
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010
1857

PAPER

A Method of Path Mapping from RTL to Gate Level and Its
Application to False Path Identification

Hiroshi IWATA†a), Student Member, Satoshi OHTAKE†, Member,
and Hideo FUJIWARA†, Fellow

SUMMARY Information on false paths in a circuit is useful for design
and testing. The use of this information may contribute not only to reduc-
ing circuit area, the time required for logic synthesis, test generation and
test application of the circuit, but also to alleviating over-testing. Since
identification of the false paths at gate level is hard, several methods using
high-level design information have been proposed. These methods are ef-
fective only if the correspondence between paths at register transfer level
(RTL) and at gate level can be established. Until now, giving restriction
on logic synthesis is the only way to establish the correspondence. How-
ever, it is not practical for industrial designs. In this paper, we propose a
method for mapping RTL false paths to their corresponding gate level paths
without such a specific logic synthesis; it guarantees that the corresponding
gate level paths are false. Experimental results show that our path mapping
method can establish the correspondences of RTL false paths and many
gate level false paths.
key words: false path, high level testing, path mapping, functional equiv-
alence

1. Introduction

For circuit design and testing, false path information is very
valuable since it can be used for reducing circuit area and
the time required for logic synthesis, test generation and
test application while also minimizing over-testing. From
the perspective of design, since design constraints on false
paths can be ignored, designers can replace gates on the
false paths by smaller gates with larger delay. Further-
more, optimizing paths longer than the critical path can be
skipped if they are identified as false paths since they don’t
have to meet design constraints. Therefore, circuit area and
time required for logic synthesis can be made small by us-
ing false path information. From the testing point of view,
since no test pattern can be generated for path delay faults
on false paths, prior false path identification can greatly re-
duce ATPG time. Furthermore, since some path delay faults
on false paths can become testable due to application of de-
sign for testability (DFT) and result in over-testing, this can
be alleviated by false path identification.

Several false path identification methods at the gate
level for combinational circuits [1]–[3] and for sequential
circuits [4], [5] have been proposed. However, since it is
difficult to apply false path identification methods at the

Manuscript received October 30, 2009.
Manuscript revised March 1, 2010.
†The authors are with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology, Ikoma-shi, 630–
0192 Japan.

a) E-mail: hiroshi-i@is.naist.jp
DOI: 10.1587/transinf.E93.D.1857

gate level for large circuits containing a tremendous number
of paths, some methods using register transfer level (RTL)
design information, instead of gate level, have been pro-
posed [6]–[8]. While not specifically targeting false paths,
Nourani et al. [6] proposed a method using timing analysis
and RTL design information to determine the actual criti-
cal path and avoid false paths longer than the true critical
path. Yoshikawa et al. [7], [8] defined RTL false paths and
proposed a method to identify them. However, these meth-
ods are useful only if the correspondence between paths at
RTL and paths at gate level can be established. Until now,
the correspondence has been established through module in-
terface preserving-logic synthesis (MIP-LS) [7]. Currently,
using MIP-LS is the only way to guarantee information on
the correspondence. However, it is not practical to restrict
synthesis only to MIP-LS.

In this paper, we focus on path mapping from a set
of RTL false paths to gate level paths without considering
MIP-LS. First, we propose a method of mapping a set of
RTL paths to its corresponding gate level paths (this is called
path mapping) with an arbitrary logic synthesis independent
of false paths. The proposed method maps RTL signal lines
composing the RTL paths to gate level nets by using the
functional equivalence relation of signal lines (this is called
signal line mapping). The effort required for signal line
mapping is alleviated by using the uniqueness of a set of the
RTL paths and the rough candidate selection method. Be-
cause the number of signal lines that uniquely identify a set
of RTL paths is much lower than that of whole signal lines in
the set of RTL paths, and our path mapping algorithm only
needs to map the reduced signal lines, the number of RTL
signal lines to be mapped is significantly reduced. Signal
line mapping is achieved by checking the equivalence be-
tween signal lines and all the gate level nets; however, it is
obviously not practical. Therefore, we use the method that
finds candidates of the functionally equivalent nets from a
gate level circuit by using a diagnosis technique [9].

Since the gate level paths mapped by our method are
represented as sets of gate level nets, each gate level path
does not need to be fully specified as a path, so we are
able to handle bounded paths. This representation is com-
patible with EDA tools, like Synopsys Design Constraint
(SDC). Experimental results show that many RTL paths can
be mapped to gate level paths using the proposed method
within a reasonable time.

Then, we consider false path mapping. The defini-

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

1858
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

tion of RTL false path in [7] assumes MIP-LS and the as-
sumption guarantees that the corresponding gate level paths
are false. In this paper, we show that any corresponding
gate level path mapped from the set of RTL false paths by
using the proposed method with an arbitrary logic synthe-
sis is false. Experimental results show that our path map-
ping method can establish the correspondences of RTL false
paths and many gate level false paths.

The rest of this paper is organized as follows. Pre-
liminaries are presented in Sect. 2. Section 3 presents the
proposed RTL path mapping method. Section 4 shows that
the gate level paths mapped from a set of RTL false paths
with the proposed method are false. Experimental results
are given in Sect. 5. Section 6 concludes the paper.

2. Preliminaries

2.1 Circuit Model

In this paper, we only consider structural RTL designs. A
structural RTL design consists of a controller represented
by a combinational module and a state register, and a data-
path represented by RTL modules and signal lines connect-
ing them, where an RTL module is an operational module,
a register or a MUX and a signal line has an arbitrary bit
width.

