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Real-Time Estimation of Fast Egomotion with Feature
Classification Using Compound Omnidirectional Vision Sensor

Trung Thanh NGO, Yuichiro KOJIMA ™, Nonmembers, Hajime NAGAHARA "', Ryusuke SAGAWA'",
Yasuhiro MUKAIGAWA’, Masahiko YACHIDA "7, and Yasushi YAGI', Members

SUMMARY  For fast egomotion of a camera, computing feature corre-
spondence and motion parameters by global search becomes highly time-
consuming. Therefore, the complexity of the estimation needs to be re-
duced for real-time applications. In this paper, we propose a compound
omnidirectional vision sensor and an algorithm for estimating its fast ego-
motion. The proposed sensor has both multi-baselines and a large field of
view (FOV). Our method uses the multi-baseline stereo vision capability
to classify feature points as near or far features. After the classification, we
can estimate the camera rotation and translation separately by using ran-
dom sample consensus (RANSAC) to reduce the computational complex-
ity. The large FOV also improves the robustness since the translation and
rotation are clearly distinguished. To date, there has been no work on com-
bining multi-baseline stereo with large FOV characteristics for estimation,
even though these characteristics are individually are important in improv-
ing egomotion estimation. Experiments showed that the proposed method
is robust and produces reasonable accuracy in real time for fast motion of
the sensor.

key words: compound omnidirectional vision, multi-baseline stereo, large
FOV, motion parameter separation, fast egomotion estimation, RANSAC

1. Introduction

Egomotion, which consists of both rotation and transla-
tion, is an attractive research topic in computer vision and
robotics. Using a camera is a common option in estimat-
ing egomotion. The egomotion of the camera is recovered
by observing the motion on images. In realistic applications
such as a wearable system, an unmanned aerial or land ve-
hicle, fast motion usually occurs, especially with respect to
rotation. Previous research work can be classified as using
either a local search or global search for finding correspon-
dences between consecutive frames and solving the egomo-
tion estimation problem.

In the local search approach, a camera is assumed to
move smoothly and slowly. Under this assumption, image
feature points can be tracked for correspondence by a fea-
ture tracker [1] or an optical flow computation [2] through
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a video sequence. The camera egomotion is then estimated
from the feature correspondence. However, the assumption
is both too restrictive and ineffective in realistic applications
such as aerial vehicles and wearable cameras where the mo-
tion is fast.

In the global search approach, random sample consen-
sus (RANSAC) methods [3] solve the correspondence and
camera motion estimation simultaneously. This approach
searches globally for combinations that fit the motion hy-
potheses given by random sampling. Hence, there is no mo-
tion restriction. However, it is well-known that the compu-
tational cost of RANSAC increases exponentially accord-
ing to the number of corresponding points. For 5-DOF ego-
motion estimation, we need five or seven feature correspon-
dences between consecutive frames. Therefore, it is difficult
to compute this problem in real-time using RANSAC meth-
ods.

Previous methods [4], [5] have separated the egomotion
into rotation and translation to reduce the computational
complexity and estimate them separately, a method which
can be used for the global searching approach in real-time.
If we separate the SDOF egomotion into rotation and trans-
lation, we need at least two points of correspondence for
the rotation estimation and two points of correspondence for
the translation estimation. Hence, the computational cost of
the estimation using RANSAC is drastically reduced and we
should be able to apply it to real-time applications, even for
unrestricted camera motion.

Utilizing sensor characteristics is one solution for sep-
arating motion or reducing computational complexity. It is
well known that using viewpoints and FOV of visual sensors
are two important ways to do this. Figure 1 shows the effect
of these two characteristics for horizontal and vertical axes.

Stereo vision (as shown in the horizontal direction
in Fig. 1) supplies depth information of feature points and
thereby assisting motion matching using RANSAC meth-
ods to eliminate ambiguity [6], [7]. Depth information can
also help us to separate egomotion into rotation and transla-
tion because the motion of far feature points on the image is
mostly affected by the camera rotation. Hence, we can first
estimate the rotation and then, by eliminating it, estimate the
translation.

Large FOV sensors, such as omnidirectional vision
sensors (as shown in the vertical direction in Fig. 1) have
also frequently been used for motion estimation because the
large FOV facilitates the observation of camera motion and
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Fig.1  Characteristics of optics for motion estimation.

improves the robustness of motion estimation. The motion
flows caused by the camera rotation and translation do not
always manifest themselves in a small FOV. For example,
the focus of expansion (FOE) or focus of contraction (FOC)
is usually out of view for traditional cameras, causing the
egomotion algorithm to be sensitive to the orientation of the
camera. By contrast, an omnidirectional camera always cap-
tures the FOE and FOC in its large FOV. When a traditional
camera with a small FOV rotates around its vertical axis or
translates parallel to the image plane, these motions produce
quite similar motion flows on the image. However, the mo-
tion flows on the image are quite distinct for large FOV im-
ages.

Hence, multiple viewpoints and a large FOV are impor-
tant factors for egomotion estimation. Nevertheless, there
has been no previous research that combines both multiple
views and large FOV characteristics (the diagonal direction
shown in Fig. 1) for egomotion estimation of a sensor.

Therefore, in this paper, we propose a new stereo om-
nidirectional vision sensor, which has multi-baseline stereo
and a large FOV for focusing on egomotion estimation. We
also propose a real-time egomotion estimation algorithm for
the compound omnidirectional vision sensor. Instead of us-
ing accurate depth information of feature points, the pro-
posed method classifies the image features into far and near
features according to the characteristics of small baseline
stereo. Then we estimate the camera rotation and translation
separately using the far and near features, respectively. The
aim of the proposed method is to reduce the computational
cost and improve the robustness of the estimation. When
compared with conventional methods using an omnidirec-
tional camera, the proposed method has an advantage in the
real-time estimation of fast camera motion since the motion
constraint is not applicable. The compound omnidirectional
sensor also has some advantages compared with a conven-
tional stereo system. First, it is small and lightweight mak-
ing it suitable for wearable systems. Second, the binary clas-
sification of near and far feature points is significantly faster
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when checking a precomputed scene-independent look-up
table. Finally, stereo matching of feature correspondences
between mirror images is not required.

