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PAPER

High-Speed Low-Complexity Architecture for Reed-Solomon
Decoders

Yung-Kuei LU†, Student Member and Ming-Der SHIEH†a), Member

SUMMARY This paper presents a high-speed, low-complexity VLSI
architecture based on the modified Euclidean (ME) algorithm for Reed-
Solomon decoders. The low-complexity feature of the proposed architec-
ture is obtained by reformulating the error locator and error evaluator poly-
nomials to remove redundant information in the ME algorithm proposed
by Truong. This increases the hardware utilization of the processing ele-
ments used to solve the key equation and reduces hardware by 30.4%. The
proposed architecture retains the high-speed feature of Truong’s ME algo-
rithm with a reduced latency, achieved by changing the initial settings of
the design. Analytical results show that the proposed architecture has the
smallest critical path delay, latency, and area-time complexity in compari-
son with similar studies. An example RS(255,239) decoder design, imple-
mented using the TSMC 0.18 μm process, can reach a throughput rate of
3 Gbps at an operating frequency of 375 MHz and with a total gate count
of 27,271.
key words: channel decoder, modified Euclidean algorithm, Reed-Solomon
codes, VLSI architectures

1. Introduction

Reed-Solomon (RS) code possesses an excellent capability
of correcting both random and burst errors and is widely
used in digital communication and storage systems [1], [3].
Many RS decoding algorithms and architectures have been
proposed [3]–[14]. A syndrome-based RS decoder generally
consists of three main blocks: the syndrome computation
(SC) unit, the key equation solver (KES) unit, and the Chien
search and error evaluation (CSEE) unit.

The KES unit used to find the error locator and error
evaluator polynomials is the most critical part in the de-
sign of RS decoders. The key equation is generally solved
by employing the Berlekamp-Massey (BM) algorithm [2]–
[4], [18] or the modified Euclidean (ME) algorithm [5]–[14].
Compared to the architecture derived based on the ME al-
gorithm, the BM architecture is conventionally thought of
as being irregular and having a longer critical path delay,
although it uses simpler computations to find the error lo-
cator polynomial. Criticisms of the irregular architecture
and longer delay of the BM algorithm have recently sub-
sided due to the development of the reformulated inversion-
less BM (RiBM) architecture [4]. For a t-error-correcting
RS code, the RiBM architecture is made up of 3t + 1 identi-
cal basic cells with a critical path delay of Tmult+Tadd, where
Tmult and Tadd denote the delays of the finite-field multiplier
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(FFM) and adder, respectively.
The architecture based on the conventional ME algo-

rithm [5] is regular, but the hardware cost is high due to the
required degree computation and comparison circuit. High-
speed ME architectures using pipelined multipliers to re-
duce the critical path delay were presented in [8] and [9].
However, the architectures are not area-efficient and require
a larger number of clock cycles to solve the key equation.
Truong et al. [6] presented a fast decoding algorithm based
on the ME algorithm together with the BM algorithm to re-
move the need for degree computation. The corresponding
architecture [7] has a simple control circuit and can operate
at high data rates with a critical path delay of Tmult + Tadd.
The main drawback of this architecture is its high hard-
ware requirement of 4t + 2 basic cells. Recently, Baek
and Sunwoo presented a low-complexity architecture using
the degree computationless modified Euclidean (DCME) al-
gorithm [10]. Their following studies [11], [12] further re-
duced the hardware requirement to 3t basic cells and short-
ened the latency to 2t − 1 clock cycles for solving the key
equation. However, there is an extra 2-to-1 multiplexer de-
lay in the critical path, which is longer than that presented
in [7].

In this work, we reformulate Truong’s ME algorithm
in [6] and then propose a high-speed, low-complexity archi-
tecture for the RS decoder design. The hardware complex-
ity is reduced by improving the hardware utilization of the
basic cells using the reformulated ME algorithm. With the
proposed high-utilization arrangement scheme, we can re-
duce the number of required basic cells in [7] from 4t + 2
to 3t − 1. Compared to the results in [12], the proposed
architecture has a simpler control circuit and can achieve
a higher clock rate with a shorter critical path delay of
Tmult + Tadd. Moreover, we change the initial settings in
the proposed architecture to save one iteration when solving
the key equation. One fewer iteration potentially lowers the
hardware requirement for some specific applications, such
as the area-efficient design in [14]. Note that the proposed
architecture can operate at a speed comparable to that of
the RiBM architecture, with one fewer iteration and lower
hardware requirements. Experimental results show that the
prototype circuit, targeting RS(255,239) decoder, can oper-
ate at 375 MHz with a total gate count of 27,271 based on
the TSMC 0.18 μm process.

