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PAPER

Improved Reference Speaker Weighting Using Aspect Model

Seong-Jun HAHM†a), Student Member, Yuichi OHKAWA††, Masashi ITO†, Motoyuki SUZUKI†††, Akinori ITO†,
and Shozo MAKINO†, Members

SUMMARY We propose an improved reference speaker weighting
(RSW) and speaker cluster weighting (SCW) approach that uses an as-
pect model. The concept of the approach is that the adapted model is a
linear combination of a few latent reference models obtained from a set of
reference speakers. The aspect model has specific latent-space character-
istics that differ from orthogonal basis vectors of eigenvoice. The aspect
model is a “mixture-of-mixture” model. We first calculate a small num-
ber of latent reference models as mixtures of distributions of the reference
speaker’s models, and then the latent reference models are mixed to ob-
tain the adapted distribution. The mixture weights are calculated based on
the expectation maximization (EM) algorithm. We use the obtained mix-
ture weights for interpolating mean parameters of the distributions. Both
training and adaptation are performed based on likelihood maximization
with respect to the training and adaptation data, respectively. We con-
duct a continuous speech recognition experiment using a Korean database
(KAIST-TRADE). The results are compared to those of a conventional
MAP, MLLR, RSW, eigenvoice and SCW. Absolute word accuracy im-
provement of 2.06 point was achieved using the proposed method, even
though we use only 0.3 s of adaptation data.
key words: speaker adaptation, aspect model, reference speaker weight-
ing, latent reference model

1. Introduction

Speaker adaptation is an attractive field for commercial-
ization of automatic speech recognition (ASR) systems.
Concomitant with the development and improvement of
the hidden Markov models (HMMs) approaches [1], [2],
speech recognition systems have been shown to be func-
tional for large vocabulary, continuous speech, and speaker-
independent (SI) tasks. However, despite the high quality of
SI systems, there remains a considerable gap in performance
between these systems and their speaker-dependent (SD)
counterparts. The difference in a system’s error rate be-
tween SI and SD systems can be greater than 50% [3]. This
gap arises from the wide variation that can be present in any
speech waveform. This variation can result from changes
in an individual speaker, environment, a microphone and a
channel of the recording device. As described in this paper,
we specifically examine the variability from different speak-
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ers.
In actual ASR systems, users want fast responses for

the input utterances. Use of an SD system is an ideal way
of recognizing specific speaker’s utterances. However, in
general, it is difficult to gather a sufficient amount of train-
ing utterances for a specific speaker for training an SD sys-
tem. For example, in an automated call center or informa-
tion desk, a certain user can disappear after using the sys-
tem just one time. The conversation is usually short and the
system has to start working from the first conversation or ut-
terance. In this case, we cannot train the SD model for the
user because we do not know the information of the user in
advance. Therefore, speaker adaptation is a realistic way of
obtaining a speech recognizer suitable to a specific user.

Model-based adaptation methods such as the speaker-
clustering based methods [4], Bayesian-based maximum a
posteriori (MAP) adaptation [5], and the transformation-
based maximum likelihood linear regression (MLLR) adap-
tation [6] have been popular for many years. In such ap-
proaches, when the amount of adaptation data is small, rea-
sonable performance cannot be obtained. Other approaches
are necessary to reduce the number of adaptation parameters
and to obtain reasonable performance for small amounts of
adaptation data.

Reference speaker weighting (RSW) [3] was proposed
to overcome such problems. Eigenvoices [7] were also pro-
posed by extending the idea of the RSW. Both approaches
are based on the reference speaker model. They differ
only in the ways in which the reference vectors are com-
puted. Both methods also assume that a new speaker model
can be produced through a linear combination of the refer-
ence speakers’ models. Eigenvoices employs eigen (prin-
cipal component) analysis [8] to identify a set of orthog-
onal basis vectors. Other extended approaches have been
proposed based on eigenspace such as eigen-MLLR [9],
eigenspace mapping [10], and kernel eigenvoice [11], [12].
In eigenspace-based approach, the selection of eigenvec-
tors is not based on likelihood of the training or adaptation
utterances. Although the reference-speaker-based methods
are designed to be effective for small adaptation data, those
methods are not effective enough when the amount of adap-
tation data is extremely small (e.g. less than 1 s).