The rest of this paper is organized as follows. Section 2
discusses the related work. Section 3 provides an overview
of our proposed algorithm. Section 4 describes the com-
pound sensor and feature classification. Section 5 describes
rotation and translation estimations and their optimization
using RANSAC. We evaluate our experiments in Sect. 6,
and this is followed by the conclusions.

2. Related Works
2.1 Sensors

In recent related works on the sensor, the stereo omnidirec-
tional sensor is preferred in computer vision and robotics.
The difference between sensors lies in how simple the cal-
ibration is and how the stereo disparity varies depending
on the direction of the sensor. Some sensors consist of
two cameras [25], [26] with parabolic or hyperbolic mirrors.
However, they have only one baseline and the stereo sensi-
tivity is not omnidirectional. Using two cameras means that
the photometry of both cameras must be calibrated. In other
works [27], [28] have used a catadioptric stereo system with
a single camera and multiple mirrors to generate multiple
virtual viewpoints. They compute depth by epipolar geome-
try between the virtual cameras. The photometry calibration
of these sensors is not necessary. However, the FOV and the
number of baselines are limited, therefore the stereo sensi-
tivity is not omnidirectional. For this reason, a sensor has
been developed [29], [30] consisting of a single camera and
multiple spherical mirrors, which has multiple baselines, so
that the stereo sensitivity is omnidirectional. This omnidi-
rectional stereo system supplies the full omnidirectional ca-
pability that can detect near objects efficiently. However the
sensor does not have a single center of projection (the pro-
jective model of a pin-hole camera) for each stereo view, and
ignores the viewpoint differences along the vertical FOV.
We used paraboloidal mirrors and an orthographic camera
for a compound sensor in this study. We could achieve ac-
curacy with the single center of projection for each view and
the stereo views between the mirrors, which made it easier
to detect the feature distance without any assumptions.

2.2 Egomotion Estimation

There are many methods [8]-[10] for simultaneous localiza-
tion and map building (SLAM). SLAM methods simulta-
neously estimate sensor egomotion and build an environ-
mental map. However, there is a fundamental difference
between SLAM and egomotion methods. SLAM requires
lengthy observation to obtain an estimation. When track-
ing frequently fails such as in the case of fast and sudden
egomotion, SLAM methods are not effective for estimating
egomotion. On the other hand, the proposed egomotion es-
timation can be applied with fast and sudden camera motion
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and does not require lengthy observation to initialize and
obtain the estimation. Hence, SLAM is not considered as
related work here.

Most algorithms estimate rotation and translation si-
multaneously, several algorithms separate rotation and
translation and estimate them separately to reduce the com-
putational complexity. The egomotion separation meth-
ods can be classified into several groups: fixation methods,
translation-limited, rotation-limited and depth-based meth-
ods.

Fixation methods [4] simplify the egomotion estima-
tion by holding the observation direction to the same en-
vironmental point through time. Therefore, fixation reduces
the number of unknowns from five to four. Egomotion is
divided into rotation and translation and estimated sepa-
rately. However, keeping track of the same environmental
point through a video sequence is quite difficult due to prob-
lems such as occlusion and noise. Moreover, a minimum
of four point correspondences for estimating egomotion is
still time-consuming in the case of global searching with
RANSAC.

In rotation-limited methods, the assumption of small
rotation is required to approximate a rotation matrix and it
can be represented by a vector of rotation angles, which
helps to decouple the rotation and translation. Then some
algorithms are used [12], [13] to estimate the first transla-
tion by computing the FOE and then estimating the rotation.
Other algorithms [11] estimate rotation first and then trans-
lation. However, these algorithms still require five point cor-
respondences for the estimation, which is time-consuming
in the case of global searching with RANSAC.

In the translation-limited methods, a lot of research as-
sumes the motion is only rotation (3DOF) and the computa-
tion is fast. The rotation matrix is estimated by the matching
of features on consecutive images[14],[15] or using least
squares of points correspondences [16],[17]. In these pa-
pers, the authors estimate only rotation, however, further
efforts [18],[19] can be made to estimate camera transla-
tion after eliminating camera rotation of the feature points.
In these approaches, we may need only two point corre-
spondences for estimating rotation and two point correspon-
dences for estimating translation.

Our method belongs to the group of egomotion meth-
ods that use depth information. Previous methods belong-
ing to this group [20]-[23] use depth information to improve
the robustness of the estimation and tracking of feature cor-
respondence, and not for reducing the computational com-
plexity. Our proposed method uses the depth information to
separate egomotion into rotation and translation to reduce
the computational cost. However, instead of using an ac-
curate depth, we use the binary depth information by clas-
sifying feature points into near and far features. Rotation
is estimated using only far features and translation is esti-
mated using only near features. The dimensions of the data
point and the dimensions of motion parameters are reduced.
Two point correspondences are needed for estimating both
rotation and translation.
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3. Overview of the Proposed Algorithm

The proposed algorithm estimates the camera egomotion
with 5degrees of freedom, 3D rotation and 2D transla-
tion (the direction of translation without magnitude). The
flowchart for the algorithm is presented in Fig.2. We used
a compound omnidirectional sensor, described in the next
section. The sensor provided a compound image that con-
sists of all mirror’s omnidirectional images. Corner feature
points are detected in the center omnidirectional image, and
are then classified as near or far features. We estimate the
egomotion from two successive video frames. Rotation is
estimated using only the far features, while translation is
estimated using only the near features after eliminating the
rotational motion using the estimated rotation. Since we are
dealing with large camera motion, tracking image features is
not helpful. Therefore, we use the RANSAC search [31] to
find the global correspondences and to estimate the egomo-
tion simultaneously. During this process, we could estimate
rotation and translation separately to reduce the computation
complexity, because we have already classified the feature
as either far or near. Finally, rotation and translation param-
eters are optimized under epipolar constraints using all the
supporters from the RANSAC estimation.