The rest of this paper is organized as follows. Section 2
reviews the background information and describes the re-
formulated Truong’s ME algorithm. Section 3 presents the
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proposed high-speed, low-complexity RS decoder design.
The performance evaluation and comparisons with related
work are shown in Sect. 4. Section 5 concludes this work.

2. Background and Reformulated ME Algorithm

This section gives a brief review of the fast ME algorithm
presented by Truong et al. [6], which is denoted as the ME-T
algorithm hereafter. Then, we describe how to reformulate
the ME-T algorithm to reduce the hardware resources and
change the initial settings to shorten the latency required for
solving the key equation.

2.1 Background Information

Let S (x) = s0 + s1x + . . . + s2t−1x2t−1 denote the syndrome
polynomial, where si, 0 ≤ i ≤ 2t − 1, are the computed
syndrome values. Given S (x), the error locator polynomial
Λ(x) and the error evaluator polynomial Ω(x) can be ob-
tained using the ME algorithm or the BM algorithm to solve
the key equation:

Λ(x)S (x) ≡ Ω(x) mod x2t. (1)

The proposed architecture is based on the reformulated
ME-T algorithm described later. For completeness, we
briefly review the ME-T algorithm [6] below. Based on the
ME algorithm, Truong et al. presented a new decoding al-
gorithm by combining the mechanism of the BM algorithm
to avoid polynomial division and field element inversion in
conventional Euclidean [1] and BM [2] algorithms, respec-
tively. Given an additional variable l, which is used in the
BM algorithm, the ME-T algorithm is stated as follows:

(T.1) Initialization:

Ω(a)(x) = x2t, Ω(b)(x) = S (x), Λ(a)(x) = 0, Λ(b)(x) = 1,

k = 0, l = 0; (2)

(T.2) Polynomial Updates:

Ω(b)(x) = xΩ(b)(x), Λ(b)(x) = xΛ(b)(x); (3)

u = Ω(b)
2t , v = Ω(a)

2t ; (4)

Ω(c)(x) = uΩ(a)(x) + vΩ(b)(x)
Λ(c)(x) = uΛ(a)(x) + vΛ(b)(x)

; (5)

If u � 0 and 2l ≤ k, then

Ω(a)(x) = Ω(b)(x), Λ(a)(x) = Λ(b)(x), l = k+1−l; (6)

Ω(b)(x) = Ω(c)(x), Λ(b)(x) = Λ(c)(x); (7)

(T.3) k = k + 1. If k ≤ 2t − 1, then go to (T.2).
(T.4) Output: Ω(b)(x), Λ(b)(x).

In the algorithm, the superscripts a and b denote the pre-
vious and current states of polynomials, respectively. For
example, Ω(a)(x) is the dividend polynomial and Ω(b)(x) is
the corresponding divisor polynomial in each iteration. The
superscript c in (5) represents the intermediate result of the
polynomial. The variables u and v are the (2t)th coefficients,

i.e., leading coefficients, of Ω(b)(x) and Ω(a)(x), respectively.
The basic idea of this algorithm is to produce a zero coeffi-
cient at the x2t term ofΩ(c)(x) by performing (3), (4), and (5)
in each iteration. As a result, the ME-T algorithm elim-
inates the degree computation and comparison in conven-
tional ME algorithms [5], [8]. Note that the condition u � 0
and 2l ≤ k is checked in (6) to avoid producing leading zero
coefficients for both Ω(a)(x) and Ω(b)(x) in the next iteration.
This implies that the zero polynomial will not appear when
performing (5). After 2t iterations, the desired Ω(b)(x) and
Λ(b)(x) are obtained simultaneously.

2.2 Reformulation of the ME-T Algorithm

From the ME-T algorithm, the length of consecutive zero
coefficients ofΩ(b)(x) grows incrementally, starting from the
constant term, as the iterations proceed. Since the zero co-
efficients are not used in later iterations, they can be dis-
carded. Before describing how to reformulate the ME-T
algorithm for efficient hardware implementation, we intro-
duce two properties, which are helpful for removing the re-
dundant zero coefficients.