In this work, we assume that the adaptation is per-
formed using a dedicated word like “Hello” in a supervised
fashion. After adaptation using this short word, the adapted
model is used. For actual ASR systems, adaptation must be
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fast with very few adaptation data. To realize rapid adap-
tation, efficient approximation of inherent speaker-specific
characteristics is needed using extremely small number of
adaptation data. As described in this paper, we propose
a Bayesian adaptation method, which exploits an aspect
model: a “mixture-of-mixture” model. An aspect model
obtained from a set of reference speakers is used for per-
formance improvement of RSW. In the proposed frame-
work, small number of “latent reference model” are trained
first, which are mixtures of the distributions of the reference
speakers. When adaptation data are given, the latent refer-
ence models are mixed so that the likelihood for the adapta-
tion data is maximized. The mixture weights are determined
based on the EM algorithm. Finally, the distributions of the
mixture model are merged into a single distribution using
the determined weights.

The organization of the paper is as follows. In Sect. 2,
we review related works for speaker adaptation approaches.
In Sect. 3, we describe an overview of the aspect model
and discuss the potential of the techniques using the aspect
model. In Sect. 4, we will present the experimental results
obtained using MAP, MLLR, eigenvoice, RSW, SCW and
the proposed method, and conclude the paper in Sect. 5.

2. Review of Related Works

SD models usually perform better than SI models. Speaker
adaptation refers to the set of techniques that are used to
modify a SI model to approximate SD models. In the fol-
lowing, important adaptation methods, MAP, MLLR, RSW,
and eigenvoices are explained briefly.

2.1 Maximum a Posteriori Estimation

In most speech recognition systems using HMMs, the model
parameters such as means and variances are estimated using
maximum likelihood estimation (MLE). The MAP reduces
the amount of training data by combining the original distri-
butions and the distributions calculated from the adaptation
data. The formula for MAP adaptation of mean parameters
is the following:

µnew =
Nadpµadp + τµori

Nadp + τ
, (1)

where µnew is the updated mean, µadp is the mean of the
adaptation data, µori is the original mean, Nadp is the num-
ber of available adaptation data and τ is a control variable
determined empirically. In Eq. (1), one can see if τ → 0
the updated mean is only dependent on the adaptation data
(which is equivalent to the MLE). If τ → ∞, the updated
mean keeps the original mean. The MAP method can be re-
garded as finding the optimal combination of existing data
and the adaptation data [5].

2.2 Maximum Likelihood Linear Regression

MLLR adjusts model parameters using a transformation that

is shared globally or across different units within a class.
Global mean vector scaling, rotation, and translation are

µnew =Wµori + B, (2)

where W is a regression matrix, and B stands for a bias term.
A detailed explanation of the method can be found in [6].

2.3 Reference Speaker Weighting

The fundamental idea of the RSW is that the model param-
eters of a speaker adapted model can be constructed from
a weighted combination of model parameters from a set
of individual reference speakers [3]. Letting the reference
speaker be r, the speaker vector for r is given as

mr =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
µ1,r
...

µP,r

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ , (3)

where P is the number of distributions of the phonetic mod-
els. The entire set of reference speaker vectors can be rep-
resented by the matrix M which is defined as

M = [m1,m2, · · · ,mK] , (4)

where K is the number of reference speakers. The value
of the updated mean vector msa can be constrained to be
a weighted average of the speaker vectors contained in M.
This can be expressed as

msa =Mw. (5)

Here w is a weighting vector that allows a new speaker vec-
tor to be created via a weighted summation of the reference
speaker vectors in M. The optimum weighting vector ŵ can
be obtained using MLE.

ŵ = arg max
w

p(X|M,w), (6)

where X signifies the adaptation data.