| Features on image ¢-1 | | Features on iage t |
v

Classification Classification

| Far features | | Far features | |Near featuresl |Near featuresl

Rotation estimation
g4 Translation estimation

Optimization |
v

Fig.2  Algorithm flowchart: Detected features are classified as near or
far features; rotation is estimated using the far features while translation is
estimated using the near features; finally, optimization is performed to tune
the estimated motion parameters.
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4. Compound Omnidirectional Vision Sensor and Fea-
ture Classification

4.1 Compound Omnidirectional Vision Sensor

A compound omnidirectional vision sensor consists of M
paraboloidal mirrors, one large mirror at the center with
M — 1 small surrounding mirrors, and a single camera. In
a 3D coordinate system, each mirror i has the parameter
(ri, O;), where r; is its radius of curvature at the top and O;
is its location. The baseline between a pair of mirrors (i, j)
is defined as b; ; = +/ll0; — O|l|. Figure 3 shows one exam-
ple of our compound sensor, in which M = 7 paraboloidal
mirrors and a single orthographic camera are used. Mirror
i, i = 1..7, has the diameter d;, and the total diameter of the
compound mirror is D.

A light ray from an object is projected onto the im-
age plane by reflection from the mirrors. Since the position
of each mirror is different, the distance of an object can be
computed by triangulation. However, the baseline of tri-
angulation is very narrow since it is the distance of the re-
flected points on the mirrors. Hence, it is not practical to
use this sensor to compute with accuracy the distance of an
object. Instead, we classify objects into two categories, near
and far objects.

For a mirror 7, i = 1,..., M, the mirror coordinate sys-
tem originates at the optical center, the vertical axis z; points
towards its top along the symmetrical axis of the mirror, and
the whole camera coordinate system coincides with the co-
ordinate system of the center mirror, see Fig. 7. The shape
of the surface of a paraboloidal mirror is described as the
function of the spherical coordinate system:

ri

"= oo @)’ M

where r; is the radius of curvature of the mirror i at its top,

Top
view

di ?
\ | Object
: X1 Xi
Image plane
VZ
Image coordinates Side view

Fig.3  An example of a compound omnidirectional sensor: a single or-
thographic camera with seven compound paraboloidal mirrors.
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(1, ¢,0) is a point on the surface of the paraboloidal mirror
i in the spherical coordinate system, 7 is the distance from
the origin to the surface point, 0 < ¢ < m, —7 < 6 < 7. The
top of the mirror has the coordinates (7, ¢, 0) = (% ,0,0). An
object point P from the ray direction (¢, 6), which is repre-
sented by P = (sin(¢) cos(8), sin(¢) sin(f), cos(¢)), has the
projection on the image plane with the coordinates:

X = {le LT sin(¢) cos(9)’ y i sin(¢) sin(H)}, )
1 + cos(¢) ! 1+ cos(¢)
where (07, Of) is the center of an omnidirectional image
from the mirror i, measured in pixel units is the result
of the calibration process. Since we use the orthographic
image sensor, the geometric parameter calibration of the
paraboloidal mirrors is simple and has been reported in pre-
vious work [32]. Therefore it is not shown in this paper.
Since the total size of the constructed compound mir-
ror is less than 50 mm, the stereo baseline is very narrow,
which means that the resolution of the computing distance
is low. Therefore, we propose classifying the distance of the
image features as either near or far, instead of computing an
accurate distance. We have found this method to be useful
and a small system is sufficient for estimating egomotion.

4.2 Classification of Near and Far Features

In this section, we describe the classification for an object
point on one pair of mirrors, say mirrors i and j, then de-
scribe the classification for multiple pairs of mirrors, since
the sensor consist of seven mirrors.

We consider the situation in which an object is placed
at an infinite distance from the sensor and observed in the
images of two mirrors. As the object gets close to the sensor
along the ray of one of the mirrors, the projected image on
the other mirror shifts along the epipolar line. This shift is
called disparity. In this paper, we consider an object to be
far if the disparity is less than a given threshold.

Figure 4 shows an example of the epipolar line for the
paraboloidal mirrors i and j. Their center points in the image
plane are O; and O}, respectively. If an object is at an infinite
distance, the ray direction is P. The rays are projected on x;
and x; after being reflected, at m; and m; on the mirrors.

Mirror i

Mirror j

[ ! '
L — £
SN aSA
i .
] I
! —t P
T —— ™
i 1
7z . x,
Epipolar line pj x‘,-rg Image plane

Fig.4  The ray directions reflected on one pair of compound paraboloidal
mirrors (i and j) and the epipolar line.
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Epipolar Line p;

Epipolar Line p;

Fig.5 Projection of ray directions and epipolar lines on the image plane
for one pair of compound mirror i and ;.

If the object moves closer to mirror i along the direction P,
the ray direction to mirror j is P’. Thus, the reflected and
projected points become m;’ and x;’. x;’ is shifted ¢ pixels
along the epipolar line. There are two such epipolar lines p;
and p; for i and j, respectively. Figure 5 shows more detail
of the projection on the image plane.

Since the proposed method is a narrow baseline stereo,
the disparity ¢ is small if an object is at a practical dis-
tance. Therefore, we compute the disparity without search-
ing corresponding points thus enabling real-time computa-
tion. Since we apply this method to feature points detected
by a feature detector, we assume that the intensity around x;
and x; along their epipolar lines are step functions defined
as:

Ii(p) = H(p — px;) 3)
Ii(p) = H(p = px; = 0),

where H(x) is a step function, that is 1 if x > 0 and O oth-
erwise, p indicates the position in the epipolar line and py;,
px; are the position of x; and x; in their epipolar lines, re-
spectively.