For clarity, we use the notations Ω̃(x) and Λ̃(x) here-
after to denote the error evaluator and error locator poly-
nomials, respectively, in the conventional ME algorithm [5]
to distinguish them from those in the ME-T algorithm. As
stated in [5] and [15], the following two properties hold dur-
ing the iterations of the conventional ME algorithm. Note
that except the first leading zero coefficient of the polyno-
mials, the following zero coefficients, if any, are reserved
for the next iteration; therefore, only one leading zero coef-
ficient is removed in each iteration.

Property 1: Since the sum of the degrees of Ω̃(a)(x) and
Ω̃(b)(x) is decreased by one at each iteration, the following
equation holds at the beginning of the k-th iteration:

deg(Ω̃(a)(x)) + deg(Ω̃(b)(x)) = 4t − 1 − k (8)

Property 2: The sum of the degrees of Ω̃(a)(x) and Λ̃(b)(x)
remains constant during the iterations of the conventional
ME algorithm. It was stated in [15] that:

deg(Ω̃(a)(x)) + deg(Λ̃(b)(x)) = 2t. (9)

From the ME-T algorithm, one can show that the degrees
of Ω(b)(x) and Λ(b)(x) are 2t − 1 and k, respectively, at the
beginning of the k-th iteration for 0 ≤ k ≤ 2t. Together with
Properties 1 and 2, we can derive the following equation:

deg(Ω(b)(x))−deg(Ω̃(b)(x))=deg(Λ(b)(x))−deg(Λ̃(b)(x))

(10)

This implies that the left-shift operation (3) has the same ef-
fect on both Ω(b)(x) and Λ(b)(x) during the iterations of the
ME-T algorithm. That is, Ω(b)(x) and Λ(b)(x) can be repre-
sented as:

Ω(b)(x) = xp(k)Ω̃(b)(x) and Λ(b)(x) = xp(k)Λ̃(b)(x), (11)
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where p(k) ≥ 0. Thus, Ω(b)(x) consists of p(k) consecutive
zero coefficients, starting from the constant term, at the be-
ginning of the k-th iteration. The p(k) terms can be treated
as redundant information, which can be removed with no
information loss. The degree of Λ̃(b)(x) is no more than t
during each iteration because it is a non-decreasing value
and is equal to t at the end of 2t iterations [5]. This implies
that p(k) ≥ k − t; therefore, we can derive the following
equation:

deg(Ω̃(b)(x)) = deg(Ω(b)(x)) − p(k) ≤ 3t − 1 − k. (12)

Note the value of p(2t) is equal to t. Knowing that there are
p(k) consecutive zero coefficients, we define a new poly-
nomial Ω̂(*)(x) as the concatenation of the two polynomials
Ω(*)(x) and Λ(*)(x):

Ω̂(*)(x) = Ω(*)(x) · xt+1 + Λ(*)(x) (13)

The notation Ω̂(*)(x) is used to represent Ω̂(a)(x) or Ω̂(b)(x)
when appropriate. According to (12), one can show that the
useful information of Ω(b)(x) and Λ(b)(x), i.e, Ω̃(b)(x) and
Λ̃(b)(x), respectively, does not overlap during iterations. In
other words, the coefficients of Ω(b)(x) overwritten by those
of Λ(b)(x) in the reformulated algorithm are the redundant
zero coefficients mentioned above. Therefore, the concate-
nated polynomial Ω̂(x) is enough to find the error locator
and error evaluator polynomials. From (13), the degrees of
Ω̂(a)(x) and Ω̂(b)(x) are 3t + 1 and 3t, respectively, because
deg(Ω(a)(x)) = 2t and deg(Ω(b)(x)) = 2t − 1.

Since the syndrome polynomial S (x) is available be-
fore performing the ME-T algorithm, we can use the com-
puted results of the first iteration as its initial settings to save
one iteration. This implies that the total number of iterations
required to solve the key equation can be reduced from 2t to
2t − 1. The benefit of reducing the number of iterations by
one is described later in the performance evaluation. Using
the defined concatenated polynomial Ω̂(x) together with the
initial settings, the reformulated ME-T algorithm, denoted
as the ME-R algorithm, is proposed below:

(R.1) Initialization:

Ω̂(a)(x) =

{
x3t+1, if s2t−1 = 0
xt+2S (x) + x, if s2t−1 � 0

,

Ω̂(b)(x) = [xt+2S (x) + x] mod x3t+1, (14)

k = 1, l =

{
0, if s2t−1 = 0
1, if s2t−1 � 0

.