2.2 Gate Level and RTL Path Representation

Definition 1 (Gate level path): An ordered set of gate level
nets
{
eG

1 , . . . , e
G
n

}
is called a gate level path if it satisfies the

following conditions.

1. eG
1 is the net directly connected to a primary input or

the output of an FF.
2. eG

n is the net directly connected to a primary output or
the input of an FF.

3. eG
i (i = 2, . . . , n − 1) is the net connecting the gates

having eG
i−1 as an input and eG

i+1 as an output. �

Definition 2 (Sub gate level path): A subset of a gate level
path pG is called a sub gate level path of pG. �

Definition 3 (RTL path): An ordered set of RTL signal
lines

{
eR

1 , . . . , e
R
n

}
is called an RTL path if it satisfies the fol-

lowing conditions.

1. eR
1 is the RTL signal line directly connected to a pri-

mary input or the output of a register.
2. eR

n is the RTL signal line directly connected to a pri-
mary output or the input of a register.

3. eR
i (i = 2, . . . , n − 1) is the RTL signal line connecting

the modules having eR
i−1 as an input and eR

i+1 as an out-
put. �

Definition 4 (Sub RTL path): A subset of an RTL path pR

is called a sub RTL path of pR. �

An RTL signal line consists of one-bit signal lines as
follows.

Definition 5 (Bit-sliced RTL signal line): For an RTL sig-
nal line s, each one bit signal line separated from s is re-
ferred to as a bit-sliced RTL signal line of s. The i-th bit of
s is represented as s[i]. �

Definition 6 (Bit-sliced RTL path): An ordered set of bit-
sliced RTL signal lines

{
eR

1 [k1], . . . , eR
n [kn]
}

is called a bit-
sliced RTL path if it satisfies the following conditions.

1. eR
1 [k1] is the k1-th bit-sliced RTL signal line directly

connected to a primary input or the output of a register.
2. eR

n [kn] is the kn-th bit-sliced RTL signal line directly
connected to a primary output or the input of a register.

3. eR
i [ki] (i = 2, . . . , n − 1) is the ki-th bit-sliced RTL sig-

nal line connecting the modules having eR
i−1[ki−1] as an

input and eR
i+1[ki+1] as an output. �

Definition 7 (Sub bit-sliced RTL path): A subset of a bit-
sliced RTL path pR is called a sub bit-sliced RTL path of pR.

�

2.3 Relation between Signal Lines

Here, we first define signal line cutting, which is an opera-
tion needed for defining functionally equivalent signal lines.

Definition 8 (Signal line cutting): For a combinational cir-
cuit C with n inputs, m outputs and an internal signal line s,
the following operation is referred to as cutting C on s.

1. Create the (n + 1)-th new input port and the (m + 1)-th
new output port.

2. Remove the signal line s.
3. Create connections between (n + 1)-th input port and

the end point of s and between the start point of s and
the (m + 1)-th output port. �

In the following discussion, we represent the combinational
circuit resulting from the above operations as C∗(s).

For two functionally equivalent combinational circuits,
we define a functional equivalence of signal lines as follows.

Definition 9 (Functionally equivalent signal line): For two
functionally equivalent combinational circuits C1 and C2

with internal signal lines s1 and s2, respectively, s1 and s2

are functionally equivalent if and only if C∗1(s1) and C∗2(s2)
are functionally equivalent. �

In the following discussion, we represent the relation of
functional equivalence between signal lines s1 and s2 as
s1 ≡l s2.

Figure 1 illustrates functionally equivalent signal lines.
The signal lines s1 and s2 are functionally equivalent if the
responses from C∗1(s1) and C∗2(s2) are identical for any input
pattern.

2.4 Relation between Paths

We define the functional equivalence between the sub bit-
sliced RTL path and sub gate level path as follows.

Definition 10 (Functionally equivalent path): Sub bit-

IWATA et al.: A METHOD OF PATH MAPPING FROM RTL TO GATE LEVEL
1859

Fig. 1 Functionally equivalent signal lines s1 and s2.

Fig. 2 An example of RTL datapath and its corresponding gate level
circuit.

sliced RTL paths and sub gate level paths are simply re-
ferred to as sub paths. Sub paths q1 =

{
e11 , . . . , e1n

}
and

q2 =
{
e21 , . . . , e2m

}
are functionally equivalent if q1 and q2

satisfy the following conditions.

1. n = m
2. e1i ≡l e2i (i = 1, . . . , n) �

For mapping a given RTL path to gate level paths, it
is sufficient to map only the RTL signal lines that uniquely
identify the RTL path to gate level nets. Therefore, we pro-
vide the following definition to alleviate the signal line map-
ping effort.

Definition 11 (Identification of path): A sub RTL path qR

is said to uniquely identify an RTL path pR if pR is the only
path that properly includes qR. �

Definition 12 (Identification of path set): A sub RTL path
qR is said to uniquely identify a set of RTL paths, PR, if PR

is the only set of RTL paths that properly includes qR. �

For example, there exist ten RTL paths in the combi-
national part of RTL datapath shown in Fig. 2. Consider an
RTL path pR = {a, d, f , g}. An example of a sub RTL path
of pR is {a, d, g}. Bit-sliced RTL signal lines of RTL sig-
nal line d is d[0] and d[1]. An example of a sub bit-sliced
RTL path of a bit-sliced RTL path {a[1], d[0], f [1], g[1]} is
{d[0], f [1]}. Let q1 = {d[0], f [1]} and q2 = {D[0], F[1]} be
a sub bit-sliced RTL path and a sub gate level path, respec-
tively. q1 and q2 are functionally equivalent if d[0] ≡l D[0]
and f [1] ≡l F[1], and the number of signal lines in q1 and
that in q2 are the same. For pR, both of sub RTL paths
{a, d, g} and {a, f , g} uniquely identify pR. Similarly, for a

set of RTL paths, PR = {{a, d, f , g} , {a, e, g}}, a sub RTL
path {a, g} uniquely identifies PR.