The Lucas—Kanade method [33] computes disparity
from the gradient of intensity without searching for corre-
spondences. However, the gradient-based method cannot be
applied directly to the case assumed in (3). Therefore, we
filter the images before computing disparity. Our method
smoothes the intensity along the epipolar line using a 1D
mean filter. Figure 6 shows an example of this. The thin
lines are the original intensities of two images along the
epipolar lines. The black and gray lines denote images i
and j. The shift between the black and gray lines repre-
sents the disparity. After applying a mean filter of window
size 2n + 1 to I;(p) and I;(p), we obtain the smoothed func-
tions indicated by the thick black and gray lines. Then, we
can compute the disparity from the gradient of the smoothed
functions as follows:

Ii(px;) — 1j(px;)
Ii(px,' +n)— Ii(Pxi) '

If the disparity ¢ is less than n, D; j(P,n) < 1, otherwise
D; j(P,n) > 1. Therefore, we classify a feature point in the
direction P according to the following criterion:

Far feature  if D;;(P,n) <1
Near feature otherwise.

D; j(P,n) = “4)

®)
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Intensity

)

L)

Position

Py ! Pxj+n
Dxj+6
Fig.6  The disparity ¢ is computed using a gradient-based method after

smoothing with a mean filter. Two intensity functions along the epipolar
lines p; and p; are aligned at px; and px;, px; = px;-

The classification criterion is adjusted by the window
size of the mean filter n. If a user wants to discriminate
features at a certain distance, the disparity d corresponding
to the distance can be computed from the optical geometry
of the sensor. Thus, the classification is achieved by setting
n = d. Since d differs with respect to the position in the
image of our sensor, we compute d that corresponds to the
distance of discrimination for each pixel of the image. In
implementation, all the positions in (4) can be computed off-
line and stored in a look-up table. Then in run-time, the
disparity can be checked quickly.

Since our sensor has seven mirrors, it can compute dis-
parity by using different pairs (i, j) of mirrors. If a feature is
observed by multiple pairs, it is determined to be a near one
if it is classified as near by more than one of these pairs.

5. Estimation of Rotation and Translation with
RANSAC

The proposed method estimates rotation and translation sep-
arately using features classified as either near or far features.
The main contribution is that the method reduces the com-
putational complexity by estimating rotation and translation
separately, instead of estimating them together. Moreover,
since the correspondences of features between consecutive
video frames are also determined using a RANSAC-based
algorithm, the proposed method can be applied to fast ego-
motion.

In the following sections, we describe separating the
estimation of rotation and translation using the classified
features, explain the RANSAC-based algorithm to find the
correspondences and to estimate motion simultaneously and
describe optimization to refine the estimated motion param-
eters.

5.1 Separate Estimation of Rotation and Translation
Once the coordinate system has been located at the optical

center O of the center mirror as shown in Fig.7, the sur-
rounding scene moves around the sensor. If the position of
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Center mirror

Orthographic camera

Fig.7  Camera coordinate system with origin at the center of central mir-
ror.

object point P is pP, where p is the distance from P to the
origin and P = (sin ¢ cos 6, sin ¢ sin 6, cos ¢) is the direction
from the origin to P. The position p’ P’ after rigid transfor-
mation is given by:

o' P =RpP+T, (6)

where P, P’ are coordinates on the unit sphere or the direc-
tions of P before and after the motion, p and p’ are its depths
before and after the motion, R is the rotation matrix and T
the translation vector.

It is noted that the depth, p and p’, are not known from
the captured image, while P and P’ are known. By subdi-
viding (6) by p’, we obtain

T
P=2rp+=. (7)
P 1Y
From (7) we see that if the distance p’ is much larger than
T, we can ignore the term % Therefore, if P is a far fea-
ture, the motion is determined only by rotation and § = 1.
Equation (7) is then simplified as follows:

P’ = RP. ®)

Consequently, we can estimate rotation R separately by
omitting the translation T from the equation. Translation is
then estimated after eliminating the estimated rotation from
the motion.

5.2 Computing Rotation Independently

In conventional methods, at least five pairs of corresponding
feature points between two images are required to estimate
rotation and translation. But since we can distinguish far
feature points, we can compute rotation separately. We can
thus reduce the required number of feature points to two
pairs.

InFig. 8, P, Q, P’ and Q' are the projected points of the
two points P and Q before and after a rotation, respectively.
If we consider the cross-product vector n of P and Q, the
cross-product vector n’ of P’ and @’ is given by applying
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Fig.8 Estimate rotation from motion of 2 points.
the same rotation to n as follows:
P=RP Q'=RQ n'=Rn, )

where the lengths of n and »’ are normalized to the unit
length. Then the rotation matrix R is computed from the
three pairs of vectors on the unit sphere:

R=[PQn|[PQOn", (10)

and R is normalized, |[R| = 1. In the estimation algorithm
using RANSAC, this computation is used to initialize the
rotation model, which needs only two points of correspon-
dence in two consecutive frames.

Having finished the random sampling using the
RANSAC method, the best rotation matrix R, and a set Sz
of k feature correspondence pairs between two video frames
are outputted:

P,i = RestPia (11)

where i = 1..k, kK > 3. We then solve the over-determined
equation system (11) for three rotation angles. This equation
system can be solved using the least mean squares method
(LMS) with the minimization function:

min Z (P' = R(¢,6,0)P)(P' — R($,6,y)P)",  (12)
i PeSy

where R(8, ¢, ) is a rotation matrix built from three angles
0, ¢, Y. Since the minimization is nonlinear, we used the
Levenberg-Marquardt minimization with the initial param-
eters given by (0,0,0). After the minimization, the output
rotation matrix, R(6,, ¢., ¥.), clearly satisfies the conditions
of a rotation matrix, the orthogonality condition and its de-
terminant being +1.

