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Fast Polar and Spherical Fourier Descriptors for Feature Extraction

Zhuo YANG†a), Nonmember and Sei-ichiro KAMATA†b), Member

SUMMARY Polar Fourier Descriptor(PFD) and Spherical Fourier De-
scriptor(SFD) are rotation invariant feature descriptors for two dimen-
sional(2D) and three dimensional(3D) image retrieval and pattern recog-
nition tasks. They are demonstrated to show superiorities compared with
other methods on describing rotation invariant features of 2D and 3D im-
ages. However in order to increase the computation speed, fast computation
method is needed especially for machine vision applications like realtime
systems, limited computing environments and large image databases. This
paper presents fast computation method for PFD and SFD that are deduced
based on mathematical properties of trigonometric functions and associated
Legendre polynomials. Proposed fast PFD and SFD are 8 and 16 times
faster than direct calculation that significantly boost computation process.
Furthermore, the proposed methods are also compact for memory require-
ments for storing PFD and SFD basis in lookup tables. The experimental
results on both synthetic and real data are given to illustrate the efficiency
of the proposed method.
key words: polar fourier descriptor, spherical Fourier descriptor, rotation
invariant, image retrieval, fast algorithm

1. Introduction

Rotation invariant feature extraction is one of the essential
challenges in image retrieval and pattern recognition arises
from the fact that in many machine vision applications, im-
ages should be considered to be the same even if they are
rotated. Fourier analysis is very important in signal pro-
cessing and pattern recognition. It has been widely used on
shape description [1], [2] and image retrieval [3]–[5]. By ap-
plying fourier analysis to polar and spherical coordinates,
Polar Fourier Descriptor(PFD) and Spherical Fourier De-
scriptor(SFD) are proposed as rotation invariant descriptors
for analyzing 2D and 3D images and demonstrated to show
superiorities compared with other methods [6]. With the or-
thogonal property, PFD and SFD can characterize the im-
age function using a set of mutually independent descriptors
with minimum redundant and maximal discriminant infor-
mation.

PFD introduced Foureir-Bessel series to image analy-
sis. Fourier-Bessel series is mainly used on physics-related
applications [7], [8]. With boundary condition for the basis
functions, Fourier-Bessel series for image functions that de-
fined on a finite interval can be obtained. SFD treats the
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spherical object as a whole and can more effectively de-
scribes 3D image data compared with Spherical Harmonic
(SH) method [9] that is widely used in representation and
registration of 3D images [10], [11]. PFD and SFD em-
ploy 2D and 3D complex transform defined on a circle and
sphere. Unfortunately, the coefficients computation involves
many Bessel function, associated Legendre polynomials and
trigonometric computations that no fast method has been re-
ported to best of our knowledge. The high computational
complexity is the constraint for machine vision applications
such as realtime systems, limited computing environments
and large image databases. Therefore, reduction of the com-
putational complexity for PFD and SFD is very significant.

This paper focuses on fast PFD and SFD. Fast and com-
pact methods to compute the coefficients of PFD and SFD
are proposed by using mathematical properties of trigono-
metric functions and associated Legendre polynomials. The
2D basis function of PFD has symmetry properties with re-
spect to the x axis, y axis, y = x line, y = −x line and
origin that can be used for fast computation. The computa-
tional complexity of PFD can be reduced by calculating half
of the first quadrant.That is only one eighth of the direct
calculation. For many machine vision applications, lookup
tables for computing the basis functions are usually stored
in the memory. Using the proposed method, only one eighth
memory is needed compared with the direct calculation. For
SFD , similar symmetry properties exist in 3D space. By an-
alyzing the mathematical properties of associated Legendre
polynomial, similar with PFD, its computational complexity
is reduced by calculating half of the first spherical quadrant
which means almost 16 times fast. Memory requirement for
SFD lookup tables are also significantly reduced.

The organization of this paper is as follows. The basic
theories of PFD and SFD including mathematics descrip-
tions are provided in Sect. 2. The proposed method is pre-
sented in Sect. 3 after analyzing the mathematical properties
of trigonometric functions and associated Legendre polyno-
mials. In Sect. 4, the performance of the proposed meth-
ods for PFD and SFD are compared with direct calculations
against both synthetic and real images. The experimental re-
sults illustrate that our proposed method is really effective.
Finally, Sect. 5 concludes this study.

