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SUMMARY In this research, we focus on how to track a target region
that lies next to similar regions (e.g. a forearm and an upper arm) in zoom-
in images. Many previous tracking methods express the target region (i.e.
a part in a human body) with a single model such as an ellipse, a rectan-
gle, and a deformable closed region. With the single model, however, it
is difficult to track the target region in zoom-in images without confusing
it and its neighboring similar regions (e.g. “a forearm and an upper arm”
and “a small region in a torso and its neighboring regions”) because they
might have the same texture patterns and do not have the detectable border
between them. In our method, a group of feature points in a target region is
extracted and tracked as the model of the target. Small differences between
the neighboring regions can be verified by focusing only on the feature
points. In addition, (1) the stability of tracking is improved using particle
filtering and (2) tracking robust to occlusions is realized by removing unre-
liable points using random sampling. Experimental results demonstrate the
effectiveness of our method even when occlusions occur.
key words: real-time tracking, zoom-in camera, point-set tracking

1. Introduction

High-resolution images of a target object can improve the
performance of various existing image-analysis algorithms.
In particular, high-resolution images of human regions (e.g.
a face, a hand, a forearm, and a tiny part of them as shown
in Fig. 1) are useful in order to observe facial expression,
hand/finger motion, and other minute motions and features.
In a security system (e.g. [1]), for example, actions of a sus-
picious individual can be observed circumstantially and rec-
ognized well even by employing existing algorithms.

Continuous high-resolution imaging of a moving tar-
get can be realized by using a pan-tilt-zoom (PTZ) camera.
For zoom-in observation with the PTZ camera, the follow-
ing two techniques are required:

Tracking Continuously extract the region of the target in
observed images.

Camera-control Continuously control the PTZ camera for
capturing the target within the images.

If tracking is successful, a previously proposed camera-
control algorithm (e.g. [2], [3]) is applicable to continuous
high-resolution imaging regardless of the type of the target.
We, therefore, focus on how to track a partially observed re-
gion of a moving object in real time instead of observing the
whole image of the object (Fig. 1).
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When observing the whole body of a person, each body
part can be easily identified by employing a whole-body
model (see [4], [5], for example). This approach is, how-
ever, inapplicable to zoom-in observation because the whole
body is not observed. Furthermore, appearance information
such as texture patterns is not known in advance because of
a variation of clothing.

In this research, we have to employ a tracking algo-
rithm for general objects, which can work without prior
knowledge with regard to a target object. Template match-
ing is widely used for tracking (see [6], for example). Al-
though it is applicable to any object tracking by extracting
the template in an initial frame, the similarity can be high not
only in the correct region of a target but also in its neighbor-
ing regions with textures similar to those of the correct re-
gion as shown in Fig. 2. In addition, it should be noted that
the target region might be non-rigid (e.g. body parts with
loose-fitting clothing and multiple limbs). Tracking using
SNAKE [8], which searches for the boundary line of a target
based on edge lines and their smoothness, is also inapplica-
ble to tracking body regions with similar textures between
which there is no edge line. Mean-shift [9] is also one of the
famous real-time tracking algorithms. While this method is

Fig. 1 Goal of this work: zoom-in tracking of a moving part.

Fig. 2 Misidentification of a target region.
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robust against deformation of a target shape, mistracking be-
tween similar neighboring regions is not avoidable because
this method employs only a color histogram. As described
above, it is difficult to express the difference between similar
neighboring regions by employing a single model represent-
ing the whole region of a target.

For zoom-in tracking, in this research, a set of fea-
ture points in a target region is regarded as a tracking tar-
get. The difference between similar neighboring regions can
be expressed well by focusing only on characteristic feature
points. In addition, by tracking the set of the points, (1) an
arbitrary object can be tracked, (2) an occluded target region
can be also tracked by finding other visible points, and (3)
small deformation of the target region can be represented by
the change in the geometric configuration of the points.

Point tracking is one of major problems (e.g. for stereo
vision and shape from motion) in Computer Vision. In
[10], for example, the Lucas-Kanade algorithm [11] is anal-
ysed in detail in terms of computational complexity and sta-
bility. Tracking robust to specular highlights and lighting
changes [12] is also important. Our method proposed in this
paper is peculiar in terms of the following two characteris-
tics:

Accept small drifts: The objective of most of point
tracking algorithms is to determine the precise position of
each point (e.g. for 3D reconstruction). A small drift of
each point is, on the other hand, acceptable in our objective.
This is because points might be included in the target region
even when small drifts occur. In this research, therefore,
the stability of tracking should be improved in exchange for
the decline of precision. We employ particle filtering [13]
for robustly tracking feature points with updating template
images. Particle filtering and template update allow us to in-
crease the stability and continuity of tracking, respectively.

