
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010
189

LETTER

Classifying Categorical Data Based on Adoptive Hamming Distance

Jae-Sung LEE†, Nonmember and Dae-Won KIM†a), Member

SUMMARY In this paper, we improve the classification performance
of categorical data using an Adoptive Hamming Distance. We defined
the equivalent categorical values and showed how those categorical val-
ues were searched to adopt the distance. The effectiveness of the proposed
method was demonstrated using various classification examples.
key words: adoptive hamming distance, hamming distance

1. Introduction

Selection of the distance measure is important in the
categorical pattern classification problem: the Hamming
distance, Value Difference Metric, and Class Dependent
Weight Dissimilarity have been widely used distance mea-
sure [1], [2]. In this study, we extend the Hamming Distance
to improve classification performance of categorical data set
in terms of the accuracy. We dealt with the given data set
that contains n patterns, k attributes, and was separated into
W classes. The pattern X in the data set was defined as
X={x1, . . . , xk}. The Hamming distance (Dh) between X and
the unseen pattern Z was defined as follows:

Dh(X,Z) =
k∑

m=1

Ih(xm, zm) (1)

where

Ih(xm, zm) =

{
0 if xm = zm

1 otherwise
(2)

xm and zm are the categorical attribute values in the mth
attribute of patterns X and Z. Let us illustrate a data set
in Table 1 composed of two categorical values and classes.
Consider an unseen pattern Pu = {Low,Blue}, the distance
between the training pattern P1 and Pu was evaluated using
the following equation:

Dh(P1, Pu) = Ih(High, Low) + Ih(Red, Blue)

= 1 + 1 = 2

Similarly, Dh(P2, Pu) = 1, Dh(P3, Pu) = 2, and
Dh(P4, Pu) = 1. If we use the k-nearest neighbor classi-
fier (k-NN, k=3) to classify Pu, the classifier finds the three
nearest patterns in the given training set. The three near-
est patterns of Pu were P2, P4, P1(Yes, No, Yes) or P2, P4,
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Table 1 An example of categorical data set.

Pattern Quality Color Class

Training

P1 High Red Yes
P2 High Blue Yes
P3 High Gold No
P4 Low Red No

P3(Yes, No, No). Thus, the classifier could not absolutely
determine the class of Pu.

The problem was that the Hamming Distance does not
address the difference between categorical values according
to class [2]. Now referencing the training data set in Ta-
ble 1, the categorical value of pattern Pu, Blue, was observed
only in class Yes. Therefore, regarding the categorical value
Red of P1 and the categorical value Blue of Pu as equivalent
may imply an improved classification performance. Thus,
Ih(Red, Blue) should be 0 for the classification of Pu.

The equivalence of categorical values affected classifi-
cation performance. Obviously, the categorical value Blue
of Pu was not observed in class No, so we could not regard
the categorical value Blue of Pu and categorical value Red
of P4 as equivalent. Thus, Ih(Red, Blue) = 0 in class Yes,
and Ih(Red, Blue) = 1 in class No. Using the previous ex-
ample, we know that finding such pairs of categorical values
in a specific class is important to improve classification per-
formance. We developed the Adoptive Hamming Distance
(AHD) that adapts to the given data set to achieve this.

2. Proposed Method

2.1 Adoptive Hamming Distance

The Adoptive Hamming Distance (Dh∗) is defined by the
following equation:

Dh∗ (X,Z) =
k∑

m=1

Ih∗(xm, zm) (3)

where

Ih∗(xm, zm) =

{
0 if xm = zm

dc(xm, zm) if xm � zm
(4)

The term, c ∈ W, is the class name. In the Ih∗(·,·) func-
tion, dc(xm, zm) ∈ {0, 1} denotes the categorical value dif-
ference. If the categorical values xm and zm are regarded
as equivalent in the given class c, then the categorical value
difference dc(xm, zm) is set to 0.
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Table 2 An example of procedural steps.

Initial

Initialize all of variables.

S 0={ 1,1,· · ·,1,1 }, P0=20% accuracy
S t={ 1,1,· · ·,1,1 }, Pt=20% accuracy

Step 1

Change a single dc(·,·) in S t+1 to 0, and set Pt+1.
The performance is improved 20% to 40%.