2.4 Eigenvoices

Eigenvoices extends the idea of the RSW. The goal is to
learn uncorrelated features of the speaker space. The set of
eigenvectors, E, is obtained after applying eigen (principal
components) analysis on matrix M in Eq. (4), as

E = {e0, e1, · · · , eK} , (7)

where K is the number of reference speakers. The new
speaker vector, the set of updated means, is combination of
top N eigenvectors:

msa = e0 + w1e1 + · · · + wNeN . (8)

The adaptation procedure for eigenvoices closely re-
sembles RSW. The value of ŵ is calculated using maximum
likelihood eigen-decomposition (MLED) [7].

ŵ = arg max
w

p(X|E,w). (9)
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2.5 Speaker Cluster Weighting

Speaker cluster weighting (SCW) [3] is an interpola-
tion method which calculates the output probability as a
weighted-sum of output probabilities of models, each of
which is trained by a cluster of speakers. The weighting fac-
tors are determined on the fly to match the current speaker.
Let p(x|Φl) represent the acoustic model trained from the l-
th speaker cluster Φl. When we have L different clusters,
then the final SCW model is a weighted combination of the
L different models as represented by:

pscw(x|Φ,w) =
L∑

l=1

wl p(x|Φl), (10)

where

w = {w1, . . . ,wL}. (11)

The weights are determined by the maximum likelihood cri-
terion, which is easily performed by the EM algorithm.

3. Speaker Adaptation Using an Aspect Model

3.1 Proposed Approach Using Aspect Model

Generally speaking, a large number of adaptation param-
eters can be a problem in speaker adaptation systems. The
fundamental idea of the proposed method is that the adapted
model is a linear combination of a few latent reference mod-
els obtained from a set of reference speakers. It therefore
drastically reduces the number of free parameters to be es-
timated from the adaptation data. As explained, the basic
strategy of the proposed method is similar to that of eigen-
voice. The difference is that the proposed method is not a
decomposition of a mean vector but a decomposition of a
target distribution into mixtures of distributions of the latent
reference models. A target distribution is calculated in the
following three steps:

1. Calculate a small number of latent reference models
as a mixture of Gaussian distribution of the reference
speakers using the mixture weights λk.

2. Calculate the target distribution as a mixture of the as-
pect models using the mixture weight ξz.

3. Merge the Gaussian components of the target distribu-
tion into single Gaussian distribution.

The probability distribution function for the sample x
is as follows. First, we consider adaptation of a distribution
of a specific state. In this case, the probability distribution is
expressed as

p(x|Ξ,Λ) =
∑

z

ξz

∑
k

λk,zψk(x) (12)

where

Ξ = {ξ1, . . . , ξZ}, (13)

Λ = {λ1,1, . . . , λK,Z}. (14)

The variable, λk,z, is the first-level weighting, ξz is the
second-level weighting of the z-th latent reference model,
and function ψk(x) is a Gaussian distribution function,
N(x; µk,Σk). Furthermore, k is a specific speaker, x is a fea-
ture vector, and z means a latent class. In an actual HMM,
a distribution depends on a state s. Therefore, Eq. (12) is
rewritten as follows.

p(x|Ξs,Λs) =
∑

z

ξz,s

∑
k

λk,z,sψk,s(x), (15)

where

Ξs = {ξ1,s, . . . , ξZ,s}. (16)

Λs = {λ1,1,s, . . . , λK,Z,s}. (17)

Here, λk,z,s is a state-dependent weight from the speaker
k to the latent reference z at the state s, ξz is the z-th state-
dependent weight at the state s. If we regard the second-
level weights ξz as being independent of the state, Eq. (15)
becomes as follows.

p(x|Ξ,Λs) =
∑

z

ξz

∑
k

λk,z,sψk,s(x). (18)

In this case, λk,z,s is a state-dependent weight, whereas ξz is
independent of states. By sharing ξz among all states, we can
adjust the models of all phonemes using very small number
of parameters.

Figure 1 presents structure of the latent reference
model. A latent reference model is a mixture model of the
SD models. The mixture weights λk,z,s are trained from the
training samples using the EM algorithm. On adaptation,
only the mixture weights of the aspect models ξz are esti-
mated from the adaptation samples. As these weights are
shared across all states, the number of adaptation parame-
ters to be estimated is small, enabling adaptation using ex-
tremely small number of adaptation data.