3. Proposed Method of Path Mapping

In this section, we formulate the path mapping problem and
present a solution to the problem independent of false paths.
Consideration of false paths is described in Sect. 4.

3.1 Path Mapping Problem

We formulate the path mapping problem as a problem to find
a set of gate level paths corresponding to a set of RTL paths.

For solving the path mapping problem, it is sufficient
to consider only the RTL combinational circuit CR, which is
the combinational part of a given structural RTL design S R,
and the gate level combinational circuit CG, which is the
combinational part of a gate level design synthesized from
S R. We assume that for each input or output (I/O) signal
line of CR, there exists exactly one I/O signal line, which is
functionally equivalent to the I/O signal line of CR, of CG.
The correspondence between I/O signal lines of CR and that
of CG is called I/O mapping information. We cannot apply
the path mapping algorithm if the I/O mapping information
is not available. However, the I/O mapping information of
CR and CG can be obtained by preserving all the bits of the
registers in S R during logic synthesis. Since the preservation
is common for logic synthesis of structural RTL designs, the
assumption is reasonable.

Definition 13 (Path mapping problem):

Input •CR: an RTL combinational circuit
•CG: a gate level circuit that is functionally equiv-

alent to CR

• The I/O mapping information between CR and CG

• PR: a set of RTL paths

Output PG =
n⋃

i=0

mi⋃
j=0

PG
i j, where PG

i j is defined as follows. Let

qR
i (i = 1, . . . , n) be a sub RTL path that uniquely iden-

tifies PR and qR
i j (j = 1, . . . ,mi) be a sub bit-sliced RTL

path of qR
i where n and mi are the numbers of the sub

RTL paths of PR and combinations of bit-sliced RTL
paths obtained by specifying the bit portion of every
RTL signal line on qR

i , respectively. Let qG
i j be a sub

gate level path that is functionally equivalent to qR
i j. PG

i j

is a set of gate level paths including qG
i j. �

3.2 Path Mapping Algorithm

We propose an algorithm solving the path mapping problem
as follows. The algorithm establishes correspondences be-
tween a set of RTL paths, PR, and a set of gate level paths,
PG.

1. Generate the minimum sub RTL path qR
i (i = 1, . . . , n)

that uniquely identifies PR.

1860
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

2. Try to obtain a gate level net eG
i jk

that is functionally
equivalent to each bit-sliced RTL signal line eR

i jk
(k =

1, . . . , l), where eR
i jk

is an element of a bit-sliced RTL
path qR

i j (j = 1, . . . ,mi) of qR
i , mi is the number of com-

binations of bit-sliced RTL paths obtained by specify-
ing the bit portion of every RTL signal line on qR

i , and
l is the number of RTL signal lines on qR

i . Go to step 3
if eG

i jk
is obtained for all j and k of at least one sub RTL

path qR
i , i.e., all the RTL signal lines on some sub RTL

path are mapped to gate level nets. (Otherwise, all qR
i

must be tried.)
3. For each sub gate level path

{
eG

i j1
, . . . , eG

i jl

}
such that ev-

ery eG
i jk

(k = 1, . . . , l) is mapped from eR
i jk

of the corre-

sponding sub bit-sliced RTL path
{
eR

i j1
, . . . , eR

i jl

}
in the

previous step, find all the gate level paths identified
by
{
eG

i j1
, . . . , eG

i jl

}
. The set of all the obtained gate level

paths is referred to as PG
i j.

4. Calculate PG =
n⋃

i=0

mi⋃
j=0

PG
i j.

Note that we obtain the set of the minimum sub RTL
paths uniquely identifying PR exhaustively as follows. The
minimum size of sub RTL paths uniquely identifying PR is
sought such that s is increased one by one by when some
sub RTL path of size s uniquely identifies PR and then all
the sub RTL paths, which uniquely identify PR, of size s are
enumerated, where s is an integer and is initially 0. Since
the number of modules in a circuit at RTL is very small, it
is conceivable that the time required for obtaining the set of
the minimum sub RTL paths is very short. This will be eval-
uated in the experimental results. The signal line mapping
in step 2 is described in the next subsection. We assume that
at most one gate level net is functionally equivalent to a bit-
sliced RTL signal line for simplifying the algorithm descrip-
tion. In our experiments reported in Sect. 5, we did not face
a case where more than one gate level net is mapped. How-
ever, we can handle multiple nets by taking into account all
the paths that go through the nets. In steps 3 and 4, not all
gate level paths need to be listed; it is not practical. Instead,
paths are represented just by specifying nets,

{
eG

i j1
, . . . , eG

i jl

}
,

that are passed through. This representation is compatible
with EDA tools like SDC description.