2. Background

PFD and SFD use the eigenfunctions of the Laplacian that
are separable in polar and spherical coordinates as basis
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Fig. 1 The basis functions Ψnm(r, ϕ) of PFD with zero-value boundary condition (Left is real parts
and right is imaginary parts).

functions. This section briefly introduces the background
of PFD and SFD. For further detail about PFD and SFD,
please refer to [6].

2.1 Polar Fourier Descriptor

Given a 2D image function f (x, y), it can be transformed
from cartesian coordinates to polar coordinates f (r, ϕ) ,
where r and ϕ denote radius and azimuth respectively. It
is defined on the unit circle that r ≤ 1, and can be expanded
with respect to the basis functions Ψnm(r, ϕ) as

f (r, ϕ) =
∞∑

n=1

∞∑
m=−∞

PnmΨnm(r, ϕ), (1)

where the coefficient is

Pnm =

∫ 1

0

∫ 2π

0
f (r, ϕ)Ψ∗nm(r, ϕ)rdrdϕ. (2)

The basis function is given by

Ψnm(r, ϕ) = Rnm(r)Φm(ϕ), (3)

where

Rnm(r) =
1√
N(m)

n

Jm(xmnr), (4)

where Jm is the m-th order first class Bessel series [12], and

Φm(ϕ) =
1√
2π

eimϕ. (5)

N(m)
n can be deduced by imposing boundary conditions ac-

cording to the Sturm-Lioville(S-L) theory [13]. Two bound-
ary conditions are interesting. With zero-value boundary
condition,

N(m)
n =

1
2

J2
m+1(xmn), (6)

where xmn is the nth positive root for Jm(x).With derivative
boundary condition,

N(m)
n =

1
2

(
1 − m2

x2
mn

)
J2

m(xmn), (7)

where xmn is the nth positive root for J′m(x).
Rewrite (2) with (3)-(7),

Pnm =

∫ 1

0

∫ 2π

0
f (r, ϕ)(cos mϕ − i sin mϕ)

Rnm(r)rdrdϕ
. (8)

|Pnm| is rotation invariant and is called Polar Fourier
Descriptors (PFD). Fig. 1 show the real and imaginary parts
of the basis functions Ψnm(r, ϕ) under different m,n values
with zero-value boundary condition.

2.2 Spherical Fourier Descriptor

After transforming 3D image function f (x, y, z) from carte-
sian coordinates to spherical coordinates f (r, θ, ϕ) where r,θ
and ϕ denote the radius, inclination and azimuth respec-
tively. It is defined on the unit sphere that r ≤ 1, and can
be expanded in terms of Ψnlm(r, θ, ϕ)

f (r, θ, ϕ) =
∞∑

n=1

∞∑
l=0

l∑
m=−l

SnlmΨnlm(r, θ, ϕ), (9)

where the coefficient is

Snlm =

∫ 1

0

∫ π

0

∫ 2π

0
f (r, θ, ϕ)

Ψ∗nlm(r, θ, ϕ)r2 sin θdrdθdϕ
. (10)

The basis function is given by
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Ψnlm(r, θ, ϕ) = Rnl(r)Ylm(θ, ϕ), (11)

where

Rnl(r) =
1√
N(l)

n

j(xlnr), (12)

where xln are positive roots for jl(x)

jl(x) =

√
π

2x
Jl+ 1

2
(x), (13)

and

Ylm(θ, ϕ) =

√
(2l + 1)(l − m)!

4π(l + m)!
Plm(cos θ)eimϕ, (14)

where Plm is the associated Legendre polynomial [13].
Similarly,N(l)

n is determined from S-L boundary conditions.
With zero-value boundary condition

N(l)
n =

1
2

j2l+1(xln), (15)

where xln is the nth positive root for jl(x). With derivative
boundary condition

N(l)
n =

1
2

⎛⎜⎜⎜⎜⎝1 − l(l + 1)

x2
ln

⎞⎟⎟⎟⎟⎠ j2l (xln), (16)

where xln is the nth positive root for j′l(x).
Rewrite (10) with (11)-(16),

Snlm =

∫ 1

0

∫ π

0

∫ 2π

0
f (r, θ, ϕ)Plm(cos θ)

(cos mϕ − i sin mϕ)

√
(2l + 1)(l − m)!

2π(l + m)!
Rnl(r)r2 sin θdrdθdϕ

. (17)

Spherical Fourier Descriptor (SFD) is defined as√√√ l∑
m=−l

|Snlm|. (18)

and is rotation invariant property of the 3D image function
for n and l.