Save Pt+1 to P0, and set S t+1 to S t.
(*) indicates the changed value.

S t={ 1,1,· · ·,1,1 }, Pt=20% accuracy
S t+1={ 0∗,1,· · ·,1,1 }, Pt+1=40%∗ accuracy

S 0={ 0∗,1,· · ·,1,1 }, P0=40%∗ accuracy

Step 2

After iterations, maximum performance of
S t+1 has been found. Also, it is saved to S 0.

S 0={ 1,0∗,· · ·,1,1 }, P0=60∗% accuracy

Step 3
If P0 is improved, go to Step 1.

If P0 is not improved, then stop the procedure. we get the
Adoptive Hamming Distance S 0.

Algorithm 1 Proposed Method
S 0 = {dc(xm, zm)← 1|∀xm, zm, xm � zm}
t ← 1
S t ← S 0

Initialize P0 with the classification performance of S 0

Initialize Pt with the classification performance of S t

loop
for each class and each categorical value do

S t+1 ← S t

Change a single dc(·,·)←0 in S t+1

Evaluate Pt+1

if Pt+1 > Pt then
S 0 ← S t+1, and P0 ← Pt+1

end if
end for
if P0 is not improved then

return Adoptive Hamming Distance S 0

else
S t+1 ← S 0

end if
t ← t + 1

end loop

Since we observed that classification performance has
improved when dc(·,·) changed to 0, we should find such a
dc(·,·). For simplicity, we defined a set S that followed the
definition given below:

S = {dc(xm, zm)|∀(xm, zm), xm � zm} (5)

Generally dc(xm, zm) = 1 when xm � zm. Therefore, all
of the elements in the set S are 1 at the initial step. The set
S of the data set shown in Table 1 was used in the following
example.

S = { dYes(High, Low), · · · , dNo(Gold,Red) }
= { 1, · · · , 1 }

If we regard the categorical values Blue and Red as
equivalent in class Yes, then one of the dYES (·,·) in S changes
to 0. S t means the S of t step.

S t = {· · · , dYes(Red, Blue) = 1, · · ·}
S t+1 = {· · · , dYes(Red, Blue) = 0, · · ·}

Now we must find the circumstance in which dc(·,·)
changes to 0 in S , so that classification performance is im-
proved. We applied a greedy search to find such a dc(·,·) in
S .

The detailed procedure of the proposed method is given
in Algorithm 1. The classification performance P following
S was evaluated at each step. If P was not improved, the
loop procedure stopped and we obtained S 0, the Adoptive
Hamming Distance that is finally adopted for the given data
set. An example of the procedural steps is shown in Table 2,
to demonstrate what was changed in S .

3. Experimental Results

We applied the nearest neighbor(NN) classifier based on the
proposed AHD(NN+AHD) to widely used data sets, such
as Balance, Monk2, and Tic-Tac-Toe [3], to test the effec-
tiveness of the proposed method. We compared the per-
formance of NN+AHD to the conventional nearest neigh-
bor classifier, based on the Hamming Distance(NN+HD),
the Value Difference Metric(NN+VDM), and the Class-
Dependent Weight Dissimilarity(NN+CDW). From 10% to
50% of the original data set was held out as independent
test set; remaining data was used for training each method.
We iterated each method 100 times to examine the average
performance of the classification tasks.

The Monk2 data set contains 601 data, where each data
has 6 categorical attributes. The Balance data set contains
625 data, where each datum has 4 categorical attributes. The
Tic-Tac-Toe data set contains 958 data, where each datum
has 9 categorical attributes.