Explicitly remove outlier points: As with our ap-
proach, particle filtering is used to track a set of points in
[16]. In [16], however, all points are evaluated equivalently
for calculating the likelihood of each particle. This results in
tracking failure when one or more of feature points are invis-
ible due to occlusions or located far from their true positions
due to invalid sampling. That is, these outlier points cause
mistracking, unlike small drifts mentioned above. This
problem can be solved by removing these occluded points
from each particle.

2. Tracking with Particle Filtering

This section introduces the outline of tracking with particle
filtering [13]. In particle filtering, a target region is repre-
sented as a state vector. A set of particles, each of which
corresponds to a state vector, is distributed in order to find
the target region.

Let {P1(t), · · · , PN(t)} and {ρ1(t), · · · , ρN(t)} be the set of
N particles at time t and their likelihoods, respectively. With
them, the target region at t is determined and the particles at
t + 1 are generated as follows:

1. Likelihood calculation: Likelihood ρi(t) of Pi(t) in an
image observed at time t is calculated.

2. State estimation: The region of the target in the ob-
served image is estimated from the state vectors of the
particles and their likelihoods (e.g. the weighted mean
the state vectors).

3. Sampling: New particles Pi(t + 1) are generated based
on the likelihoods of the particles at t.

4. Drift: Pi(t+1) are shifted based on the motion dynam-
ics of the target.

With the above mentioned scheme, robust tracking can
be achieved. It should be noted that the computational cost
increases drastically if the number of the particles is in-
creased for stable tracking. Therefore, the objective in this
paper is to improve the stability of tracking with a limited
number of the particles.

3. Feature Points Tracking with Particle Filtering

The basic scheme of our method is based on tracking with
particle filtering [13] described in Sect. 2. The characteris-
tic issue of our method is how to calculate the likelihood
of each particle. Its process flow is shown in Fig. 3. The
distinctive feature of our method is outlier elimination.

Assume that the region of a target is given at an
initial frame. At this frame, several feature points in
the initial region are extracted by using the Harris oper-
ator [17]†. A set of these points is regarded as a target
being tracked. The state vector Pi of i-th particle is ex-
pressed with image coordinates of all the points, denoted
by (xi

1, y
i
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i
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i
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i
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Fig. 3 Process flow of feature points tracking.

†We also conducted experiments using feature points extracted
by [18]. The results of tracking were almost same between both
methods.
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Fig. 4 Definition of a particle.

denotes xy coordinates of p-th point in i-th particle and the
number of points in i-th particle, respectively, and their av-
erage velocity, (vi

x, v
i
y), as follows (Fig. 4):
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i
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i
y

]
(1)

On the other hand, particle filtering can be achieved
also so that each feature point is regarded as a tracking target
while the approach proposed in this paper deals with a set of
the points as a target. For tracking multiple targets, the mix-
ture particle filter [14] is superior to the original one [13].
The mixture particle filter maintains the models (i.e. proba-
bility distribution) of the targets in order to track them sep-
arately. In [15], the mixture particle filter is integrated with
Adaboost for efficient object detection and occlusion recov-
ery. This property, however, cannot be employed in our
problem because neither to train target samples in advance
nor to train them online in real time is possible. Moreover,
the independent maintenance of the multiple models is not
effective for our problem because no geometric assumption
among the feature points is employed; all feature points on
a target region move with the same motion dynamics in our
problem. Our method explicitly employs this assumption
for robust tracking.

Assume that the points have the following natures:

• The change in the local image around a feature point is
small at a small interval.
• The change in the geometric configuration of feature

points is small at a small interval.

With these natures, two templates below are used:

Template image Local image around each point.
Template coordinates xy coordinates of each point.

These templates are obtained at an initial frame and they are
dynamically updated. The likelihood of each particle is cal-
culated by integrating the following two values (described
in detail in Sect. 4):

Image similarity Similarity between the local image
around each point in a particle and the template image
of the point.

Coordinates similarity Similarity between the geometric
configurations of the points in the template coordinates
and each particle.

Fig. 5 How to update a template image.