Here, we show an example of path mapping for the
RTL circuit and the gate level circuit shown in Fig. 2.
We perform path mapping algorithm for a set of paths
PR = {{a, d, f , g}}. In step 1, minimum sub RTL paths,
qR

1 = {a, d, g} and qR
2 = {a, f , g}, uniquely identifying PR

are obtained. In step 2, we first try to find the function-
ally equivalent signal lines for a[0], a[1], d[0], d[1], g[0]
and g[1] on qR

1 . Suppose that functionally equivalent gate
level nets A[0], A[1], D[0], G[0] and G[1] are found for
a[0], a[1], d[0], g[0] and g[1], respectively, and that for
d[1] is not found. Since the algorithm could not map
all the RTL signal lines on qR

1 , we repeat step 2 for the
other sub RTL path, qR

2 , i.e., we perform signal line map-

ping for f [0] and f [1]. Suppose that gate level net F[1]
which is functionally equivalent net for f [1] is found and
the functionally equivalent gate level net for f [0] is not
found. We operate step 3 and 4 because all the minimum
sub RTL paths uniquely identifying PR have been tried so
far. The mapped gate level paths are obtained by specify-
ing the nets passed through as follows: {A[0],D[1],G[0]},
{A[0],D[1],G[1]}, {A[1],D[1],G[0]}, {A[1],D[1],G[1]},
{A[0], F[0],G[0]}, {A[0], F[0],G[1]}, {A[1], F[0],G[0]} and
{A[1], F[0],G[1]}.

3.3 Signal Line Mapping

In this section, we formulate the problem finding function-
ally equivalent nets. Then, we will show an algorithm for
solving the problem. Signal line mapping algorithm is used
in the proposed path mapping algorithm.

3.3.1 Signal Line Mapping Problem

We formulate the signal line mapping problem to find a set
of nets, which is functionally equivalent to a bit-sliced RTL
signal line in an RTL circuit, in a gate level circuit.

Definition 14 (Signal line mapping problem):

Input •CR: an RTL combinational circuit
•CG: a gate level circuit that is functionally equiv-

alent to CR

• The I/O mapping information between CR and CG

• eR[k]: the k-th bit-sliced RTL signal line of an
RTL signal line eR in CR

Output EG =
{
eG |eG ≡l eR[k]

}
where eG is a net in CG �

3.3.2 Signal Line Mapping Algorithm

Given an RTL combinational circuit CR and a gate level
combinational circuit CG, checking functional equivalence
between a bit-sliced RTL signal line eR[k] in CR and a gate
level net eG in CG can be performed by applying all the pos-
sible input patterns to both circuits CR∗(eR[k]) and CG∗(eG),
and comparing their output responses. This is achieved by
applying equivalence checking [10], [11] for CR∗(eR[k]) and
CG∗(eG). However, it is not practical to explicitly check the
functional equivalence for all the possible combinations be-
tween eR[k] and eG in CG.

Ravi et al. [9] proposed a method of finding candidates
for functionally equivalent nets of a given bit-sliced RTL
signal line using fault diagnosis techniques. In this paper,
their method is utilized to solve the signal line mapping
problem. More specifically, their method injects a stuck-at
fault on the bit-sliced RTL signal line and finds the stuck-
at faults, which have identical behavior of the fault under
the test patterns, in the gate level circuit. The faults in the
gate level circuit and the fault in the RTL circuit are said to
be equivalent. A necessary condition of functional equiva-
lence is that the responses of the RTL circuit and the gate

IWATA et al.: A METHOD OF PATH MAPPING FROM RTL TO GATE LEVEL
1861

Fig. 3 Relation between equivalent faults and functionality of respective
signal lines.

level circuit are identical when value v’s are fixed to eR[k]
and eG, respectively (see Fig. 3 (b)). It is the same situation
when s-a-v faults are assumed to be presented on eR[k] and
on eG, respectively (see Fig. 3 (a)). To make our signal line
mapping algorithm complete, we perform functional equiv-
alence checking for eR[k] and each of the mentioned candi-
date nets eG. The overall algorithm to solve the signal line
mapping problem is shown in the following.

1. Generate a complete test set T for all the testable stuck-
at faults in CG.

2. For each v ∈ {0, 1}, the following two steps are per-
formed.

a. Obtain a set of faulty output responses Rf v by ap-
plying T to the RTL circuit CR with an injected
s-a-v fault on the given bit-sliced RTL signal line
eR[k].

b. Find all the single s-a-v faults of CG such that all
the faulty circuits induced by the faults have the
same output responses Rf v when T is applied to
these circuits. A set of the nets having equivalent
faults is referred to as EGv.

3. Obtain EG = EG0 ∩ EG1.
4. For each eG ∈ EG, create CR∗(eR[k]) and CG∗(eG) by

cutting CR and CG on eR[k] and eG, respectively.
5. Perform equivalence checking for CR(eR∗[k]) and

CG∗(eG) and eliminate eG from EG if they are not func-
tionally equivalent.

Steps 1 to 3 are the same as the procedure for finding
a functionally equivalent signal line by using the fault diag-
nosis technique in [9]. In [9], the complete test set T for
the detectable faults in a gate level circuit is used as the in-
put patterns for fault diagnosis. The procedure first finds
s-a-0 (resp. 1) faults in CG that are equivalent to the s-a-0
(resp. 1) fault injected on eR[k] under the test set T . Then
the procedure selects gate level nets that have both s-a-0 and
s-a-1 faults as the candidates of equivalent nets. These nets
obtained by the steps satisfy the necessary condition of the
functional equivalence. Finally, steps 4 and 5 are performed
to guarantee sufficiency.