(R.2) Polynomial Updates:

Ω̂(b)(x) = xΩ̂(b)(x); (15)

u = Ω̂(b)
3t+1, v = Ω̂(a)

3t+1; (16)

Ω̂(c)(x) = uΩ̂(a)(x) + vΩ̂(b)(x); (17)

If u � 0 and 2l ≤ k, then

Ω̂(a)(x) = Ω̂(b)(x), l = k + 1 − l; (18)

Ω̂(b)(x) = Ω̂(c)(x); (19)

(R.3) k = k + 1. If k ≤ 2t − 1, then go to (R.2).

Table 1 Example for showing iterations of the ME-R algorithm.

(R.4) Output: Ω̂(b)
i , for t ≤ i ≤ 3t.

Note that the symbol s2t−1 is the leading coefficient of
the syndrome polynomial S (x), and that the initial settings
in (14) can be easily obtained in the hardware implementa-
tion. At the end of the ME-R algorithm, the coefficients of
the output Ω̂(b)

i for t ≤ i ≤ 2t and 2t+1 ≤ i ≤ 3t, respectively,
represent the desired error locator and error evaluator poly-
nomials, which are the same as the useful information of
Λ(b)(x) and Ω(b)(x) derived from the ME-T algorithm. Com-
pared to the original ME-T algorithm, the presented ME-R
algorithm significantly reduces the corresponding hardware
requirement without degrading the operation speed, as de-
scribed later. Moreover, a simple example is given below to
demonstrate the proposed ME-R algorithm.

Example: Consider a 2-error-correcting RS(7,3) code over
GF(23), which is constructed by the primitive polynomial
x3 + x + 1 with a primitive element α. Let the generator
polynomial and the transmitted information polynomial be
G(x) = x4 +α3x3 + x2 +αx+α and D(x) = α2x2 +α5x+α2,
respectively. According to the systematic encoding, the
corresponding codeword C(x) can be derived as C(x) =
α2x6 + α5x5 + α2x4 + α3x3 + α5x2. Assume the error poly-
nomial is E(x) = α5x5 + αx3, the received word can be ex-
pressed as R(x) = C(x) + E(x) = α2x6 + α2x4 + x3 + α5x2.
Then, we can calculate the syndrome polynomial S (x) =
α3x3 +α4x2 +α3x+α6. Table 1 shows the initial conditions
and the computed values in each iteration of the proposed
ME-R algorithm. In this table, we use the n-tuple repre-
sentation to denote a polynomial with degree n − 1. For
instance, (α4, α3, α6, 0, 0, 1, 0) represents the coefficients of
Ω̂(b)(x) scanning from the high-order term. After 3 itera-
tions, i.e., k = 4, the error locator polynomial and the error
evaluator polynomial are computed as α4x2 + α5x + α3 and
α3x + α2, respectively. Finally, we can find the error lo-
cations α3 and α5 by the Chien search and use the Forney
algorithm to obtain the corresponding error values α and α5,
respectively.

3. Proposed High-Speed, Low-Complexity Architec-
ture

Since the degree of the defined polynomial Ω̂(x) is restricted
to 3t + 1 in the ME-R algorithm, the corresponding archi-
tecture can be constructed using 3t + 2 basic cells together
with a simple control circuit. Note that the design based on
the original ME-T algorithm takes 4t + 2 cells [7]. The de-
veloped architecture inherits the high-speed feature of the
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ME-T algorithm; therefore, it can operate at a higher speed
than those of related studies [10]–[12] that applied various
refinement strategies to the conventional ME algorithm.

3.1 Basic Cell Design and Boundary Cell Simplification

From (15)–(19) of the ME-R algorithm, the basic cell design
is shown in Fig. 1 (a), in which Ω̂i denotes the coefficient of
the i-th term of Ω̂(x); u and v are the leading coefficients
of Ω̂(b)(x) and Ω̂(a)(x), respectively. The control signal w
is used to determine the previous state Ω̂(a)(x) for the next
iteration, as shown in (18). The critical path delay of the
basic cell is equal to Tmult + Tadd, which is independent of t.