5.3 Computing Translation after Eliminating Rotation

Once rotation has been estimated, we can eliminate the rota-
tion of features. Therefore, in this section we assume that no
rotation occurs between two succeeding views. The trans-
lation vector can now be estimated from the motion of two
near feature points.

Consider a situation in which the camera moves while
observing two near feature points P and Q as shown in
Fig. 9. These points are projected, onto P and Q in the pre-
vious video frame, and P’ and Q' in the current video frame.
Now, we consider two planes, np and mp. 7p is created by
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Fig.9 O and O’ are located on the intersection of two epipolar planes.

three points, O, O’, and P. Similarly, 7 is created by O, O’,
and Q. Since the translation vector T is the intersection of
the two planes, T is computed as follows:

T=PxP)x@QxQ). (13)

Since the motion of the feature points in the image oc-
curs as a result of the translation of the camera, the projec-
tion of the translation vector and the motion vector of the
features on the image plane must be opposite. We use this
criterion to adjust the direction of the translation vector.

5.4 RANSAC-Based Methods to Estimate Rotation and
Translation

The RANSAC-based algorithms are implemented similarly
for both rotation and translation estimation. For both al-
gorithms, a random sample is taken of two features in the
previous frame and two more in the current frame. The al-
gorithms simultaneously find the motion parameters and the
correspondence of image features. The difference is the fea-
ture used for estimation. For rotation estimation, near fea-
tures which do not hold the rotation represented by (8) are
filtered out by our compound sensor. Since it is not feasi-
ble to use far features for estimating the translation, these
should be excluded from the translation estimation and only
near feature points should be used for this task.

The RANSAC estimation of both rotation and transla-
tion is summarized as follows:

1. Randomly select two features in the first video frame
and two image features in the second video frame to
assign two pairs of correspondence.

2. Calculate the motion parameters (rotation matrix R, or
translation vector 7).

3. Count the supporting pairs of correspondence that
match the estimated parameters.

4. Record the current best solution with the maximum
number of supporting pairs.

5. If not stopped, return to the first step.

In our implementation, the termination criterion for
RANSAC sampling is processing time.

For estimating rotation, the rotation matrix R is com-
puted as shown in Sect.5.2. Counting supporting pairs for
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the rotation R is done by applying the rotation of far fea-
tures in the previous frame and matching these features to
the features in the current frame. If P is a far feature in the
previous frame and P is the position after applying the es-
timated rotation, we compute the angle between P and all
far features in the current frame located near P. If the angle
between P and P’ is the smallest and less than a threshold,
we count (P, P") as a supporting pair of correspondence.
For estimating translation, the translation vector T is
computed as shown in Sect.5.3 for each random sample.
Then the number of supporting pairs for each translation
vector is counted to select the best translation vector. From a
near feature point P in the previous frame and 7', an epipo-
lar plane n(P,T) can be computed. Similarly, an epipolar
plane m(P’,T) can be computed for each near feature P’
of the current frame. If the angle between the normal vec-
tors of 7(P,T) and n(P’,T) is the smallest and less than a
threshold, we count (P, P’) as a supporting pair of corre-
spondence. Therefore, counting the supporting pairs for the
translation vector is a problem of stereo matching.

5.5 Optimizing the Solution Using Epipolar Constraint
and All Supporting Pairs

After the estimation using the RANSAC-based method,
the approximate rotation matrix R(¢,,6.,¥.) and transla-
tion vector T, are acquired. An optimization is performed
to find the best rotation angles and translation vector us-
ing all the supporting pairs that have been obtained from
the RANSAC-based method. The optimized parameters are
estimated by minimizing the following epipolar constraint
function:

. ’ 2
o mmin (P;;eS(P EPY, (14)
where § is the set of all pairs of feature points that sup-
port the best solution estimated using the RANSAC-based
method, and (P,P’) is one of these pairs. E is the essential
matrix computed as E = [T]<R(6, ¢, ), where R(0, ¢, ) is
the rotation matrix built from the rotation angles (6, ¢, {),
and [T]x is the matrix representation of the cross product
with T = (t,,1,,1,); see [38] for further details. We also
used the Levenberg-Marquardt minimization with the initial
parameters given by R(0., ¢, ¥.) and T,.y. After the op-
timization, the rotation matrix is R(6,p;, Gopr» Yopr), Which
obviously meets the conditions of a rotation matrix.

5.6 Computational Cost of Estimation Using RANSAC

In the proposed approach, the correspondence and motion
are determined in a RANSAC procedure. This approach
cannot be applied to the well-known seven-point algorithm,
because the computational cost is prohibitive. Assuming
a problem that has no prior knowledge about feature cor-
respondences, we formulate the computational cost of our
proposed algorithm compared with that of the seven-point



NGO et al.: REAL-TIME ESTIMATION OF FAST EGOMOTION WITH FEATURE CLASSIFICATION

algorithm which estimates the essential matrix without fea-
ture correspondence. For a RANSAC algorithm, the number
of iterations required before the estimation obtains a correct
sample is:

logz

" Tog(l—w)’ (1

where z is the probability of seeing only bad samples, w is
the fraction of inliers among all data points and 7 is the num-
ber of data points for one sample; refer to the book [34] for
the details. Let p;, be the probability of selecting an inlier
P in the previous frame, and py,, be the probability of se-
lecting a correct supporter P’ in the current frame. P’ can
be found in the region around the location of P and the re-
gion contains about m features (in the current frame), then
Psup = % The value of py,, is similar for both the proposed
algorithm and the seven-point algorithm, however the value
of p;, differs. In our proposed method, the inliers are far fea-
tures at a certain distance from the sensor, and far features
are classified by the compound sensor. Therefore, not all far
features classified by the sensor are inliers. Thus the average
value of p;, in the proposed algorithm is smaller than that in
the seven-point algorithm. The probability of selecting the
correct correspondence pair (P, P’) is w = p;,pg,. For the
proposed algorithm, the probability of selecting two pairs of
feature correspondence is wy = (pain pzmp)z. For the seven-
point algorithm the probability of selecting seven pairs of
feature correspondence is w7 = (P7inP75u ,,)7.