The completeness of the overall algorithm is shown in
Theorem 1. In Step 1 of the signal line mapping algorithm,
we employ a complete test set. The incompleteness of the
test set does not affect the correctness of the signal line map-
ping. However, it is desirable because the number of trials

of equivalence checking (steps 4 and 5) is reduced if the
number of candidates is efficiently decreased by the fault di-
agnosis method (steps 2 and 3). Here, we assume that the
fault diagnosis technique used in the algorithm can report
all the suspected faults, i.e., it never misses any equivalent
fault under the given input patterns. If we employ an in-
complete diagnosis tool which misses suspected faults, the
algorithm cannot find existing functionally equivalent nets
in gate level circuit during the signal line mapping process.
From the perspective of path mapping, this may lead loss
of the identifiable functionally equivalent gate level paths.
If the diagnosis tool reports inequivalent faults, it does not
affect the correctness of the signal line mapping because
equivalence checking is performed for all the functionally
equivalent candidates.

Theorem 1: Given an RTL combinational circuit CR, its
synthesized gate level circuit CG and a bit-sliced RTL signal
line eR[k] in CR. Any eG ∈ EG is functionally equivalent to
eR[k] if and only if EG is the set of gate level nets obtained
by the signal line mapping algorithm. �

[Proof] First, we show that Steps 1 to 3 guarantee that
the primary outputs of CG and CR have the same response
for any input pattern in T when eG and eR[k] have the same
value, which is the necessary condition of functional equiv-
alence. Let CR has n inputs (xR[i] (i = 1, . . . , n)) and m
outputs (zR[i] (i = 1, . . . ,m)). CR∗(eR[k]) has n + 1 inputs
(xR∗[i] (i = 1, . . . , n + 1)) and m + 1 outputs (zR∗[i] (i =
1, . . . ,m + 1)). We inject an s-a-v fault on eR[k] in CR

where v ∈ {0, 1}. For any t ∈ T , the output response from
zR[1], . . . , zR[m] of CR with the s-a-v obtained by applying
t to CR with the fault and that from zR∗[1], . . . , zR∗[m] of
CR∗(eR[k]) obtained by applying t&v to CR∗ are identical
where “a&b” denotes concatenation of vectors a and b.

Let CG has n inputs (xG[i] (i = 1, . . . , n)) and m outputs
(zG[i] (i = 1, . . . ,m)). CG∗(eG) has n + 1 inputs (xG∗[i] (i =
1, . . . , n + 1)) and m + 1 outputs (zG∗[i] (i = 1, . . . ,m + 1)).
We inject an s-a-v fault on signal line eG in CG. For any
t ∈ T , the output response from zG[1], . . . , zG[m] of CG with
the s-a-v obtained by applying t to CG with the fault and that
from zG∗[1], . . . , zG∗[m] of CG∗(eG[k]) obtained by applying
t&v to CG∗ are identical.

Consequently, for any input pattern of T , the output
responses from zR∗[1], . . . , zR∗[m] and zG∗[1], . . . , zG∗[m] of
CR∗(eR[k]) and CG∗(eG), respectively, are the same because
CR and CG are functionally equivalent and s-a-v faults on
eR[k] and eG are equivalent under T . It is a necessary condi-
tion of functional equivalence between eR[k] and eG.

From the assumption of fault diagnosis, all eG are able
to be gotten as EG where eG satisfies the above conditions.
It is obvious that EG properly include all the gate level nets
that are functionally equivalent to eR[k]. Therefore, we only
need to show that steps 4 and 5 can exclude nets if and only
if the nets are not functionally equivalent to eR[k]. Clearly,
eG is eliminated from EG if eG is not functionally equivalent
to eR[k]. Otherwise, it is not eliminated. Thus the theorem
holds true. �

1862
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

4. RTL False Path Mapping

From the testing point of view, it is important to identify
non-robust untestable paths since commercial ATPG tools
cannot generate test patterns detecting path delay faults with
functionally sensitizable condition. In this section, we show
mapping non-robust untestable paths at RTL to non-robust
untestable paths at gate level as an application of the pro-
posed path mapping to false path identification, i.e., in this
paper, we consider non-robust untestable paths to be false.
In [12], Yoshikawa et al. defined non-robust untestable paths
for RTL circuits as follows.

Definition 15 (RTL non-robust untestable path): An RTL
path p in an RTL circuit S R is RTL non-robust untestable
(RTL-NRU) if all the gate-level paths in δ(p) are non-robust
untestable (NRU) for any gate-level circuit S G synthesized
from S R, where δ(p) is a set of gate level paths correspond-
ing to p. �

In order to guarantee the correspondence between
RTL-NRU and δ(p), restricted logic synthesis called module
interface preserving logic synthesis (MIP-LS) is employed.

Under the assumption of logic synthesis, they also pro-
vide a sufficient condition of RTL-NRU based on control
signals of MUXes and registers. Here, we review the con-
dition. For a given path p = {e1, . . . , en} in an RTL circuit,
intuitively, the condition is as follows. The path p is RTL-
NRU if at least one of the following is satisfied for any input
sequence and any t: (1) there is no controllability to make a
transition on the starting register, which drives e1 in cycles
between t and t + 1 (if any); (2) the value at ei+1 is inde-
pendent of the value at ei for some i (i = 1, . . . , n) in t + 1
(if any); (3) the value appeared at en is not captured on the
ending register in t + 2 (if any); and (4) the value appeared
at en in t + 2 and stored in the register following en does not
affect any primary output (if any). These are checked only
by examining control signal values of MUXes and registers
supplied from the controller. Notice that in their RTL circuit
model, for an RTL circuit, state transitions of the controller
are known and are completely specified for all the pairs of
states and input vectors. Detailed description is available in
[12].