Note that even the sampled point nearest to the true po-
sition might be a little different from the true position. This
difference results in the significant decline of the image sim-
ilarity. This negative effect is relaxed with a weighted eval-
uation that gives a high similarity to a point near the true
position as described in Sect. 4.1. This weighted evaluation
allows us also to cope with the small deformation of points.
Although non-rigid tracking can be successful based on con-
straints with regard to 3D object/motion (e.g. [19]), this ap-
proach requires large computational cost. For example, in
order to control a PTZ camera depending on target motion,
real-time tracking is desired (e.g. 30 fps). In this work, we
aim at real-time tracking for small but random deformation
(e.g. deformation of clothing).

Unlike the effects due to small drift and deformation,
outlier points must be removed for successful tracking. In
our method, the outlier points are eliminated by random
sampling as described in Sect. 4.4. This process enables
real-time tracking robust against occlusions and other errors
in point tracking.

As with the previous tracking algorithm using particle
filtering [13] described in Sect. 2, the weighted mean of the
particles is regarded as the state of the target (i.e. the esti-
mated points). Sampling and drift of our algorithm are also
similar to those of [13]. The estimated velocity of the target
(i.e. vx and vy in a particle) is used to shift the particles in
the current frame.

Although the appearance of the target object in ob-
served images change as it moves, careless update of the
templates incurs mistracking. In our method, therefore, the
image templates are updated not only using the updated tem-
plate but also using the initial template as proposed in [6].
The template image is updated if both of the following two
conditions are satisfied [6] as illustrated in Fig. 5: (1) the
similarity between the current template image and the local
image around the estimated point is higher than a threshold
and (2) the maximum similarity between the local image
around the estimated point and the images that are obtained
by rotating, translating, expanding, and shrinking the initial
template image is higher than a threshold. It should be noted
that the weight of matching with the initial template image
is smaller than that with the current template image because
small drift is acceptable in our objective. The template coor-
dinates are also updated in the same way with updating the
template image.
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4. Image Likelihood

This section describes 1) how to compute the likelihood
of each particle with two similarities in Sect. 4.1, 4.2, and
4.3 and 2) likelihood computation with outlier removal that
overcomes small deformation of points and occlusion in
Sect. 4.4.

4.1 Similarity of Feature Points

The image similarity is evaluated by the SAD (Sum of Ab-
solute Difference). The computed SAD is normalised (i.e.
from 0 to 1) by the template size and the maximum value of
the intensity range.

Note that even the position of each feature point in the
best particle might be a little different from the true position.
Since even the small difference results in the significant de-
crease of the image similarity (i.e. SAD), the similarity of
the best point might be accidentally lower than that of an-
other point. To cope with this problem, the similarity is de-
termined so that the similarity decreases drastically at some
distance from the true position as illustrated in Fig. 6. The
image similarity of point p in particle i, Ii

p, is calculated by
the following equation:

Ii
p=2v sin

(
π

2
0.5
h

ci
p

)

if ci
p ≤ h (2)

Ii
p=2(1 − v) sin

(
π

2
(ci

p − (2h − 1))
)
+ (2v − 1)

if ci
p > h (3)

where ci
p = 1− “the normalised SAD”, and h and v are con-

stants† indicated in Fig. 6.

4.2 Similarity of Geometric Configurations

The similarity of geometric configurations is calculated by
comparing the template coordinates and the coordinates of

Fig. 6 Weighted similarity function (dotted line: sin curve, solid line: a
weighted similarity).

points in each particle. As illustrated in Fig. 7, let Pi
p and

Tp be “the coordinates of point p in particle i” (i.e. (xi
p, y

i
p)

in Eq. (1)) and “the coordinates of point p in the template
coordinates”, respectively. Note that the correspondences of
points between Pi

p and Tp is known because the ID of each
point (i.e. p) (i.e. the geometric configurations of the points)
is known in particle i; no image feature matching is needed.

Even if the point correspondences are known, Pi
p is

translated, rotated, and deformed from Tp. The coordinates
similarity is determined based on how large the deformation
is. To evaluate the deformation, Pi

p and Tp are aligned in
terms of the translation and rotation.

For the alignment, the affine parameters Ai between Pi
p

and Tp is estimated, and then Tp is transformed using Ai as
illustrated in the right-hand of Fig. 7. In [7] also, a target re-
gion is tracked while aligning it with its appearance model,
which is leaned online. As achieved in this tracking method,
most of similar methods deal with a small region though a
set of points are employed for tracking robust to occlusion
in our method.