Since Ω̂(c)
3t+1 in (17) is always reduced to zero, there is

no need to store this value. As a result, the circuit used to up-
date Ω̂(b)

3t+1 can be removed and the basic cell is further sim-
plified to include only one register and one multiplexer for
updating Ω̂(a)

3t+1. Figure 1 (b) depicts the simplified boundary

Fig. 1 (a) Basic cell (PE). (b) SBC0: Simplified basic cell combined with
the control circuit. (c) SBC1: Simplified cell for storing and updating Ω̂(a)

1

and Ω̂(b)
1 .

Fig. 2 VLSI architecture for the proposed ME-R algorithm.

cell, denoted as SBC0, which includes the simplified basic
cell to find Ω̂(a)

3t+1, the (3t + 1)th term of Ω̂(a)(x), and the con-
trol circuit adopted to check whether the conditions u � 0
and 2l ≤ k are satisfied. The control unit includes a counter
for the variable k and a circuit for checking the conditions.
When the conditions u � 0 and 2l ≤ k are satisfied, the
control signal w is set to 1; otherwise w = 0. Techniques
such as those used in [4] and [16] can be employed to de-
sign the control unit so that it does not dominate the overall
critical path delay of decoders for RS codes of practical in-
terest. Hence, the circuit of checking these two conditions
is simpler than those designed with the finite state machines
presented in [9] and [19]. Moreover, using the new initial
settings in (14), the constant terms Ω̂(a)

0 and Ω̂(b)
0 remain zero

at each iteration; therefore, the cell for updating and storing
Ω̂

(a)
0 and Ω̂(b)

0 can be eliminated.

The condition that Ω̂(a)
0 = Ω̂

(b)
0 = 0 always holds can be

further applied to simplify the circuit for updating Ω̂(a)
1 and

Ω̂
(b)
1 , described as follows: First, Ω̂(b)

0 = 0 implies that Ω̂(b)
1 =

uΩ̂(a)
1 in each iteration. From (18), the updated value of Ω̂(a)

1

for the next iteration can thus be assigned as wΩ̂(b)
0 +w̄Ω̂(a)

1 =

w̄Ω̂(a)
1 , where w̄ denotes the complement of the 1-bit control

signal w. Secondly, the data width of the associated register
and multiplexer required for updating Ω̂(a)

1 is only one bit as
the initial value of Ω̂(a)

1 is either 0 or 1, depending on whether
s2t−1 is zero or not. This in turn indicates that the circuit
used to update Ω̂(b)

1 can be also simplified because of Ω̂(b)
1 =

uΩ̂(a)
1 . Thirdly, the hardware requirement of this simplified

cell is much smaller than that of the basic cell because no
multiplier is needed for updating Ω̂(a)

1 and Ω̂(b)
1 . Figure 1 (c)

shows the corresponding simplified cell, denoted as SBC1,
in which the symbol Ω̂(a)

1,LSB denotes the least significant bit

(LSB) of Ω̂(a)
1 .

3.2 High-Speed, Low-Complexity Architecture

Figure 2 depicts the proposed architecture with its initial val-
ues indicated in rectangular boxes inside the basic cells, de-
noted as PE for short. The architecture consists of 3t − 1
basic cells together with two boundary cells, as shown in
Fig. 1 (b) and Fig. 1 (c). The values in parentheses within the
upper registers of PEs are the initial settings of Ω̂(a)(x) for
s2t−1 � 0 and those outside the parentheses are for s2t−1 = 0,
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as defined in (14). The three control signals, u, v, and w,
are broadcasted to all the PE cells. Note that global control
signals are inevitable in this kind of KES design.

As the iterations proceed, the coefficients of Ω̂(a)(x) and
Ω̂(b)(x) are shifted to the left and updated based on the values
of control signals. After 2t − 1 iterations, the desired error
locator and error evaluator polynomials are obtained in PEi

for t − 2 ≤ i ≤ 2t − 2 and 2t − 1 ≤ i ≤ 3t − 2, respectively,
at the same time. The results can be directly used in the
Forney algorithm [1] to compute the error values. The ar-
chitecture designed based on the proposed ME-R algorithm
can operate at very high speeds with a significant reduction
in the number of building cells. One iteration is saved as
compared to that in [7] developed from the original ME-T
algorithm [6].