To ensure the same possibility of obtaining a correct
sample, the value of z must be equal for both algorithms,
therefore, the number of required iterations must vary to
meet the requirement. We have simulated how these two
algorithms require the number of iterations in the case that
P7in = 1.5p2i, and z = 0.9. Details of the required number
of iterations are described in Fig. 10, which shows that the
seven-point algorithm requires many more iterations com-
pared with the proposed algorithm. For example, if m = 10,
there are about 10 features in the current frame around the
location of an inlier in the previous frame, and therefore

1400000

—o—T7point

=== 2point

1200000 -

1000000 -

800000 4

600000 4

Number of iterations

400000 -

200000 4

1 3 5 7 9 11 13
m

Fig.10 Number of required iterations for the seven-point algorithm
without feature correspondence and the proposed algorithm.
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Psup = 0.1, and k7 = 294042. This can be compared with the
proposed algorithm giving k; = 16.4 only. From these anal-
yses, the proposed method drastically decreases the compu-
tation cost owing to the separation of the camera motion.

6. Experiments

In our experiments, we used the compound omnidirectional
sensor that is shown in Fig.3. The compound sensor is
mounted on a system with two rotary stages and a 50 cm
translation stage (Fig. 11). The wy rotation is controlled by
one rotation controller on the z-axis, and the w, rotation
on the y-axis is controlled by the other. The dimensional
translation of the camera system is controlled by a trans-
lation controller. The vision sensor is a 1600 x 1200 pixel
CCD camera (Scorpion: Point Grey Research) with a tele-
centric lens. The parameters of the compound sensor and
its parameters after the calibration are shown in Table 1. In
the experiments, the maximum distance for classification by
this compound sensor is about 3m. The proposed method
is processed by a PC with a Pentium D 3.2 GHz proces-
sor. OpenCV [36] is used for image processing including
the Harris [35] feature detection procedure.

The experiments were carried out in various envi-

pAUDD I1YdDAS0Y1I0)

Fig.11  The evaluation system. Rotary stages and the vision sensor are
mounted on the translation stage.

Table 1  Parameters of the compound sensor after calibration.
Actual
Parameter Design §ize in
(mm) | image
(pixel)
Total diameter D 43 813
Center mirror radius d; 25 473
Side mirror radius d; 13 239
Center mirror radius of curvature 7y 17.5 331
Side mirror radius of curvature ri 8.7 165
Largest baseline (side mirrors) biiz 30 567
Smallest baseline (side mirrors) bi i1 15 283
Side mirror - center mirror baseline | b;; 19.5 369
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ronments to evaluate accuracy with respect to process-
ing time and camera motion. Our experimental results
were compared with the results from the essential matrix-
based solution. We implemented the seven-point algorithm
based on the work of Torr [37] that estimates the essential
matrix using RANSAC and the multi-resolution Kanade-
Lucas-Tomasi (KLT) feature tracker[1] implemented in
OpenCV [36]. Motion parameters are also tuned by using
the same optimization method as our proposed algorithm.
In this method, which we refer to as 7ALGRANSAC, the
feature correspondences are given by the feature tracker in-
cluding outlier correspondences. While it is possible to im-
plement the seven-point algorithm using RANSAC without
knowing the correspondences, it is very time-consuming to
sample a set of 7 correspondences between two consecutive
frames. Consequently, we do not cover this implementa-
tion in the paper. We also compared the performance of
the proposed algorithm with and without feature classifica-
tion using the compound sensor to show the effectiveness
of the near/far feature classification procedure. The detailed
results of these experiments are described in the following
sections, which show the averages of the frame-by-frame
estimation errors for each video sequence.

Several types of environmental data were captured in
our experiments to validate our algorithm. We extracted
200 features from each frame using a Harris feature detec-
tor. The whole sensor image is used for feature classifica-
tion; and the big omnidirectional image at the center is used
for feature detection. The experiment showed that for each
frame the Harris feature detector needed 0.066 sec to extract
200 features.

We also set up the parameters so that our algo-
rithm could cope with a maximum rotation velocity of
31 degrees/frame and a translation velocity of 8.5 cm/frame.
For our algorithm, the processing time includes feature ex-
traction, feature classification and RANSAC motion estima-
tion, and Levenberg Marquardt optimization of the motion
parameters. By contrast the processing time for the 7AL-
GRANSAC process includes initial feature detection, frame
by frame feature tracking, RANSAC estimation of the es-
sential matrix, motion parameter extraction and optimiza-
tion using the Levenberg Marquardt method.

6.1 Error Definitions

Errors of motion are defined for motion between a pair of
video frames. To evaluate the rotation error, we first com-
pute the residual rotation after eliminating the estimated mo-
tion R with the true motion R,, from the rotary stage con-
troller:

R.. = RR;! (16)

This is the error of the estimated rotation that is represented
by a matrix. If the estimation is perfect, the matrix R,, is
the identity rotation matrix. The difference between R,, and
the identity rotation matrix I is assumed to be the error of
estimation. We evaluate the rotation error by a Frobenius
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norm of the matrix (R,, — I) as follows:

33
Z (Rerij — I;j)*. (17)

i=1j=1

If the error is small, it can be regarded as the angle error in
radians.

The translation error is the angular difference between
the normalized estimated translation vector and the normal-
ized ground-truth translation vector, because our method es-
timates translation without magnitude. We call this the di-
rectional translation error, which is also measured in radi-
ans.

6.2 Experiments with Different Ratios of Near/Far Fea-
tures

First experimental data were captured for three different ra-
tios of near/far features. These data sets are labelled FAR,
MID, NEAR, and are shown in Fig. 12, with a decreasing
number of far features (or an increasing number of near fea-
tures). Near features were situated within 3 m of the sensor,
whereas far features were located at distances ranging from
4 m to about 10 m. Motion of the sensor was controlled by
only the rotary stage wy on the Oz axis. While the sensor
was rotated, it was also translated. The motion path was
circular with a radius of 13 cm.