The distance disi
p between the transformed coordinates

AiTp and Pi
p is obtained by disi

p = |AiTp − Pi
p|. With disi

p,
the coordinates similarity Pi

p is expressed by the following
formula:

Ci
p =

1

disi
p + 1

(4)

4.3 Likelihood with Image and Coordinates Similarities

Using the image and coordinates similarities Ii
p and Ci

p, the
likelihood of particle i (denoted by ρi) is estimated by the
formula below:

ρi =

⎛⎜⎜⎜⎜⎜⎜⎝
Ni∑

p=1

ei
p

⎞⎟⎟⎟⎟⎟⎟⎠ /Ni, (5)

where Ni is the number of the feature points in i-th particle
and ei

p = Ii
p · Ci

p, which denotes the similarity of point p in
particle i.

4.4 Removing Outlier Points

The affine parameters Ai is easily estimated by the method
described in Sect. 4.1, 4.2, and 4.3 if all points in particle i
are observable and not deformed significantly from Tp. This
assumption is often violated due to undesired motion of a

Fig. 7 Affine transformation of points.

†In our experiments, h = 0.8 and v = 0.9.
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target region. This violation should be detected for robust
computation of Ai.

Our method detects the violation of the assumption
based on steep falloff of similarity ei

p. ei
p becomes very low

in positions occluded by another object or far from its true
position as illustrated in Fig. 8 (a) and (b), respectively. We
call such a point an outlier point. The outlier point results
in a low likelihood of the corresponding particle even if all
other points have high evaluated values. In general, the for-
mer problem (i.e. a wrong position) can be easily resolved
by distributing a large number of particles in order to pre-
pare the one in which all points are located in their correct
positions. As the particles increase, however, the computa-
tional speed declines. Furthermore, the latter problem (i.e.
an occluded point) cannot be solved by boosting the parti-
cles. In our method, therefore, the likelihood of a particle
is evaluated without points, each of which has an extremely
low value.

In our method, the positions of feature points in each
particle are evaluated by comparing them with the points
transformed from the template coordinates by an affine
transformation. The affine parameters can be estimated from
at least three corresponding points. If one or more outlier
points are included in the corresponding points, the esti-
mated affine parameters produce the transformed points, all
of which are far from the points in the particle. If no outlier
point is included, ei

p may be low only in the outlier point(s).
Outlier removal is, therefore, implemented by robust esti-
mation (least median square estimation [20]) with random
sampling as follows:

Step 1 Select random three points in a particle and estimate
the affine parameters Ȧi between them and the template
coordinates.

Step 2 Transform the template coordinates using Ȧi.
Step 3 Calculate ei

1, · · · , ei
N and select their median value,

ei
med.

Step 4 Repeat Steps 1, 2, and 3 k times and consider the
maximum ei

med to be the one that corresponds to the
optimal affine parameters Ai.

Steps 1, 2, and 3 should be repeated so that no outlier
point is included in at least one combination of the selected
points. The probability that at least one combination without
outliers is selected (denoted by r)† is determined [20] by r =

(a) Occlusion (b) Mistracking

Fig. 8 Examples of outlier points.

1 − {1 − (1 − ε)F}k, where ε and F denote the ratio of outlier
points in all the feature points and the number of selected
samples (i.e. three in our case), respectively.

Finally, outlier points are removed using the optimal
affine parameters Ai as follows:

Step 1 Calculate ei
1, · · · , ei

N using Ai.
Step 2 Compute the standard deviation of ei

1, · · · , ei
N (de-

noted by σ).
Step 3 Remove points, each of whose ei

p is at a distance of
over 2.5σ from the average, from particle i and then
evaluate its likelihood.

5. Experiments

We conducted experiments using a PC (Pentium4 3.0 GHz)
with 1024 × 768 pixels images captured at 30 fps (Pointgrey
XGA Flea). In all the experiments, the number of particles,
the number of points in a particle, and the size of a template
image were 800, 7, and 15 × 15, respectively. With these
conditions, our method ran at 30 fps.

For comparative experiments, the following four meth-
ods were examined:

Method1 Template matching with SAD evaluation.
Method2 KLT tracker [10].
Method3 Points tracking using particle filtering WITH-

OUT removing outlier points.
Method4 Proposed method: Points tracking using particle

filtering WITH removing outlier points.

One of the advantages of our method is to be able to
track a target region neighboring similar regions as shown
in Fig. 9. To confirm this advantage, a part of an arm with
white clothing was tracked by four methods. The partial
sequences of the results are shown in Fig. 9. The capturing
interval of the images in Fig. 9 is 1/30 sec. The target region
is enclosed by a rectangle. The results of Method1 stayed at
the same area in the observed images while the arm trans-
lated. This is because the similarity is almost unchanged
around the area. Method2 and Method3 lost track of the tar-
get region in midstream. Our proposed method could track
the target region until the last frame.