4. Performance Evaluation and Comparison

This section shows the performance evaluation of our devel-
opment and comparisons with related work. For the analyt-
ical results, we used the RS(255,239) decoder, one of the
most popular designs in practical applications, as the exam-
ple design to demonstrate the effectiveness of the proposed
work.

4.1 Complexity Analysis

Table 2 lists the area and time complexities of various KES
designs derived from the ME algorithm. From Table 2, the
proposed architecture has the smallest critical path delay
(Tmult + Txor2) and latency (2t − 1 clock cycles) as compared
with those of related studies [7], [10]–[12]. Note that the
symbol Txor2 represents the delay time of a 2-input XOR
gate, which is the same as the delay time Tadd of finite-field
addition. The reduced critical path delays in [8] and [9]
were obtained using pipelined multipliers, which result in
the highest hardware complexity and latency. Excluding the
control circuit, the proposed ME-R architecture consists of
6t− 2 multipliers, 3t− 1 adders, 6t registers, and 5t+ 1 mul-
tiplexers (3t multiplexers are used with the control signal w

Table 2 Comparison of time and area complexities of various KES designs using the ME algorithm.

(1) The values are estimated in finite field GF(28) constructed from the primitive polynomial x8 + x4 + x3 + x2 + 1. Note that t = 8 is used to calculate the
area complexity.
(2) TGn notes the delay time of a logic cell G with n inputs. Note that Txor2 is equal to Tadd.
(3) Designs using pipelined multipliers to reduce the critical path delay.

to determine Ω̂(a)
i , one multiplexer is employed in SBC1 cell

to update Ω̂(b)
1 , and the remaining 2t multiplexers are used

for initializing the upper register in the leftmost 2t cells, as
indicated in Fig. 2). Compared to the design in [11], the pro-
posed design can operate faster with comparable hardware
requirement. Note that the hardware requirement of a mul-
tiplier is much higher than that of a multiplexer.

To further verify the effectiveness of the proposed de-
sign, we used the cell library information in [17] to analyze
the resulting area and time complexities of the various KES
designs in GF(28), assuming that a widely used primitive
polynomial x8 + x4 + x3 + x2 + 1 is adopted to construct
the field. For simplicity, the cell delay and area require-
ment of each cell are normalized with respect to those of the
2-input AND gate as given in Table 3. The compiled results
including the area-time (AT) complexity and improvement
are shown in the right half of Table 2. The AT improve-
ment is defined as (AT2 − AT1)/AT2, where AT2 and AT1

denote the AT complexity of the related work and ours, re-
spectively. For a fair comparison, we used the same kind of
parallel FFM, as presented in [8], for each design.

Note that Lee [8] further pipelined the parallel FFM
into 3 stages to reduce the critical path delay, with an over-
head of 23 pipelined flip-flops. Since his following study [9]
did not show the detailed structure of the 2-stage pipelined
FFM, we suppose that the same kind of FFM was used, but
with only 15 pipelined flip-flops. The critical path delay
and the area requirement of the non-pipelined FFM, em-
ployed in the proposed architecture, can be estimated as
Tmult = Tand2 + 5Txor2 and Amult = 64Aand2 + 77Axor2, re-
spectively. Note that the widths of finite-field adders, reg-
isters, and multiplexers listed in Table 2 are 8 bits, and the
value of t is set to 8 for area complexity estimation of prac-
tical applications (0 ≤ t ≤ 8). From Table 2, we can see
that the proposed architecture greatly reduces the derived
AT complexity compared to those of the related works. In
particular, the proposed architecture provides a 30.4% im-
provement in AT complexity compared to the design in [7],
which uses the ME-T algorithm. Note that the proposed ar-
chitecture has a shorter latency and fewer basic cells than
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Table 3 Normalized delay and area of employed standard cells.

Fig. 3 Layout view of the proposed RS decoder.

Table 4 Performance comparison with other RS(255,239) decoders.

the RiBM architecture for solving the key equation. One
fewer iteration potentially lowers the hardware requirement
for some specific applications. For example, instead of de-
creasing the value of the folding factor in the direct folding
approach, Hsu [14] employed a pre-computation scheme to
save one iteration so that the hardware utilization of the re-
sulting folded architecture could be increased to lower the
hardware cost.

