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Probabilistic BPRRC: Robust Change Detection against
INlumination Changes and Background Movements

SUMMARY  This paper presents Probabilistic Bi-polar Radial Reach
Correlation (PrBPRRC), a change detection method that is robust against
illumination changes and background movements. Most of the traditional
change detection methods are robust against either illumination changes or
background movements; BPRRC is one of the illumination-robust change
detection methods. We introduce a probabilistic background texture model
into BPRRC and add the robustness against background movements in-
cluding foreground invasions such as moving cars, walking people, sway-
ing trees, and falling snow. We show the superiority of PrBPRRC in the
environment with illumination changes and background movements by us-
ing three public datasets and one private dataset: ATON Highway data,
Karlsruhe traffic sequence data, PETS 2007 data, and Walking-in-a-room
data.

key words: change detection, background detection, Probabilistic BPRRC,
robust, illumination changes, background movements

1. Introduction

Amid rising concerns about security, surveillance systems
have become a focus of attention in recent years. To real-
ize practical surveillance systems, robust change detection
for preprocessing is required. Change detection reduces the
processing area of time-consuming processes such as object
recognition, human detection, and human behavior analysis;
therefore, it reduces processing time of the whole system
and increases the performance by reducing false positive de-
tections from background region (Fig. 1).

Though the environments in which practical surveil-
lance systems operate may include many large disturbances
such as illumination changes and background movements,
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Fig.1  Schematics of the effectiveness of change detection for human de-
tection. Change detection reduces search area and false positives of human
detection.
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most of the traditional change detection methods are robust
against either illumination changes or background move-
ments. For example, Bi-polar Radial Reach Correlation
(BPRRC) [1] is robust against illumination changes by using
texture model but not robust against background movements
because of the rigid texture model.

We propose Probabilistic BPRRC (PrBPRRC), an ex-
tension of BPRRC, that preserves BPRRC’s robustness
against illumination changes and adds the robustness against
background movements [2]. PrBPRRC introduces a proba-
bilistic model for background texture and learns a proba-
bilistic background with inputs including background move-
ments and foreground invasions. We show the superior-
ity of PrBPRRC with three public datasets and one private
dataset: ATON Highway data [3], Karlsruhe traffic sequence
data[4], PETS 2007 data [5], and Walking-in-a-room data.

In this paper, we make several assumptions to define
“change detection”: (i) the camera is fixed so that the back-
ground subtraction-based method that compares input with
learned background model can be used, (ii) change includes
foreground objects that deviate from learned background,
and (iii) change doesn’t include background movements and
illumination changes. These assumptions are natural in
surveillance systems.

The rest of this paper is organized as follows. We
briefly review several former change detection methods
in Sect.2. We then describe BPRRC and the proposed
PrBPRRC in Sect.3. We compare the performance of the
methods with four datasets in Sect. 4 and conclude in Sect. 5.

2. Related Works

Many change detection methods have been proposed. Gen-
erally, they calculate the probability distribution of the input
pattern from training images with the background model,
and then detect changes from the test image according to
the posterior probability. Figure 2 and Table 1 show the
schematics of the background models of change detection
explained below and a comparison of them, respectively.

One of the simplest background models is the single
Gaussian model that models each pixel intensity with a sin-
gle Gaussian distribution (Fig.2 (a)). The Gaussian distri-
bution can model intensity fluctuation of each pixel caused
by sensing devices but the model is too simple to model real
environmental changes.

Stauffer et al. proposed Mixture of Gaussian (MoG) [6]
that uses multiple Gaussian distributions to model multiple
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Table1 Comparison of background models for change detection.
robust against | robust against
background model illumination | background
changes movements
(a) Single Gaussian x %
pixel (average background)
-intensity | (b) Mixture of Gaussian x O
-based (MoG, GMM)
model (c) Pixel-intensity x O
Histogram
(d) PISC/LBP/PTESC O X
texture
@) X
based (e) BPRRC
model (f) PIBBPRRC O o
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Fig.2  Schematics of the background models of change detection
methods.

background intensity distributions caused by ripples on wa-
ter surface and flickering of the display (Fig.2 (b)). MoG
is used in many applications but requires a decision on the
number of Gaussian distributions. To avoid this decision,
Nakai proposed a non-parametric pixel intensity model with
pixel intensity histogram [7] (Fig.2(c)). Because, in con-
trast to the Gaussian model, it doesn’t assume any paramet-
ric models, it can model arbitrary intensity distributions.
The pixel-intensity-based models such as MoG and the
histogram model are not robust against illumination changes
(Table 1 (a)—(c)) because illumination changes cause large
intensity changes deviating from the past intensity history.