3. Fast Polar and Spherical Fourier Descriptors

3.1 Fast PFD

From Eq. (8), we can find for the points on same radius r,
the different integrand part for each point is f (r, ϕ)(cos mϕ−
i sin mϕ). As Fig. 2 shown, point (x, y) is a point in first
quadrant below y = x, has seven other symmetric points
with respect to x axis, y axis, y = x, y = −x and origin.

Their cartesian and polar coordinates are shown in Ta-
ble 1.

As known sin(ϕ) and cos(ϕ) functions are periodic

Fig. 2 2D space symmetric points.

Table 1 Symmetric points of (x,y).

Coordinates Radius Azimuth

(x,y) r ϕ

(y,x) r π
2 − ϕ

(-y,x) r π
2 + ϕ

(-x,y) r π − ϕ
(-x,-y) r π + ϕ

(-y,-x) r 3π
2 − ϕ

(y,-x) r 3π
2 + ϕ

(x,-y) r 2π − ϕ

functions with period 2π. Periods for sin(mϕ) and cos(mϕ)
are 2π/m. Derived from the periodic and symmetric proper-
ties of trigonometric functions that used in FFT [14], math-
ematical relationships for trigonometric functions exist with
respect to different m. For example, if m is divided by 4
with remainder 1 which means mod(m, 4) = 1, following
relationship for cosine function can be deduced

cos
(
m

(
π

2
− ϕ

))
= sin(mϕ), (19)

cos
(
m

(
π

2
+ ϕ

))
= −sin(mϕ), (20)

cos (m (π − ϕ)) = −cos(mϕ), (21)

cos (m (π + ϕ)) = −cos(mϕ), (22)

cos

(
m

(
3π
2
− ϕ

))
= −sin(mϕ), (23)

cos

(
m

(
3π
2
+ ϕ

))
= sin(mϕ), (24)

cos (m (2π − ϕ)) = cos(mϕ). (25)

Similar relationships also exist for sinusoidal function and
other m values. For the eight symmetric points on the same
radius r, if their PFD coefficients can be calculated simulta-
neously, then the computation time for trigonometric func-
tion and Bessel function can be reduced.

Based on foregoing discussion, fast PFD is given by
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Gm(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f (x, y) + f (y, x) + f (−y, x) + f (−x, y)

+ f (−x,−y) + f (−y,−x) + f (y,−x) + f (x,−y))cos(mϕ) if mod(m, 4) = 0

( f (x, y) − f (−x, y) − f (−x,−y) + f (x,−y))cos(mϕ)

+( f (y, x) − f (−y, x) − f (−y,−x) + f (y,−x))sin(mϕ) if mod(m, 4) = 1

( f (x, y) − f (y, x) − f (−y, x) + f (−x, y)

+ f (−x,−y) − f (−y,−x) − f (y,−x) + f (x,−y))cos(mϕ) if mod(m, 4) = 2

( f (x, y) − f (−x, y) − f (−x,−y) + f (x,−y))cos(mϕ)

−( f (y, x) − f (−y, x) − f (−y,−x) + f (y,−x))sin(mϕ) if mod(m, 4) = 3

(30)

Hm(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( f (x, y) − f (y, x) + f (−y, x) − f (−x, y)

+ f (−x,−y) − f (−y,−x) + f (y,−x) − f (x,−y))sin(mϕ) if mod(m, 4) = 0

( f (x, y) + f (−x, y) − f (−x,−y) − f (x,−y))sin(mϕ)

+( f (y, x) + f (−y, x) − f (−y,−x) − f (y,−x))cos(mϕ) if mod(m, 4) = 1

( f (x, y) + f (y, x) − f (−y, x) − f (−x, y)

+ f (−x,−y) + f (−y,−x) − f (y,−x) − f (x,−y))sin(mϕ) if mod(m, 4) = 2

( f (x, y) + f (−x, y) − f (−x,−y) − f (x,−y))sin(mϕ)

−( f (y, x) + f (−y, x) − f (−y,−x) − f (y,−x))cos(mϕ) if mod(m, 4) = 3

(31)

Fast Pnm=

�

D

Rnm

(√
x2 + y2

)

w(x, y)(Gm(x, y) − iHm(x, y))dxdy

, (26)

where

D = {(x, y)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ x2 + y2 ≤ 1} ,
(27)

and

w(x, y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if (x, y) � K
1
2

if (x, y) ∈ K
, (28)

where

K = {(x, y)|y = x, y = −x, x = 0, y = 0} , (29)

and Gm(x, y) and Hm(x, y) are given in Eq. (30) and (31). By
using this equation, the whole PFD can be generated by us-
ing part of the basic functions. If points located on the sym-
metry axis K, w(x, y) is applied that the same point is only
calculated once. Computational complexity is reduced, only
one eighth of the trigonometric and Bessel coefficients are
calculated. If we store the coefficients of basis function in
lookup table as many machine vision applications usually
do, only 12.5% memory is needed compared with the direct
calculation.