4.2 Experimental Results and Comparisons

Based on the proposed architecture, an RS(255,239) de-
coder was coded in Verilog language and synthesized us-
ing Synopsys tools based on TSMC 0.18 μm 1.8 V CMOS
technology. The post-layout simulation shows that our de-
coder design can operate at 375 MHz with a total gate count
of 27,271. The layout view of the proposed RS(255,239)
decoder designed with a first-in first-out (FIFO) buffer for
storing input symbols is shown in Fig. 3, which has a core
size of about 0.68 × 0.68 mm2. Table 4 shows comparisons
between our design and those of related studies. To con-
sider the scaling effect of fabrication technology, we adopt
the definition of technology scaled normalized throughput
rate (TSNT) in [14] as

Table 5 Comparison of time and area complexities of the proposed
ME-R architecture and relative BM-based architectures.

(1) The hardware complexity and path delay are estimated in [4].
(2) A multiplexer has much smaller hardware complexity than a multiplier
does.

TSNT = (Throughput rate)×(Tech./0.13 μm)/# Gates.

As can be seen from the table, the proposed design has the
best TSNT for the KES unit. Compared with the latest de-
sign [11], the proposed design can achieve about 12.7% im-
provements in the TSNT index. Note that the comparison of
the total gate counts of decoders was made by excluding the
FIFO required to buffer input symbols for error correction.
In addition, the total gate count of the SC and CSEE units
in [8] and [9] are slightly more than ours since their designs
need extra pipelined registers and a pipelined multiplier in
the CSEE unit to operate at higher clock rates.

Compared to the RiBM architecture, the proposed
ME-R architecture possesses one fewer iteration and lower
hardware requirement with the same critical path delay, as
shown in Table 5. The main differences between these two
architectures are the opposite data flow and different initial
settings. The opposite data flow comes from the fact that
the ME algorithm processes the polynomials starting from
the term with the highest degree, while the RiBM algorithm
is from the one with lowest degree. More importantly, the
new initial values of the ME-R algorithm can be manipu-
lated to reduce the number of iterations and to further sim-
plify the boundary cells of the corresponding architecture.
In contrast, the number of iterations of the RiBM algorithm
is hard to directly reduce to 2t − 1 because complicated op-
erations are required for computing the new initial setting,
which will result in high area overhead. Even though the
boundary cell in the RiBM architecture could be simpli-
fied, the total required basic cells are more than those of
the ME-R architecture. In consequence, the proposed ME-R
algorithm leads to a high-speed, low-complexity architec-
ture. For completeness, Table 5 lists the information of area
and time complexities of related architectures developed by
applying the concept of the inversionless BM (iBM) algo-
rithm in [20] to the typical BM algorithms in [21] and [22].
Note that the hardware complexity and the path delay esti-
mation of these two iBM architectures were derived in [4].
We choose the two iBM architectures because their design
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constraints are similar to ours. Although the two iBM ar-
chitectures take a smaller hardware resource than ours, they
demand a much larger critical path delay and longer latency
for solving the key equation. Table 5 reveals that the pro-
posed ME-R architecture has the shortest latency and the
smallest AT complexity.

Since the proposed architecture is a regular array struc-
ture, we can apply the folding technique to develop an area-
efficient architecture, which consist of about �(6t − 2)/ f �
multipliers, �(3t − 1)/ f � adders, 6t registers, and 2t + 2 +
�(3t−1)/ f �multiplexers, where � � denotes the ceiling func-
tion and f is the folding factor. Compared with the architec-
ture in [14] which requires �8t/ f �multipliers, �4t/ f � adders,
8t registers, and �8t/ f � multiplexers, the proposed folded
architecture has lower hardware complexity with a compa-
rable operating speed. The proposed folded architecture is
also more cost-effective than the pipeline recursive struc-
tures in [13] and [19] if the pipelined multipliers used in
their work are also employed in our design.

5. Conclusion

This paper presented a high-speed, low-complexity VLSI ar-
chitecture based on the proposed ME-R algorithm and eval-
uated its performance for an RS(255,239) decoder design.
The proposed architecture can reduce hardware by 30.4%
as compared to that developed using the original ME-T al-
gorithm without sacrificing throughput. We also showed
how to shorten the latency when solving the key equa-
tion using the proposed architecture. Experimental results
demonstrated the effectiveness of the developed algorithm
and VLSI architecture. The proposed architecture is well
suited for high-speed low-complexity RS decoder design.
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