For example, background models trained with images in the
sun cannot cover inputs in the shade.

To increase robustness against illumination changes,
some methods introduced texture information. Texture in-
formation based on the intensity differences among local
pixels is stable against illumination changes because all
the local pixels change their intensities by almost the same
amount and the intensity differences among them don’t
change. Satoh et al. proposed Peripheral Increment Sign
Correlation (PISC) [8] and Heikkila et al. proposed Local
Binary Pattern (LBP) [9]; they encode the intensity differ-
ences between target pixel and surrounding reference pixels
as 0/1 binary code (Fig.2(d)). Yokoi proposed Peripheral
TErnary Sign Correlation (PTESC) [10] that encodes the in-
tensity differences by —1/0/1 ternary codes to increase the
robustness against illumination changes.

Though these texture-based methods are robust against
illumination changes (Table 1(d)), they cannot work prop-
erly in the region without texture. Plain foreground objects
before plain background with different intensity from fore-
ground cannot be detected by these methods because both
foreground and background have the same plain texture.

3. Probabilistic BPRRC
3.1 BPRRC

Bi-polar Radial Reach Correlation (BPRRC)[1] is one of
the texture-based change detection methods and can work
properly in the region without texture (Fig. 2 (e)). It searches
the far reference pixels with enough intensity differences
from a target pixel by skipping the plain region so that it can
detect plain foreground objects before plain background.
Figure 3 shows the schematics of the process of
BPRRC. In the training stage (Fig. 3 (a)), BPRRC searches
reference pixels with positive intensity difference above a
threshold from a target pixel Bg(x,y) in 8 directions in a
background image Bg. Then, it saves the position of the ref-
erence pixels as b,j(x, y) (k =0,...,7). In the same way it
searches reference pixels with negative intensity difference
and saves the positions as b, (x,y). In the detection stage
(Fig. 3 (b)), in an input image I, it compares intensity differ-
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Fig.3  Schematics of the process of BPRRC.

ences between target pixel /(x, y) and its 16 reference pixels
I;,f (x,y) that correspond to b,f(x, y) in I and detects changes
based on the correspondence B(x,y) between background
and input:

| (< 7
B(.y) = 3¢ {kz(; Bf(x,y) + kZ: B;(x,y)}, 1)
where
. _JU Uy (x,y) = 1(x,y) > 0)
Bitey) = {0 (otherwise) @
and
_ )1 U (xy) = I(x,y) <0)
By = {0 (otherwise) ' )

The position of the reference pixels can be set by the mean
or mode of the positions from multiple training images.

Although BPRRC, similarly to PISC and LBP, is robust
against illumination changes, it is not robust against back-
ground movements (Table 1 (e)) because of the rigid back-
ground model using reference pixels b (x, y).

3.2 Formulation of Probabilistic BPRRC

To increase the robustness against background movements,
we introduce a probabilistic model into the BPRRC back-
ground model (Fig. 2 (f)) [2]. Figure 4 shows the schematics
of the process of PrBPRRC.

Let the range of reach r that means the distance from
a target pixel to the reference pixel be R, the reference pix-
els with the reach r in the direction k from a target pixel
BG(x,y) be b,f(x, y,r), and the count of b be Num{b}. In the
training stage (Fig. 4 (a)), Probabilistic BPRRC (PrBPRRC)
searches reference pixels with positive/negative intensity
differences above a threshold from Bg(x, y) in the same way
as BPRRC and stores them as b,f(x, y, 1), the distribution of
the position of the reference pixels, by histogram models.
If there are background movements such as walking people
and swaying trees, all the disturbances of reference pixels
caused by them are modeled by the histogram models. In
the detection stage (Fig.4 (b)), PrBPRRC detects changes
as follows. The probability distribution of b (x, y, r) is given
by

Numib; (x,y,r)}
Num{},,cg b]f(x’ ¥, N}

prob(bi;(x,y,r)) = 4
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Fig.4  Schematics of the process of PrBPRRC.

and this can be calculated from the histogram of b} (x,y, r)
learned in the training stage. Next, PrBPRRC’s codes of the
input pixel /(x,y) with the reach r and the direction k are
given in the probabilistic form as

B{(x,y,7)
_ ) prob(b(x,y,1) Uy (x,y,1) = 1(x,y) > 0)
= , (5)
0 (otherwise)
and
B, (x,y,7)
_ prOb(b[;(-xay’r)) (Ib;(-x7yar)_l(x’y)<0)
= , - (6)
0 (otherwise)

Finally, by marginalizing Egs. (5) and (6) over reach r and
direction k, the correspondence B(x, y) is given by

7

7
B(x,y) = % {Z Z B (x,y,r) + Z Z By (x,y, r)} .

k=0 reR k=0 reR
(7N

Now, the decision of the changes with Egs. (1)-(3) is re-
placed by the probabilistic decision with Eqs. (4)—(7). This
formulation relaxes the decision of reference pixel position
and makes PrBPRRC robust against background texture dis-
turbances caused by background movements.