3.2 Fast SFD

From Eq. (17) we can find that for the points with the
same radius r, the different integrand part for each point
is f (r, θ, ϕ)Plm(cos θ)(cos mϕ − i sin mϕ). As Fig. 3 shown,
point (x, y, z) in the first spherical quadrant bound with y = 0
and y = x planes, has 15 other symmetric points with respect
to x axis, y axis, z axis, y = x plane, y = −x plane and origin.

Fig. 3 3D space symmetric points.
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Their cartesian and spherical coordinates are show in
Table 2.

Mathematical property of associated Legendre polyno-
mial [12] is given by

Plm(−x) =

⎧⎪⎪⎨⎪⎪⎩Plm(x) if l + m is even

−Plm(x) if l + m is odd
, (32)

for integer l and m.
For two points symmetric with respect to z = 0 plane,

their inclinations are θ and π− θ. By applying mathematical
property of associated Legendre polynomial that given in
Eq. (32), we have:

Plm(cos (π − θ)) =
⎧⎪⎪⎨⎪⎪⎩Plm(cos θ) if l + m is even

−Plm(cos θ) if l + m is odd

(33)

Inspired by algorithm for PFD, we want to compute all the
16 points simultaneously by using the properties of associ-
ated Legendre polynomial and trigonometric function. As
the condition of Eq. (30),(31) is different from (33), rewrite
(33) as follows,

Plm(cos (π − θ)) =⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(−1)lPlm(cos θ) if mod(m, 4) = 0

(−1)l+1Plm(cos θ) if mod(m, 4) = 1

(−1)lPlm(cos θ) if mod(m, 4) = 2

(−1)l+1Plm(cos θ) if mod(m, 4) = 3

.
(34)

With this property, by combining the eight symmetric
points in both up half sphere and down half sphere, fast SFD
is given by

Table 2 Symmetric points of (x,y,z).

Coordinates Radius Inclination Azimuth

(x,y,z) r θ ϕ

(y,x,z) r θ π
2 − ϕ

(-y,x,z) r θ π
2 + ϕ

(-x,y,z) r θ π − ϕ
(-x,-y,z) r θ π + ϕ

(-y,-x,z) r θ 3π
2 − ϕ

(y,-x,z) r θ 3π
2 + ϕ

(x,-y,z) r θ 2π − ϕ
(x,y,-z) r π − θ ϕ

(y,x,-z) r π − θ π
2 − ϕ

(-y,x,-z) r π − θ π
2 + ϕ

(-x,y,-z) r π − θ π − ϕ
(-x,-y,-z) r π − θ π + ϕ

(-y,-x,-z) r π − θ 3π
2 − ϕ

(y,-x,-z) r π − θ 3π
2 + ϕ

(x,-y,-z) r π − θ 2π − ϕ

FastSnlm=

�

S

Rnl(
√

x2 + y2 + z2)

Plm(
|z|√

x2 + y2 + z2
)

√
(2l + 1)(l − m)!

2π(l + m)!

w(x, y, z)(Glm(x, y, z) − iHlm(x, y, z))dxdydz

, (35)

where

S = {(x, y, z)|0 ≤ x ≤ 1, 0 ≤ y ≤ x, 0 ≤ z ≤ 1,
x2 + y2 + z2 ≤ 1} , (36)

and

w(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if (x, y, z) � A
⋃

B
1
2

if (x, y, z) ∈ A
⋃

B − A
⋂

B

1
4

if (x, y, z) ∈ A
⋂

B

, (37)

where

A = {(x, y, z)|y = x, y = −x, x = 0, y = 0} , (38)

and

B = {(x, y, z)|z = 0} , (39)

and Glm(x, y, z) and Hlm(x, y, z) are given in Eq. (40) and
(41). By using this equation, SFD can be generated by only
calculating half of the first spherical quadrant. If points lo-
cated on the symmetry planes A and B, w(x, y, z) is applied
that the same point is only calculated once. Computational
complexity is reduced, only one sixteenth of the trigonomet-
ric function, Bessel function and associated Legendre poly-
nomial coefficients are calculated. If the coefficients need
to be stored in lookup table just like many realtime systems
usually do, only 6.25% memory is needed.