Figure 2 shows a block diagram of the speaker adap-
tation system using an aspect model. In the training phase,
SI and SD models are trained, respectively, using the train-
ing data. Using the SD model and training data, the aspect
model is computed using the method explained in Sect. 3.2.
In the adaptation phase, the original aspect model is adjusted
using the adaptation data. Here the second-level weightings
of each latent reference model, ξz, are the unit for adapta-
tion instead of the SD model set. The adaptation is per-
formed by linear combination using mean parameters from

Fig. 1 Structure of latent reference model.
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Fig. 2 Speaker adaptation system using an aspect model.

SD model set and weighting parameters from adjusted as-
pect model set. The variance parameters of SI model are
used for adapted model with no change.

3.2 Derivation of EM Update Formulae for the Aspect
Model (Training)

Figure 3 shows the training scheme for the aspect model. In
that figure, x j

i is the i-th feature vector labeled as the j-th
speaker. The basic idea of training of the aspect models is
that we train a few latent reference models so that mixture
of the latent reference models can approximate each of the
speaker models. As the number of the latent reference mod-
els is smaller than that of the speaker models, we can expect
that the trained latent reference models are a kind of “basis”
distributions that express any distribution. The optimization
of “basis” distributions is based on the maximum likelihood
criterion, which is the advantage of the proposed method
over the eigenvoice.

First, let us think about estimating a distribution for a
specific state. Definitions of symbols are as follows.

• ui, j Data for speaker of the i-th sample such that

ui, j=

{
1 if the speaker of the i-th sample is j
0 otherwise

• vi A speaker of the i-th sample (i.e. ui,vi = 1)
• xi The i-th sample
• ψk(x) A pdf trained for speaker k

Fig. 3 Training procedure for the aspect model.

We define the probability distribution function for the
speaker j and sample x as

p(x|Ξ j,Λ) =
Z∑

z=1

ξ j,z

K∑
k=1

λk,zψk(x), (19)

where

Ξ j =
{
ξ1,1, . . . , ξ j,Z

}
. (20)

The complete data are assumed as Γ = {ai,z, bi,k}, where

ai,z =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if the z-th latent layer is

selected at the i-th sample
0 otherwise

,
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bi,k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if the k-th output layer is

selected at the i-th sample
0 otherwise.

Letting U = {v1, . . . , vN}, the probability of the samples and
the complete data are

p(X,Γ|U, θ)
=
∏

i

∏
j

∏
z

∏
k

(
ξ j,zλk,zψk(xi)

)ui, jai,zbi,k
, (21)

log p(X,Γ|U, θ) =
∑

i

∑
j

∑
z

∑
k

ui, jai,zbi,k

(
log ξ j,z + log λk,z + logψk(xi)

)
.

(22)

The expectations of ai,z and bi,k are calculated next.

αi,z = E
[
ai,z
]
=

ξvi,z
∑

k λk,zψk(xi)∑
z ξvi,z

∑
k λk,zψk(xi)

, (23)

βi,k = E
[
bi,k
]
=

∑
z ξvi,zλk,zψk(xi)∑

k
∑

z ξvi,zλk,zψk(xi)
, (24)

E
[
log p(X,Γ|U, θ)] =∑

i

∑
j

∑
z

∑
k

ui, jαi,zβi,k

(
log ξ j,z + log λk,z + logψk(xi)

)
. (25)

Let the Q-function be

Q = E
[
log p(X,Γ|U, θ)]

+

K∑
j=1

c j

⎛⎜⎜⎜⎜⎜⎝1 −
∑

z

ξ j,z

⎞⎟⎟⎟⎟⎟⎠+
Z∑

z=1

dz

⎛⎜⎜⎜⎜⎜⎝1 −
∑

k

λk,z

⎞⎟⎟⎟⎟⎟⎠. (26)