Figure 5 shows the schematics of the robustness of
PrBPRRC. In BPRRC, the background model is learned
with static model in the training stage; the positions of ref-
erence pixels are set by the mean or mode of those from
multiple training images. Though the reference pixel was
darker than the target pixel in a training stage (Fig. 5 (a-1)),
it is no darker than the target pixel in the test stage if the
tree sways (Fig. 5 (a-2)). Therefore, the system falsely de-
cides there is a change in the target pixel. In PrBPRRC, on
the contrary, the background model is learned with a flexible
model in the training stage; the positions of reference pixels
are modeled by the histogram from multiple training images
(Fig. 5 (b-1)). Because the histogram models the distribution
of the positions of reference pixels that distribute according
to the tree swaying in the training stage, the system recog-
nizes the position of the reference pixel that is darker than
the target pixel in the test stage has enough probability ac-
cording to the histogram and therefore the system correctly
decides there is no change in the target pixel (Fig. 5 (b-2)).
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Fig.5 Comparison between BPRRC and PrBPRRC.

4. Experiment

In this section we evaluate the performance of the change
detection methods described in Sects. 2 and 3. The detection
accuracy is evaluated in Sect. 4.1 and the detection speed in
Sect.4.2. The results show the superiority of the proposed
PrBPRRC in terms of detection accuracy with acceptable
processing time.

4.1 Detection Accuracy

We compared the detection accuracies of change detec-
tion methods with four datasets. We used ATON High-
way data[3], Karlsruhe traffic sequence data[4], PETS
2007 data[5], and private Walking-in-a-room data. Fig-
ure 6 shows the samples of each dataset with ground
truth annotations, which we explain later. ATON data
and Karlsruhe data include foreground invasion of passing
cars and Karlsruhe-dtneu_schnee data includes falling snow.
PETS 2007 data includes foreground invasion of walking
and waiting people in the training images and illumination
changes in the test images. The private Walking-in-a-room
data is a short movie of walking people in a room that in-
cludes foreground invasion of walking people in the training
images and illumination changes in the test images. Figure 7
shows the samples of disturbances such as foreground inva-
sions and illumination changes.

We used 20~40 frames for background training and
3~5 frames for testing’. All the test images have ground
truth annotations: foreground objects such as moving cars
and walking people as “foreground (FG)” (vertical hatches
in Fig. 6), obscure area such as shadows and crowds that ex-
ist at all times in the background training images as “don’t
care” (diagonal hatches in Fig. 6), and other area as “back-
ground (BG)”. False positive error rate (FPR) and false neg-
ative error rate (FNR) are defined as follows:

num_of_falsely_detected_BG _pixels_as_FG
num_of_BG _pixels_in_the_ground_truth

num_of- falsely_detected_FG _pixels_as_BG
num_of FG_pixels_in_the_ground_truth

FPR =

FNR =

1703

(b) Karlsruhe

Ly |

(c) PETS 2007

Fig.6  Samples of datasets with ground truth annotations.

(d) Walking-in-a-room

[(c) PETS 2007]
(training)

[(d) Walking-in-a-room]
(training) (test)

Fig.7  Samples of disturbances in the datasets.

The ROC (Receiver Operating Characteristic) curves
are shown in Fig.8. An ROC curve further toward the
bottom left of the diagram indicates better performance.

"The description of the experimentation data is as follows:
we used (a) 30 frames at the beginning of the sequence for
background training and 4 frames with 100-frame interval at the
end of the sequence for testing on ATON highway I/II data,
(b) 20 frames with 20-frame interval for background training and
3 frames with 100/200-frame interval for testing on Karlsruhe-
dtneu_schnee/stau02 data, (c) 40 frames with 100-frame interval
from S1 sequence for background training and 5 frames with 500-
frame interval from SO sequence for testing on PETS 2007 cam4
data, and (d) 30 frames with 6-frame interval for background train-
ing and 3 frames with 80-frame interval for testing on Walking-in-
a-room data. The sequence of Karlsruhe-dtneu_schnee is so short
that the ranges of training and testing sequences are overlapped
but the frames are separate. The sequence of Karlsruhe-stau02 is
reversed because cars stop at the crossing at the beginning of the
sequence and then start to move.
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Fig.9  Typical results of change detection for several datasets.
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Fig.10  Average processing time for one frame of PETS 2007 data.