The second advantage of our method with outlier re-
moval is to be able to track a region partially occluded. As
shown in Fig. 10, our method tracked a target region (an arm
in an upper sequence and a face in a lower sequence) even
when it was partially occluded. In the arm sequence, three
points were occluded by the other hand at (a3), but success-
fully tracked at the following frames (a4) and (a5). In the
face sequence, two points located in the left-upper corner of
the face were not observed at (f3), but successfully tracked
at the following frames (f4) and (f5). It can be seen that
the observable points were tracked correctly even during the
frames with these difficulties (e.g. (a3) and (f3)); compare
these points at (a3)/(f3) and other frames.

†In our experiments, r was 0.95.
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(1) Template matching

(2) KLT tracker

(3) Proposed method without outlier removal

(4) Proposed method

Fig. 9 Results of uncharacteristic part tracking.

(a1) (a2) (a3) (a4) (a5)

(f1) (f2) (f3) (f4) (f5)

Fig. 10 Results of partially-occluded part tracking.

Fig. 11 Unsuccessful tracking results: Large deformation.

Figures 11 and 12 show examples of unsuccessful
tracking. In Fig. 11, since an elbow was bent, i) the geomet-
ric configuration of feature points was changed and ii) tex-
tures were changed around several feature points that were
made by folds. Figure 12 shows the example of textureless
points. Figure 12 (b) shows the textureless points at the first
frame. These points made it difficult to successfully track a

(a) Tracking results

(b) Magnified images of textureless feature points

Fig. 12 Unsuccessful tracking results: Points with no textures.
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Table 1 Quantitative comparison: success rate of tracking.

1. white shirt 2. textured shirt 3. face 4. large deformation 5. few folds
Method1 64.6% 72.0% 84.2% 46.2% 55.8%
Method2 73.6% 92.6% 88.8% 79.6% 67.6%
Method3 81.3% 88.8% 88.0% 55.2% 58.0%
Method4 86.8% 92.4% 93.2% 71.2% 65.4%

target region with a set of all points as shown in Fig. 12 (a).
We conducted experiments for quantitative comparison

(Table 1). For five targets (1. a white shirt (Fig. 9), 2. a tex-
tured shirt (upper sequence in Fig. 10), 3. a face with partial
occlusions (lower sequence in Fig. 10), 4. a textured shirt
with large deformation (Fig. 11), and 5. a region with few
folds on the white shirt (Fig. 12)), five sequences consisting
of 50 frames were prepared. True regions of the target were
given by hand and compared with the tracking results; a re-
sult overlapping over 80% with the true region is regarded
as a successful one.

Our method was superior to the others in tracking the
white shirt and the face with occlusions. With the textured
shirt, successful tracking was achieved also by the KLT
tracker because observable points could be tracked even dur-
ing the difficult frames. With the shirt with large deforma-
tion, the point set should be divided into several groups as
will be described in Sect. 6. With the region with few folds
on the white shirt, it was difficult to extract the required
number (i.e. 7 in these experiments) of sufficiently textured
points. To resolve this problem, the number of the feature
points should be determined in accordance with each target
region.

6. Concluding Remarks

We focused on how to track an uncharacteristic region and
proposed a points tracking method using particle filtering
with removing outlier points.

Future work includes the following aspects:

Template update Our method employs the template up-
date algorithm proposed in [6]. This algorithm com-
pares not only a current template but also an initial tem-
plate with a current image in order to avoid drift. Em-
ploying the initial template, however, prevents match-
ing with a significantly deformed image. A more so-
phisticated way is, therefore, required for robust and
high-speed tracking. For example, [22] proposed this
kind of model update based on confidence of each
tracking part.

Grouping If points are distributed in multiple limbs, the
motions of the points differ substantially from that rep-
resented by an affine transformation. Then tracking
might be unsuccessful. To cope with this problem, the
points must be grouped based on their motions, as with
the rigid motion based grouping algorithm [21].

Speed-up While real-time tracking can be achieved in
our current implementation, the above mentioned pro-
cesses would increase the computational cost. In the

current implementation, removing outlier points re-
quires substantial time. To reduce its computational
cost, the likelihood might be computed by a simpler
way in the outlier removal.

Robustness to change in illumination A general tracking
algorithm is required to be robust to change in illumi-
nation. While this property has not been validated in
this paper, our method has ability to cope with partial
change in illumination in principle; even if illumina-
tion conditions on several feature points are changed
(e.g. due to cast shadows), these points can be regarded
as outliers. In addition to validation of this advan-
tage, robustness to more general changes in illumina-
tion should be achieved.
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