From

dQ
dλk,z
=
∑

i

∑
j

ui, jαi,zβi,k

λk,z
− dz = 0,

dQ
dξ j,z
=
∑

i

∑
k

ui, jαi,zβi,k

ξ j,z
− c j = 0,

(27)

the optimal λk,z and ξ j,z can be found as

λk,z =

∑
i αi,zβi,k∑

k
∑

i αi,zβi,k
, (28)

ξ j,z =

∑
i:vi= j αi,z∑

z
∑

i:vi= j αi,z
. (29)

After training λk,z and ξ j,z, only λk,z are saved for calculation
of the aspect models. ξ j,z are not used for the adaptation. We
use the average of ξ j,z over j as initial values of the adapta-
tion. Only ξz is adjusted for adaptation. The second-level
weightings of the aspect models, ξz, are shared globally over
the entire phoneme models. Following ξz is used for the ini-
tial value.

ξz =
1
K

K∑
j=1

ξ j,z. (30)

When using the aspect model for HMM, we need to
apply the above-mentioned method to distributions in the
many states. In this case, we use state-dependent λk,z (i.e.
λk,z,s) and state-independent ξ j,z. To estimate these parame-
ters, αi,z and βi,k are also changed into state-dependent (i.e.
αi,z,s and βi,k,s). Note that only averages of ξ j,z over j are
used for the adaptation process.

3.3 Adaptation Using Aspect Model

For adaptation of the aspect model, EM algorithm is applied
for estimating ξ̄z, which is the updated ξz. When the adapta-
tion data y1, y2, . . . , yn are given, ξ̄z is calculated as

ξ̄(n+1)
z =

∑
s
∑

i ξ̄
(n)
z
∑

k λk,z,sψk,s(y
(s)
i )∑

z
∑

s
∑

i ξ̄
(n)
z
∑

k λk,z,sψk,s(y
(s)
i )

. (31)

where n is the number of iterations, and

ψk,s(y
(s)
i ) =

{
ψk,s(yi) if yibelongs to state s

0 otherwise.
(32)

After estimating ξ̄z, we obtain a mixture model adapted to
the data as

p(x|Ξ̄,Λs) =
Z∑

z=1

ξ̄z

K∑
k=1

λz,k,sψk,s(x). (33)

This distribution can be viewed as a mixture of ψk(x) as

p(x|Ξ̄,Λs) =
K∑

k=1

wk,sψk,s(x) (34)

where

wk,s =

Z∑
z=1

ξ̄zλk,z,s. (35)

We can use this mixture model directly; however, when
simply using this mixture distribution, number of mixture
components becomes large when large number of reference
speakers is used. Therefore, we merge the distributions us-
ing the weight wk,s. Here, the means for a new speaker are a
linear combination of reference speaker models.

µ(s)
new =

K∑
k=1

wk,sµ
(s)
k (36)

where µ(s)
new signifies the updated mean of the distribution of

the state s and µ(s)
k denotes the mean of a specific speaker,

which is the mean vector of the distribution ψk,s. The co-
variance matrix of the adapted model, Σ(s)

new, comes from the
SI model.

3.4 Relationship between the Aspect Model and Other
Adaptation Methods

As explained, the proposed method finally calculates a mean
vector of an adapted distribution as a weighted sum of those
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of the distributions of the reference speakers, and thus this
method can be viewed as a variant of the reference speaker
weighting. The original RSW tries to estimate all wk using
the adaptation data, which is difficult when number of refer-
ence speaker is large or amount of adaptation data is small,
even if state-independent weights are employed. The eigen-
voice method decomposes wk as follows:

µ(s)
new =

N∑
i=1

w
′
i

K∑
j=1

v(s)
i, j µ

(s)
k . (37)

where v(s)
i, j is a weight for calculating j-th eigenvector. This

formula has similar form as the proposed method. The dif-
ference is that the decomposition is performed based on the
least mean squares criterion, while the decomposition in the
proposed method is based on the maximum likelihood crite-
rion.