The condition means that no transition can be propa-
gated through an RTL-NRU path, which is identified based
on the condition, in non-robust sensitization criteria or the
response captured at the ending register cannot be observed.
If we can remove the assumption of logic synthesis, we can
utilize the identification method reported in [7] for more
general circuits synthesized without the restriction. There-
fore, we obtain the following theorem.

Theorem 2: For an RTL-NRU path pR, in an RTL circuit
S R, any pG ∈ PG that is mapped from pR with our path
mapping method is gate level NRU. �

[Proof] Suppose that pR and pG consist of
{
eR

1 , . . . , e
R
n

}

and
{
eG

1 , . . . , e
G
m

}
, respectively, and each RTL signal line eR

i

of pR has arbitrary bits. From the sufficient condition of
RTL-NRU, for an input sequence, pR satisfies at least one of
the four conditions, as described above. From the assump-
tion of the existence of I/O mapping information, combina-
tional parts of S R and S G are functionally equivalent. Then,
we can say the following. If it satisfies (1), all the bit-sliced
signal lines of eR

1 cannot have transitions in cycles t to t + 1.
Therefore, eG

1 cannot have any transition in t to t + 1. If it
satisfies (3) or (4), values of all the bit-sliced signal lines
of eR

n cannot be observed. Therefore, any values on eG
m at

t + 1 cannot be observed. From the I/O mapping informa-
tion, functional equivalence of the combinational parts of S R

and S G, and functional equivalence of internal signal lines,
we can say the following. If it satisfies (2), all the bit-sliced
signal lines of eR

n cannot have transitions that are from eR
1

and by way of eR
i (if any) in t to t + 1, where eR

i is necessary
to be mapped. Therefore, eG

m cannot have any transition that
is from eG

1 and by way of eG
j (if any) in t to t + 1, where eG

j

is mapped from eR
i . Thus, the theorem holds true. �

By this theorem, we can treat gate level NRU paths in a
gate level circuit synthesized with an arbitrary logic synthe-
sis (without restricting logic synthesis to MIP-LS) through
the proposed path mapping method.

5. Experimental Results

In this section, we show experimental results for evaluat-
ing our RTL path mapping method by mapping RTL paths
and RTL false paths identified with the method proposed in
[7]. We used three RTL benchmark circuits, LWF, Tseng
and Paulin and an industrial circuit, MPEG. In these exper-
iments, we used only the datapath part of each circuit and
tried to map all the paths in the datapath. Table 1 shows
the circuit characteristics of the circuits. Columns “#bit”,
“#PI”, “#PO” and “#reg” show the bit width, the number
of primary inputs, that of primary outputs and that of regis-
ters, respectively. Sub columns “MIP-LS” and “Arbitrary”
under “Area (#gates)” show the circuit area synthesized by
MIP-LS [7] and that without restriction, respectively. From
the area comparison, we confirmed that our method elim-
inates the impact on logic synthesis results. In these ex-
periments, we used Synopsys DesignCompiler to perform
logic synthesis, Synopsys TetraMax to generate test patterns
for gate level circuits synthesized with “Arbitrary”, Cadence
Encounter Test and Diagnostics as a fault diagnostic engine,
Synopsys Formality to perform equivalence checking and
Synopsys PrimeTime to enumerate the gate level paths on
Sun Microsystems Sun Fire X4100 (Opteron 256 (3 GHz),
16 GB memories).

Table 1 Circuit characteristics.

Circuit #bit #PI #PO #reg
Area (#gate)

MIP-LS Arbitrary
LWF 16 2 2 5 1,571 1,467
Tseng 8 3 2 6 1,357 1,077
Paulin 8 2 2 7 1,590 1,303
MPEG 8 5 16 241 38,183 28,454

IWATA et al.: A METHOD OF PATH MAPPING FROM RTL TO GATE LEVEL
1863

We use the RTL path mapping ratio Pmr = |PRT |
|PR | ×

100[%] as an evaluation criterion, where |PR| is the to-
tal number of RTL paths in the datapath and |PRT | is the
number of RTL paths mapped. Furthermore, to evaluate
in more detail, we consider bit-sliced RTL paths in the
datapath. We use the bit-sliced RTL path mapping ratio

Pmrb =
|PRT

b |
|PR

b |
× 100[%], where |PR

b | is the total number of

bit-sliced RTL paths in the datapath and |PRT
b | is the num-

ber of bit-sliced RTL paths mapped. Table 2 shows the path
mapping ratios, bit-sliced path mapping ratios and time re-
quired for the mapping.

Table 3 shows the signal line and path mapping re-
sults in detail. Rows “#Ptotal”, “#Punique”, “#Stried”,
“#Smapped” and “#Pmapped” show the total number of
RTL paths, the number of paths uniquely identified with the
I/O mapping information, the number of RTL signal lines
targeted by signal line mapping, the number of RTL sig-
nal lines mapped, i.e., the gate level nets that are function-
ally equivalent to the bit-sliced RTL signal lines found, and
the number of the RTL paths mapped. Columns “RTL” and
“bsRTL” under each circuit name mean bundled RTL and
bit-sliced RTL, respectively. The number of bit-sliced RTL
paths in an RTL path was calculated based on the number
of Cartesian product of bit widths of signal lines composing
the RTL path. Thanks to Definition 11 (unique identifica-
tion of path), most of the RTL paths were able to be mapped
only by using I/O mapping information or CPU time was
able to be saved. To identify 5 and 2 paths in LWF and
Tseng, respectively, we needed to perform signal line map-

Table 2 Path mapping results.

