Association since 2007.

1520
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.6 JUNE 2010

William Chu is a professor of Depart-
ment of computer science and information en-
gineering at Tung-Hai University, Taiwan. He
received his B.S. in Electronic Engineering from
Tamkang, M.S. and Ph.D. in Computer Science
from Northwestern University, USA, in 1984
and 1992, respectively. His research interests
object-oriented, software engineering, reengi-
neering, software maintenance, software agent,
E-commerce, and design patterns. Dr. Chu is
currently the Dean of School of Engineering of

Tung-Hai University.

Jhen-You Hong received the M.S. de-
gree in Computer Science and Information En-
gineering from Tunghai University, Tai-Chung,
Taiwan in 2009. His research interests include
distributed systems, contents management, and
replica management.

Meng-Yuan Ho received the M.S. degree in
Computer Science and Information Engineering
from Tunghai University, Tai-Chung, Taiwan in
2009. His research interests include distributed
systems, and testing and debugging distributed
programs.