As shown in Fig. 1, the aspect model can be viewed as a
combination of RSW and SCW. In fact, RSW is an interpo-
lation of models from “reference speakers,” and SCW is the
cluster’s mixture models. From this point of view, λk,z can
be thought of as weighting of reference speakers and ξz can
be regarded as weighting of speaker clusters if we assume
that λk,z is the speaker cluster. In our approach, RSW is per-
formed in training phase using training utterances across the
different aspect model. Then SCW is performed using the
adjusted aspect model set in the adaptation phase.

4. Experimental Evaluation

4.1 Training and Evaluation Data

The rapid speaker adaptation performance of the aspect
model was tested using the Korean (KAIST-TRADE)
database [13] in a supervised fashion. The KAIST-TRADE
database consists of 150 speakers (100 male speakers and
50 female speakers) and 14,746 sentences. Each speaker
utters about 100 sentences. The speech in the database
was recorded in an office environment with sampling rate
of 16 kHz. Among the 100 male speakers, 90 males were
used for training. For testing and adaptation, 10 male speak-
ers not included in the training set were used. The speech
data uttered by these 10 male speakers were divided into
two groups for testing and adaptation. Eighty sentences
(from the 1st to 80th sentence) were used for testing, and
the remaining sentences (from the 81st to 100th sentence)
were used for adaptation for each speaker. Each speaker ut-
ters different sentences from the sentences spoken by other
speakers. The amount of adaptation speech is from 0.1 s to
20 s. We performed two sets of evaluation. For the first eval-
uation, the adaptation data were started at an each speaker’s
81st sentence, in the ascending order (after using all sam-
ples of the 81th sentence, the next sample was taken from
the 82th sentence). For the second evaluation, the adapta-
tion was performed using the last sentence as the starting
sentence, in the descending order (the 99th sentence was
used after using the 100th sentence). The adapted model

was tested for each speaker’s speech for testing (i.e., 80
sentences from the 1st to 80th sentence). Finally, the two
adaptation results were averaged. For calculating linguis-
tic scores, a trigram language model was used for experi-
ments. Trigram language model was trained using 13,751
sentences which were not included in testing and adaptation
set (995 sentences). We used CMU-Cambridge toolkit [14]
for training and Witten-Bell discounting [15] as a smoothing
method.

4.2 Acoustic Modeling

A 13-dimensional Mel-frequency cepstral coefficients
(MFCCs) feature vectors including frame log power were
extracted from the pre-emphasized speech signal every
10 ms using a 25 ms Hamming window. The MFCCs,
ΔMFCCs and ΔΔMFCCs were concatenated to form 39-
dimensional feature vectors. Cepstral mean normalization
was used. The SI model consists of 37 monophones. Each
was modeled as a continuous density HMM which is strictly
left-to-right and has three states with one Gaussian mixture
density per state. As shown in Eq. (36), we also employed
single-Gaussian HMMs for all of the adapted HMMs. The
reason why we used the single Gaussian models was for ver-
ifying the effectiveness of the proposed method, and com-
paring with RSW and eigenvoices. The RSW and eigen-
voices are not well defined for more than 2-mixture acoustic
models, in which the order of the reference speaker vectors
in matrix M in Eq. (4) cannot be defined appropriately.

The number of aspect model was set to 5, 10, 20, and
40. Each SD model was created using a typical EM training
procedure using SI model as an initial model. We used the
large vocabulary speech recognition decoder: Julius rev.4.1
[16]. The SI model has a word accuracy of 74.50% on the
test data.

4.3 Effect of the Number of Aspect Models

The idea of using the aspect model is to make use of the
most important latent information to reduce the number of
estimation parameters. In this experiment, we investigate
the effect of the different number of aspect models.

The number of reference speaker model is the same as
the number of training speaker (i.e., 90). For a more de-
tailed evaluation, the x-axis units are set not to sentences
but to seconds. The performance was evaluated using word
accuracy. The results for global weighting are portrayed in
Fig. 4. The figure shows the following facts.

• Although the model with 40 aspect models is better
than that with 5 aspect models, effects of the different
number of aspect models are not very large.
• The performance shows a slightly increasing tendency

across the number of adaptation data.
• The performance saturates at about 3 s in most cases.
• However, the performance rapidly reached to the best

one for all cases.
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Fig. 4 Effect of the number of aspect models (Global weighting).