LWF Tseng Paulin MPEG
Pmr[%] 73.7 90.0 100.0 100.0
Pmrb[%] 74.2 96.8 100.0 100.0
CPU[sec] 28.14 21.74 0.30 0.10

Table 3 Signal line and path mapping results in detail.

LWF Tseng Paulin MPEG
RTL bsRTL RTL bsRTL RTL bsRTL RTL bsRTL

#Ptotal 19 4,600,384 20 36,448 29 123,600 606 326,176
#Punique 14 3,412,544 18 31,840 29 123,600 606 326,176
#Stried 5 80 5 40 0 0 0 0
#Smapped 0 13 0 12 - - - -
#Pmapped 14 3,415,360 18 35,296 29 123,600 606 326,176

Table 4 False path mapping results.

LWF Tseng Paulin MPEG
RTL Gate level RTL Gate level RTL Gate level RTL Gate level

#Ptotal 19 1,845,916 20 856,116 29 2,307,064 606 1,784,824
#Pfalse 5 470,300 6 418,752 13 1,610,968 32 16
Ratio [%] 26.32 25.48 30.00 48.91 44.83 69.83 5.28 0.00
Total [s] 15.36 21.73 0.27 1.72
Unique [s] 0.21 0.24 0.27 1.72
Ravi [s] 15.15 17.07 0.00 0.00
FEchk [s] 0.00 4.42 0.00 0.00
Pwhole [s] 93.21 37.21 103.39 303.65
Pfalse [s] 24.26 19.07 73.53 0.22

ping 80 and 40 times, respectively. Since the average times
of the signal line mapping for these circuits are 0.35 and
0.54 seconds, respectively, the total times required for the
path mapping of these circuits are almost the same. The
proposed method achieved 90.9% RTL path mapping ratio
and 92.8% bit-sliced RTL path mapping ratio, in average.
Here, we discuss the paths that are not mapped. (Bit-sliced)
RTL paths that were not able to be mapped to the gate level
paths existed because the algorithm was not able to find any
signal line needed for path mapping, i.e., there existed no
functionally equivalent net in the gate level circuits.

Table 4 shows the result of false path mapping and the
time required for this mapping. Rows “#Ptotal”, “#Pfalse”,
“Ratio”, “Total”, “Unique”, “Ravi”, “FEchk”, “Pwhole” and
“Pfalse” show the total number of paths, the number of false
paths, the ratio of #Pfalse to #Ptotal, the total time required
for false path mapping, the time required for finding can-
didates of functionally equivalent signal lines, the time re-
quired for equivalence checking, the time required for enu-
merating the whole paths in the gate level circuit and the
time required for enumerating the false paths mapped, re-
spectively. Columns “RTL” and “Gate level” under each
circuit name mean the number of paths in RTL and the ones
in gate level, respectively. Many gate level false paths were
available with our proposed path mapping method in practi-
cal time without considering MIP-LS.

On the other hand, a sequential ATPG algorithm can
identify false paths at gate level. However, sequential ATPG
tools cannot identify them in a practical amount of time.
For example, as reported in [8], TetraMax took about 50
hours to identify 10,000 false paths of Paulin. Since the RTL
false path identification method proposed in [7] and our path
mapping method took less than 1 second for several circuits,
our high level identification approach is very effective.

Table 5 shows false path mapping results in detail.
Rows “#Pfalse”, “#Punique”, “#Stried” and “#Smapped”

1864
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

Table 5 Details of the false path mapping.

LWF Tseng Paulin MPEG
#Pfalse 5 6 13 32
#Punique 4 5 13 32
#Stried 32 16 0 0
#Smapped 0 7 - -

show the number of RTL false paths, the number of paths
uniquely identified with the I/O mapping information, the
number of bit-sliced RTL signal lines targeted by signal
line mapping, and the number of bit-sliced RTL signal lines
mapped, respectively. Therefore, we can say that the pro-
posed method finds almost all gate level false paths corre-
sponding to the given RTL false paths.

6. Conclusions

Establishing the correspondence between an RTL circuit
and its synthesized gate level circuit is important for high
level testing approaches. In this work, we focused on corre-
spondence between paths in the RTL circuit and paths in the
gate level circuit. Existence of the correspondence enables
the technologies that handle a path at RTL as a bundle of a
tremendous number of paths in the gate level circuit. There
are methods to identify false paths using RTL design infor-
mation [7], [8], which is feasible only if RTL paths can be
mapped into gate level paths. The method can quickly iden-
tify false paths using RTL information under the assumption
that correspondence between RTL paths and gate level paths
is available. Until now, it has been guaranteed only by a re-
stricted logic synthesis.

In this paper, we proposed a method to establish corre-
spondence between a set of RTL paths and gate level paths
without restricting logic synthesis. To the best of our knowl-
edge, this is the first work that tackles RTL to gate level path
mapping. Furthermore, we showed that RTL false paths
identified by [7] can be mapped to gate level false paths with
our proposed method. In our experiments, the proposed path
mapping method was utilized as a false path mapping proce-
dure, and many false paths were able to be found in a circuit
synthesized with an arbitrary logic synthesis by using our
proposed path mapping method.