Figure 1 shows the classification performance of each
method for Monk2 data set. The proposed NN+AHD
showed superior classification performance to other conven-
tional methods in 10% to 50% hold out conditions. Classifi-
cation accuracies of NN+HD, NN+VDM, and NN+CDW
were 79.5%, 89.9%, and 93.2% respectively on 10%
hold out condition, while the classification performance of
NN+AHD was 99.0%. Thus, we can see that the perfor-
mance of NN+AHD is improved 19.5% from conventional
NN+HD on 10% hold out condition. On 50% hold out
condition, classification accuracies of the three conventional
methods were 68.1%, 75.0%, and 87.0% respectively, while
the classification performance of NN+AHD was 92.2%;
NN+AHD was improved 24.1% from NN+HD. Compared
to NN+CDW, the NN+AHD was improved 5.2%. Thus
NN+AHD was more accurate than the other methods on
changing the proportion of test set from 10% to 50%.

It is interesting to note that the AHD method shows
similar effect like the feature selection method in a specific
data set, such as a binary data set where the mth attribute of
the data set has only two values. For example, we represent
these two values as Red and Blue. If AHD adopts the dif-
ference of those values from 1 to 0, then attribute m does
not contribute to the classification results; the adoption pro-
cess of AHD on the binary data set plays a role of removing
irrelevant attributes.



LETTER
191

Fig. 1 Classification results of Monk2 data set using the NN+HD(a), NN+VDM(b), NN+CDW(c),
and NN+AHD(d).

Table 3 The overall classification results of NN+HD, NN+VDM, NN+CDW, and NN+AHD.

Hold Out(%) 10% 30% 50%
Data set Balance Monk2 Tic-Tac-Toe Balance Monk2 Tic-Tac-Toe Balance Monk2 Tic-Tac-Toe
NN+HD 86.2% 79.5% 98.7% 82.5% 72.8% 97.7% 79.9% 68.1% 95.7%

NN+VDM 84.2% 89.9% 92.1% 82.0% 82.5% 91.8% 80.1% 75.0% 90.1%
NN+CDW 79.4% 93.2% 72.2% 77.9% 93.1% 71.2% 77.3% 87.0% 69.8%
NN+ADH 89.8% 99.0% 98.8% 87.2% 98.3% 98.4% 84.9% 92.2% 97.2%

Table 3 shows the overall classification accuracy of
the four methods in three data sets. In the Balance data
set of 10% hold out condition, the classification perfor-
mance of NN+HD was 86.2%, and those of NN+VDM and
NN+CDW are 84.2% and 79.4% respectively, while that
of NN+AHD was 89.8%. Thus the NN+AHD was 10%
more accurate than NN+CDW. On the 50% hold out condi-
tion, the performance of NN+HD was 79.9%, and those of
NN+VDM and NN+CDW were 80.1% and 77.3% respec-
tively, while that of NN+AHD is 84.9%. From Table 3, we
find that NN+AHD provided the best performance irrespect
of the three data sets and hold out conditions.

In Fig. 2, we examined the reliability of the proposed
method over the proportion of the independent test set of
Tic-Tac-Toe. The classification accuracy of NN+AHD is
slowly decreasing from 98.8% to 97.2% in accordance with

increasing test set from 10% to 50%. In contrary, classi-
fication accuracy of NN+HD is decreasing from 98.7% to
95.7%, and NN+VDM is decreasing from 92.1% to 90.1%,
and NN+CDW is decreasing from 72.2% to 68.8%. The ac-
curacy of NN+CWD drops as twice as faster than NN+AHD
with increasing test set. The accuracy standard deviation of
NN+HD, NN+VDM, and NN+CDW on 10% hold out con-
dition is ±1.08%, ±2.81%, and ±3.78% respectively, while
that of NN+AHD is ±1.03%. Thus the NN+AHD is more
reliable than the counterparts on all five hold out conditions.

4. Conclusion

To deal with the categorical data classification problem, HD,
VDM, and CDW have been widely used. Specifically, in
the VDM, the weight value is used to control the distance
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Fig. 2 Classification results of the Tic-Tac-Toe data set using NN+HD(a), NN+VDM(b),
NN+CDW(c), and NN+AHD(d).

between categorical attribute values, whereas CDW assigns
the weight values to attributes of each class to improve
classification performance. In this letter, we presented the
Adoptive Hamming Distance that adapts the distance 1 to 0
when two different categorical values are regarded as equiv-
alent. NN+AHD showed better classification results for the
given data sets compared to conventional classification al-
gorithms, indicating the potential of the proposed approach.
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