4. Experimental Results

The performance of the proposed computation method for
PFD and SFD in computation reduction is validated through
comparative experiments using images of various resolu-
tions. Both synthetic images and real images are used in the
experiments. Images with different resolution and content
are tested for test to illustrate the efficiency and feasibility
of the proposed method over direct calculation. PC envi-
ronment (Xeon 2.6 GHz, 1 G Memory) is used to perform
the experiments. Algorithms are implemented by C++ and
complied by gcc 4.3.2 on Linux 2.6.26 . GNU Scientific Li-
brary [15] is used to calculate Bessel function and associated
Legendre polynomials.

4.1 Synthetic Images

In this experiment, synthetic images which are gray scale in
format are used. They are generated using the formula given
as for 2D PFD,
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Glm(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(( f (x, y, z) + f (y, x, z) + f (−y, x, z) + f (−x, y, z)

+ f (−x,−y, z) + f (−y,−x, z) + f (y,−x, z) + f (x,−y, z))

+(−1)l( f (x, y,−z) + f (y, x,−z) + f (−y, x,−z) + f (−x, y,−z)

+ f (−x,−y,−z) + f (−y,−x,−z) + f (y,−x,−z) + f (x,−y,−z)))cos(mϕ) if mod(m, 4) = 0

(( f (x, y, z) − f (−x, y, z) − f (−x,−y, z) + f (x,−y, z))+

(−1)l+1( f (x, y,−z) − f (−x, y,−z) − f (−x,−y,−z) + f (x,−y,−z)))cos(mϕ)

+(( f (y, x, z) − f (−y, x, z) − f (−y,−x, z) + f (y,−x, z))+

(−1)l+1( f (y, x,−z) − f (−y, x,−z) − f (−y,−x,−z) + f (y,−x,−z)))sin(mϕ) if mod(m, 4) = 1

(( f (x, y, z) − f (y, x, z) − f (−y, x, z) + f (−x, y, z)

+ f (−x,−y, z) − f (−y,−x, z) − f (y,−x, z) + f (x,−y, z))

+(−1)l( f (x, y,−z) − f (y, x,−z) − f (−y, x,−z) + f (−x, y,−z)

+ f (−x,−y,−z) − f (−y,−x,−z) − f (y,−x,−z) + f (x,−y,−z)))cos(mϕ) if mod(m, 4) = 2

(( f (x, y, z) − f (−x, y, z) − f (−x,−y, z) + f (x,−y, z))+

(−1)l+1( f (x, y,−z) − f (−x, y,−z) − f (−x,−y,−z) + f (x,−y,−z)))cos(mϕ)

−(( f (y, x, z) − f (−y, x, z) − f (−y,−x, z) + f (y,−x, z))+

(−1)l+1( f (y, x,−z) − f (−y, x,−z) − f (−y,−x,−z) + f (y,−x,−z)))sin(mϕ) if mod(m, 4) = 3

(40)

Hlm(x, y, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(( f (x, y, z) − f (y, x, z) + f (−y, x, z) − f (−x, y, z)

+ f (−x,−y, z) − f (−y,−x, z) + f (y,−x, z) − f (x,−y, z))

+(−1)l( f (x, y,−z) − f (y, x,−z) + f (−y, x,−z) − f (−x, y,−z)

+ f (−x,−y,−z) − f (−y,−x,−z) + f (y,−x,−z) − f (x,−y,−z)))sin(mϕ) if mod(m, 4) = 0

(( f (x, y, z) + f (−x, y, z) − f (−x,−y, z) − f (x,−y, z))+

(−1)l+1( f (x, y,−z) + f (−x, y,−z) − f (−x,−y,−z) − f (x,−y,−z)))sin(mϕ)

+(( f (y, x, z) + f (−y, x, z) − f (−y,−x, z) − f (y,−x, z))+

(−1)l+1( f (y, x,−z) + f (−y, x,−z) − f (−y,−x,−z) − f (y,−x,−z)))cos(mϕ) if mod(m, 4) = 1

(( f (x, y, z) + f (y, x, z) − f (−y, x, z) − f (−x, y, z)

+ f (−x,−y, z) + f (−y,−x, z) − f (y,−x, z) − f (x,−y, z))