Acknowledgments

The authors would like to thank Profs. Michiko Inoue and
Tomokazu Yoneda of Nara Institute of Science and Tech-
nology and Yuki Yoshikawa of Hiroshima City University
for valuable discussion and cooperation. This work was
supported in part by Semiconductor Technology Academic
Research Center (STARC) under the Research Project and
in part by Japan Society for the Promotion of Science
(JSPS) under Grants-in-Aid for Scientific Research (B) (No.
20300018).

References

[1] K.T. Cheng and H.C. Chen, “Classification and identification of non-

robust untestable path delay faults,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol.15, no.8, pp.845–853, Aug. 1996.

[2] S. Kajihara, K. Kinoshita, I. Pomeranz, and S.M. Reddy, “A method
for identifying robust dependent and functionally unsensitizable
paths,” International Conference on VLSI Design, pp.82–87, Jan.
1997.

[3] Y. Shao, S.M. Reddy, S. Kajihara, and I. Pomeranz, “An efficient
method to identify untestable path delay faults,” Proc. 10th Asian
Test Symposium, pp.233–238, 2001.

[4] A. Krstić, S.T. Chakradhar, and K.T.T. Cheng, “Testable path delay
fault cover for sequential circuits,” Design Automation Conference,
with EURO-VHDL ’96 and Exhibition, Proc. EURO-DAC ’96, Eu-
ropean, pp.220–226, Sept. 1996.

[5] R. Tekumalla and P. Menon, “Identifying redundant path delay
faults in sequential circuits,” Proc. Ninth International Conference
on VLSI Design, pp.406–411, Jan. 1996.

[6] M. Nourani and C.A. Papachristou, “False path exclusion in delay
analysis of RTL structures,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol.10, no.1, pp.30–43, Feb. 2002.

[7] Y. Yoshikawa, S. Ohtake, and H. Fujiwara, “False path identification
using RTL information and its application to over-testing reduction
for delay faults,” 16th Asian Test Symposium, ATS ’07, pp.65–68,
Oct. 2007.

[8] Y. Yoshikawa, S. Ohtake, T. Inoue, and H. Fujiwara, “Fast false path
identification based on functional unsensitizability using RTL in-
formation,” Asia and South Pacific Design Automation Conference,
ASP-DAC 2009, pp.660–665, Jan. 2009.

[9] S. Ravi, I. Ghosh, V. Boppana, and N.K. Jha, “Fault-diagnosis-
based technique for establishing RTL and gate-level correspon-
dences,” IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst.,
vol.20, no.12, pp.1414–1425, Dec. 2001.

[10] A. Kuehlmann and F. Krohm, “Equivalence checking using cuts
and heaps,” Proc. 34th Design Automation Conference, pp.263–268,
June 1997.

[11] Synopsys, inc, Formality User Guide, c-2009.06 ed., June 2009.
[12] Y. Yoshikawa, S. Ohtake, T. Inoue, and H. Fujiwara, “A synthe-

sis method to alleviate over-testing of delay faults based on RTL
don’t care path identification,” 27th IEEE VLSI Test Symposium,
VTS ’09, pp.71–76, May 2009.

Hiroshi Iwata received his B.S. degree in
information systems engineering from Nara Na-
tional College of Technology, Japan, in 2007. In
2008, he received his M.E. degree in informa-
tion science from Nara Institute of Science and
Technology, Japan and is currently a Ph.D. stu-
dent there. His research interests include VLSI
CAD, design for testability, and asynchronous
circuit testing. He is also a student member of
IEEE.

IWATA et al.: A METHOD OF PATH MAPPING FROM RTL TO GATE LEVEL
1865

Satoshi Ohtake received the B.E. de-
gree in computer science from the University of
Electro-Communication, Tokyo, Japan, in 1995
and the M.E. and Ph.D. degrees in information
science from Nara Institute of Science and Tech-
nology, Nara, Japan, in 1997 and 1999, respec-
tively. He was a Research Fellow of the Japan
Society for the Promotion of Science from 1998
to 1999. Presently he is an Assistant Professor
at the Graduate School of Information Science,
Nara Institute of Science and Technology, Nara,

Japan. His research interests are VLSI CAD, design for testability, and test
pattern generation. He is a member of IEEE and IPSJ.

Hideo Fujiwara received the B.E., M.E.,
and Ph.D. degrees in electronic engineering
from Osaka University, Osaka, Japan, in 1969,
1971, and 1974, respectively. He was with
Osaka University from 1974 to 1985 and Meiji
University from 1985 to 1993, and joined
Nara Institute of Science and Technology, Nara,
Japan in 1993. Presently he is a Professor with
the Graduate School of Information Science,
Nara Institute of Science and Technology. His
research interests are logic design, digital sys-

tems design and test, VLSI CAD and fault tolerant computing, including
high-level/logic synthesis for testability, test synthesis, design for testabil-
ity, built-in self-test, test pattern generation, parallel processing, and com-
putational complexity. He is the author of Logic Testing and Design for
Testability (MIT Press, 1985). He has received many awards including
the Okawa Prize for Publication, IEEE CS Continuing Service Award, and
IEEE CS Outstanding Contribution Award. He has served as an editor and
associate editors of several journals, including the IEEE Trans. on Com-
puters, and Journal of Electronic Testing: Theory and Application, and as
guest editor of several special issues of IEICE Transactions of Information
and Systems. Dr. Fujiwara is a fellow of the IEEE, a Golden Core member
of the IEEE Computer Society, and a fellow of the IPSJ.