PrBPRRC (® in Fig. 8) is consistently better than BPRRC-
mean (A in Fig. 8) with reference pixels defined by the mean
of multiple training images and BPRRC-mode (V in Fig. 8)
with reference pixels defined by the mode of multiple train-
ing images. Though MoG/Histogram (X in Fig. 8) on ATON
Highway I and PTESC (OJ in Fig.8) on Karlsruhe-stau02
are slightly better than PrBPRRC, they are much worse than
PrBPRRC on other data. We combined PrBPRRC with
PTESC using OR operation (O in Fig. 8). The combined re-
sults show better performance than PrBPRRC because they
complement each other: PrBPRRC is based on the texture
in a broad region and PTESC is based on the texture in a
local region.

Some typical results of change detection are shown
in Fig.9. The parameters of each method such as texture
threshold (= 10) and texture size (= 5) are the same for all
the datasets. In contrast to former methods, PrBPRRC is
stable for various datasets with the same parameters.

4.2 Detection Speed

We also compared the detection speed of change detection
methods. Figure 10 shows the average processing time of
each detection method for one frame of PETS 2007 data’.
In the experiment we evaluated two versions of PrBPRRC:
the original PrBPRRC evaluated in the previous section us-
ing 51-reach histogram (shown as “org” in Fig. 10) and the
faster PrBPRRC using 12-reach histogram (shown as “fast”
in Fig.10). The figure such as 51 and 12 is the number
of the reach candidates r to check the positive/negative in-
tensity differences. We searched the reference pixels only
with limited reaches such as “r = 1,2,4,6,...” for speed-
up. Figure 11 shows the ROC curves of the two versions of
PrBPRRC on PETS 2007 data.

Though the original PrBPRRC requires more than 10
times more processing time than BPRRC (Fig. 10), the faster
PrBPRRC requires approximately five times more process-
ing time than BPRRC and is acceptable in view of its bet-
ter performance than BPRRC. The detection accuracy of
the faster PrBPRRC is slightly worse than that of the orig-
inal PrBPRRC (Fig. 11) because it uses sparser histogram
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Fig.11  ROC curves of two versions of PPBPRRC on PETS 2007 data.

for the position of reference pixels in Fig. 2 (f); however, the
decrease in accuracy is small enough to be acceptable.

4.3 Total Performance

The evaluations in Sects. 4.1 and 4.2 show that, compared to
former methods, the proposed PrBPRRC realizes better per-
formance with acceptable processing time. The evaluation
of detection accuracy in Sect.4.1 shows that PPBPRRC is
more stable than former methods against data disturbances
and parameter setting. Though the evaluation of detection
speed in Sect. 4.2 shows that PrBPRRC requires more pro-
cessing time than BPRRC, the processing time of PPBPRRC
can be reduced up to five times more than that of BPRRC by
using a small number of reach candidates. The loss of de-
tection accuracy using a small number of reach candidates
is small enough to be acceptable and the processing time
of the method is also acceptable because it realizes 10 fps
processing.

5. Conclusion

In this paper, we proposed PrBPRRC, an extension of
BPRRC, that preserves BPRRC’s robustness against illumi-
nation changes and adds the robustness against background
movements.

We introduced a probabilistic background texture
model into BPRRC. Our new method learns the distribution
of background texture based on the intensity differences be-
tween target pixel and reference pixels, and detects changes
with a probabilistic decision based on the texture distribu-
tion. It enables learning of a probabilistic background from
the training images including background movements and
foreground invasions such as moving cars, walking people,
swaying trees, and falling snow.

We evaluated several change detection methods with
ATON Highway data, Karlsruhe traffic sequence data, PETS
2007 data, and private Walking-in-a-room data and showed
the superiority of PPBPRRC in terms of stability against data

TOn other datasets we obtained similar results.
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disturbances and parameter setting.

In future work, we intend to improve the performance
by introducing color texture information into the PrBPRRC
model. Generally, color information is informative but not
robust against illumination changes. PrBPRRC’s robust-
ness against illumination changes will be able to suppress
the instability of color and utilize its fruitful information for
change detection.
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