+(−1)l( f (x, y,−z) + f (y, x,−z) − f (−y, x,−z) − f (−x, y,−z)

+ f (−x,−y,−z) + f (−y,−x,−z) − f (y,−x,−z) − f (x,−y,−z)))sin(mϕ) if mod(m, 4) = 2

(( f (x, y, z) + f (−x, y, z) − f (−x,−y, z) − f (x,−y, z))+

(−1)l+1( f (x, y,−z) + f (−x, y,−z) − f (−x,−y,−z) − f (x,−y,−z)))sin(mϕ)

−(( f (y, x, z) + f (−y, x, z) − f (−y,−x, z) − f (y,−x, z))+

(−1)l+1( f (y, x,−z) + f (−y, x,−z) − f (−y,−x,−z) − f (y,−x,−z)))cos(mϕ) if mod(m, 4) = 3

(41)

f (i, j) = round[random(N,N)],
0 ≤ f (i, j) ≤ 255,∀i, j,

(42)

and for 3D SFD,

f (i, j, h) = round[random(N,N,N)],
0 ≤ f (i, j, h) ≤ V,∀i, j, h,

(43)

where f (i, j) and f (i, j, h) are the image function which its

pixels integer in values, N ×N and N ×N ×N are the image
resolution and i, j,h are the indices of the image pixels. In
this experiment, largest value V of f (i, j, h) equals 255.

These synthetic images are varied in resolution and
content. The purpose of using them is to minimize the ef-
fects caused by the image and hence robust assessment can
be attained from the experimental results. The PFD and SFD
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Fig. 4 Real image data set.

Table 3 CPU elapsed time for synthetic images.

Descriptor Resolution D P P/D

PFD
64*64 0.345 0.045 0.130

128*128 1.345 0.179 0.133
256*256 5.561 0.754 0.135

SFD
64*64*64 23.691 1.611 0.068

128*128*128 117.029 12.392 0.070
256*256*256 1484.532 101.751 0.069

D=direct calculation, P=proposed method

coefficients are computed from the synthetic images. Di-
rect calculations use Eq. (8) and (17). The proposed meth-
ods use Eq. (26) and (35). The maximum number of co-
efficients calculated for PFD and SFD is 20. With same
computation result, but two methods have different running
time. Their computation performances in terms of the aver-
age CPU elapsed time are given in Table 3.

The results from Table 3 show significant reductions
in average CPU elapsed time for PFD and SFD for 2D and
3D images. The average percentage of reduction is around
87.5% and 93.75% for PFD and SFD respectively. Almost
similar with the theoretical analysis as Sect. 3.

4.2 Real Images

The performance tests of PFD and SFD computation meth-
ods are also carried out for real images. The real images
for testing consist of two data sets. 2D test data set consists
of 2D real images as shown in Fig. 4. 3D test data set is
selected 10 images from Princeton 3D image database [16].
Different numbers of PFD and SFD coefficients are calcu-
lated for these two test data sets. The test results are shown
in Table 4. Upper part is for 2D test data, lower part is for
3D test data. Proposed method is effective not only for small
number coefficients but also for large number coefficients.
Based on the results, the reduction trend observed in real
images for the proposed method is similar to the reduction
trend observed in random images.

Table 4 CPU elapsed time for real image data sets.

Data Set Coefficients D P P/D

2D images

5 2.832 0.371 0.131
10 5.689 0.751 0.132
20 11.398 1.459 0.128
30 16.829 2.205 0.131
40 22.563 2.911 0.129

3D images

5 58.097 4.183 0.072
10 115.014 8.166 0.071
20 248.368 16.889 0.068
30 361.181 25.644 0.071
40 491.766 34.424 0.070

D=direct calculation, P=proposed method

5. Conclusions

In this paper, we propose fast PFD and SFD. By using
the symmetric properties and mathematical properties of
trigonometric functions and associate Legendre polynomi-
als, the proposed methods only calculate one eighth and
sixteenth of trigonometric functions, Bessel functions and
associate Legendre polynomials to get PFD and SFD, re-
spectively. That is to say, for 2D images proposed fast PFD
computation speed is increased by 8 times. For 3D images,
proposed fast SFD method is 16 times faster. Experimental
results are also given on both synthetic and real images to
illustrate their efficiencies. Moreover the memory require-
ment for storing the coefficients of basis functions are also
reduced. Wide range of machine vision applications that
need fast computation of rotation invariant descriptors will
benefit from this method.
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