For these data sets, experimental results were obtained
for feature classification, the convergence of rotation and
translation estimation.

6.2.1 Feature Classification

First, we tested the accuracy of classification using the pro-
posed sensor. We manually checked the classified results
with the ground-truth and summarized the results of feature
classification using 10 random frames. For the ground-truth,
a feature is classified as near if the distance is less than 3 m;
otherwise it is classified as far. Table 2 gives a summary
of feature classification for the three data sets, which shows
that the accuracy of feature classification is more than 90%.

6.2.2 Convergence of RANSAC for Estimating Rotation

Next, we evaluate the accuracy of rotation estimation with
respect to processing time. The processing time includes the
Harris feature detection with and without feature classifica-
tion and the RANSAC matching time for estimating rota-
tion. The camera translation and rotation angles were fixed
as the control rotation velocity wy = 10 degrees/frame. We
compared the convergence of estimating rotation with fea-
ture classification (denoted as CLASSIFIED) and without
feature classification (denoted as UNCLASSIFIED). The
results are shown in Fig. 13.

Because most outliers for estimating rotation were re-
moved by classification, the processing time was reduced
significantly for the CLASSIFIED case compared with that
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+ Cross point, feature classified as near
Fig. 12

e Dot point, feature classified as far

Example input images (each of them is the big omnidirectional image at center of a sensor

image) of FAR, MID, NEAR (from left to right) with increasing near/far ratios.

Table 2  Results of misclassification of near/far features.

FAR MID | NEAR
Near— Far 44% | 8.4% 9.8%
Far— Near 2.1% | 9.0% 5.3%
Actual number of near features 92 105 112
Actual number of far features 108 95 88

—=— FAR_CLASSIFIED
—e— MID_CLASSIFED
—a—NEAR_CLASSIFIED
0144 —o— FAR_UNCLASSIFIED
0.12 4 —o— MID_UNCLASSIFIED
—»—NEAR_UNCLASSIFIED

Rotation Frobenius error
o
S
:

0.08 4
0.06 4
0.04 4
0.02 4
0.00 +——= ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 02 04 06 08 1 12 14 16 18 2
Processing time [sec/frame]
Fig.13  Comparison of the convergence of estimating rotation with/

without feature classification.

for the UNCLASSIFIED case. The processing time of
0.2 sec is reasonable for use in real applications with accept-
able accuracy. Since the far features were not truly at infin-
ity and the rotation matrix is computed from four random
points on two images and no optimization was performed
after random sampling, some error existed in the estimation
regardless of the processing time.

6.2.3 Convergence of RANSAC for Estimating Transla-
tion

The experiments for the convergence of translation esti-
mation were carried out with the same rotation estima-

0.30
—=FAR_CLASSIFIED

= 0.27 1

g . —e—MID_CLASSIFIED

& 0.24 4

——NEAR_CLASSIFIED
—o—FAR_UNCLASSIFIED
—o— MID_UNCLASSIFIED
——NEAR_UNCLASSIFIED

0.21 1

0.06 -

0.03 - “E{
0.00 T T T T T T T

0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40
Processing time[sec/frame]

Directional translation error

Fig.14  Comparison of the convergence of translation estimation with/
without feature classification using ground-truth rotation.

tion, which in this case was ground-truth rotation. The
camera translation and rotation velocities were fixed with
the control rotation velocity wy = 10degrees/frame. The
processing time consisted of the Harris feature detection
with/without feature classification and the RANSAC match-
ing time for estimating translation. Figure 14 shows the re-
sults of convergence for both classified and unclassified fea-
tures. The results show that the translation estimation with
only near features converged much faster than in the unclas-
sified case. The results are similar to those in Fig. 13 show-
ing that the classification of features is effective. Since the
translation vector is computed from four random points on
two images and no optimization was performed after ran-
dom sampling, some error existed in the estimation regard-
less of the processing time.

From the experiments on the convergence of rotation
and translation estimation using classified and unclassified
features, we can see that with classification of features, the
egomotion (rotation and translation) computation is much
faster than is the case without feature classification but with
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+ Cross point, feature classified as near
¢ Dot point, feature classified as far

Fig.15  Indoor scene 1.

+ Cross point, feature classified as near
® Dot point, feature classified as far

Fig.16  Indoor scene 2.

the same processing time.
6.3 Overall Performance Experiments

In these experiments, the performance of the proposed algo-
rithm was tested with various real data. Two indoor video
sequences and one outdoor scene were captured, as shown
in Figs. 15, 16 and 23, respectively. For these videos, the
sensor was moved by both a translation stage controller and
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Fig.17  Indoor scene 1: histogram of feature distances.
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Fig.18 Indoor scene 2: histogram of feature distances.

a rotation stage controller instead of using only a rotation
stage controller as in the previous data sets. The speed of
the translation stage was fixed at 5 cm/frame, while the ro-
tation speed wy varied between 12 and 30 degrees/frame;
one video was taken at each rotation speed. In the exper-
iments, the processing time allowed for each algorithm was
0.5 sec/frame for terminating the RANSAC iteration.

6.3.1 Indoor Scenes

Examples of feature classification in the two scenes are
shown in Figs. 15 and 16, while the distributions of the dis-
tances from the sensor to the feature points are shown in
Figs. 17 and 18 for the two scenes, respectively. The dis-
tance distributions are presented as the distance histograms
with the bin-width of 10cm. The distributions of the far
feature points for these two scenes are similar, whereas the
distributions of near feature points differ. The near feature
points in the first scene are closer to the sensor. The dis-
tances were computed using stereo matching for the cen-
tral omnidirectional images and the baseline connecting two
ends of the translation stage, the length of which is 50 cm.
A series of captures provided us the average distribution as
shown in Figs. 17 and 18.

The experimental results are described in Figs. 19 and
20 for the first indoor scene and Figs. 21 and 22 for the sec-
ond indoor scene. For smaller motion, the performance of
7ALGRANSAC is better than the proposed algorithm; how-
ever for larger motion, the proposed algorithm gives the bet-
ter results. Since JALGRANSAC relies on the feature cor-
respondences from a feature tracker, the estimation accuracy
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Fig. 20
mation.

Indoor scene 1: directional translation error for translation esti-

of 7TALGRANSAC decreases with greater motion, as many
outliers are included in the correspondences. Since our al-
gorithm does not rely on correspondences from a feature
tracker, the performance is robust for any amount of mo-
tion. Rotation estimation is a little less accurate with greater
motion. This can be explained by the larger translation of
the sensor, because our algorithm assumes that the distance
to far features is much larger than the translation speed of
the sensor.

We can also see that with the same camera motion, the
translation estimation in the first scene in Fig. 20 is better
than that in Fig. 22, while the rotation estimation accuracy
is similar in two scenes. The reason for the difference is
that the near feature points in the first indoor scene are dis-
tributed closer to the sensor, while the distributions of the far
feature points are similar. A similar variation in the accuracy
of TALGRANSAC was observed for these scenes.

6.3.2 Outdoor Scene

In a outdoor scene, far feature points are significantly far-
ther from the sensor than those in the indoor scenes, and
there are fewer near feature points than in either of the in-
door scene. One of the outdoor scenes is shown in Fig. 23
and the distribution of feature distances from the sensor is
shown in Fig. 24 as a distance histogram with a bin-width of
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Fig.21  Indoor scene 2: frobenius error for rotation estimation.
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Fig.22  Indoor scene 2: directional translation error for translation esti-
mation.

10 cm. For this scene, most feature points are very far from
the sensor, with few near feature points located around the
sensor and on the ground. The experimental results are de-
scribed in Figs. 25 and 26. The results are similar to those of
the indoor scenes. For slow motion, the proposed algorithm
and 7ALGRANSAC produced similar results; however the
proposed algorithm gave better results for fast motion. The
proposed algorithm produced robust results for all variations
in motion speed.

We can also see that for the outdoor scene, the far
feature points are farther away, the approximation error is
lower, and we have a more accurate rotation estimate. And
since there are very few near feature points, the transla-
tion estimation accuracy for both algorithms is not as good
as that in the indoor scenes. Due to the few near fea-
ture points in this scene, 7TALGRANSAC did not work
well. 7ALGRANSAC simultaneously estimates rotation
and translation, and therefore if translation is not accurate,
rotation is directly affected.

6.4 Discussion

The proposed algorithm relies on separate camera motion
estimations. The rotation is estimated using far feature
points while the translation is estimated using near fea-
ture points. Far and near feature points are classified us-
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+ Cross point, feature classified as near
e Dot point, feature classified as far

Fig.23  Outdoor scene.
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Fig.24  Outdoor scene: histogram of feature distances.

ing the proposed compound omnidirectional sensor. There
are some exceptional cases in which the proposed algorithm
does not work well, but these are not seen as a disadvantage
of the proposed method. The first situation arises when the
scene is small and all feature points are classified as near
features, with the results that we have no far features for
estimating camera rotation. However, for fast and sudden
camera motion in a small environment, the previous egomo-
tion algorithms also have problems in computing the feature
correspondence. This needs to be addressed in our future
research. The second situation arises when all the feature
points are very far from the sensor and are classified as far
features. In this situation, the rotation can be accurately esti-
mated by our algorithm, however, we have no near features
for estimating camera translation. Previous egomotion al-
gorithms also face the same problem because the translation
vector is relatively too small to be estimated effectively. The
algorithms that simultaneously estimate rotation and trans-
lation do not work well in this situation because an inac-
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Fig.25  Outdoor scene: frobenius error for rotation estimation.
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Fig.26  Outdoor scene: directional translation error for translation esti-
mation.

curate translation estimation directly influences the rotation
accuracy. However, algorithms that separate rotation and
translation, such as the proposed algorithm, work better.

The distances of feature points can affect the accuracy
of the estimation. For translation estimation, this influence
is well-known for previous algorithms and the proposed al-
gorithm. If feature points are relatively closer to the sensor,
then higher accuracy of translation we can get and other-
wise. However, for rotation estimation, we approximate the
rotation by the motion of far feature points. The farther the
distances of far features, the higher accuracy we have.

In the current algorithm, we only use the geometry
constraint for computing the camera motion. Obviously,
if we can apply the similarity constraint of feature points
the results can be significantly improved. Some feature de-
scriptor such as SIFT [39] can be used in such a situation.
We can also improve the RANSAC estimation by apply-
ing an adaptive-threshold robust estimator [40], which is an
improvement of RANSAC that does not require the user-
defined threshold. In this robust estimator, the threshold to
separate inliers is adaptively estimated depending on the dis-
tribution of the residuals of data points.

The current algorithm works well without motion blur
or with only a small amount of blur. However, we need to
improve the algorithm to work with the motion blur caused
by faster motion.
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7. Conclusion

In this paper, we have proposed a new compound omnidirec-
tional sensor and a method for estimating egomotion which
applies the RANSAC process. Using the proposed sensor,
image features are classified into near or far features. The
rotation of the camera is estimated using only the far fea-
tures, since the motion of far features in the images is mod-
eled solely by rotation. After estimating the rotation, the
translation is estimated using only the near features. There-
fore, only two pairs of features are required to estimate ei-
ther rotation or translation, whereas the seven-point algo-
rithm requires seven pairs of features. Because of this re-
duction in computational complexity, the proposed method
can work in real time without being given correspondences.
Consequently, it can compute large camera motion since it
does not assume small motion is required to find correspon-
dences by a conventional feature tracker.
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