Fig. 5 Effect of the number of aspect models (State-dependent weight-
ing).

To investigate the reason why the proposed method
showed very slow improvement of performance with re-
spect to the amount of adaptation data, we tried to ap-
ply the proposed method in the state-dependent manner.
Figure 5 shows the results using state-dependent weight-
ing, where the state-dependent weights ξz,s were used. In
this experiment, number of parameters to be adapted was
37(number of phonemes) × 3(number of states) × Z. The
performance of this method was almost same as those of
MAP even though only weightings are adjusted for adapta-
tion. The performance was starting to increase from about
0.5 s.

This result depicts that improved performance can be
obtained using long adaptation data when a large number
of parameters are used. In other words, number of param-
eters shown in Fig. 4 (from 5 to 40) is too small to obtain
improvement using long adaptation data compared with that
shown in Fig. 5 (from 555 to 4440). At the same time, we
can confirm that the proposed method with global weights
outperforms the method with state-dependent weights when
the adaptation data is short (under 3 s), showing that the
parameter reduction works effectively for extremely small

adaptation data.

4.4 Comparison with Existing Adaptation Methods

Next, MAP, MLLR, RSW, eigenvoice, and SCW were used
for comparison with the proposed method. In all adaptation
methods, only mean parameters were updated. For MAP,
the adjustment parameter τ was set to 35 which was decided
empirically. The original mean (i.e., SI mean) and the mean
of adaptation data are mixed using this τ. For the MLLR,
the global transformation matrix was used for adaptation.
Using adaptation data, global transformation matrix which
has the size of 39 × (39+1) was created for adaptation. The
global weighting vector was used for both RSW and eigen-
voice adaptation. The optimum weighting vector for RSW
was obtained using MLE. For the eigenvoice adaptation, we
used 45 eigenvoices whose cumulative contributions were
greater than 80%. The optimum weighting vector for eigen-
voices was estimated using MLED.

On applying the SCW, we first have to cluster all speak-
ers. There are a variety of ways in which the speaker clus-
tered tree can be constructed. The construction can be
performed using unsupervised bottom-up clustering based
on an acoustic similarity measure [4], [17], unsupervised
top-down clustering based on an acoustic similarity mea-
sure [18], [19], or some supervised method. In this paper,
we used a top-down clustering based on Bhattacharyya dis-
tance. In the constructed tree-structure, the root node is
identical to SI model and the leaf node is the same as SD
model. The depth of levels is 13 and the total number of
node is 179. After constructing tree-structure, each node
model which is composed of 3-state left-to-right 1-mixture
monophone model is trained using MLE. For comparison,
an adapted model were also merged into 1-mixture HMM.
Therefore, adaptation is a linear combination of node mod-
els in tree-structured clusters. Table 1 shows the number of
adaptation parameters of adaptation methods used for ex-
periments. The experimental results are presented in Fig. 6.
Results show that all other methods, especially MLLR, suf-
fer from data sparseness when the amount of adaptation data
is extremely small. MLLR methods yielded worse results
than SI model when the amount of adaptation data were less
than 15 s. For adaptation utterances longer than about 3 s,
the performance of the proposed method was not better than
those of other approaches. However, it shows that the aspect
models provided the best adaptation performance when the
adaptation utterances were extremely short (less than 0.5 s).
From 0.5 s to 2 s, the proposed method has similar perfor-
mance with SCW even though we use only 40 aspect mod-
els. Using only 0.3 s of adaptation data for 20 and 40 as-
pect models, word accuracy improvements of 1.60 and 2.06
points were achieved, respectively, from SI model using the
proposed method.

The experimental results show that aspect model can
represent speaker’s characteristics effectively for extremely
small amount of adaptation data (less than 1 s). We could
obtain the improved results by using the estimated weight-
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Table 1 Comparison of the number of parameters of adaptation methods.

Adaptation Methods Number of Adaptation Parameters
MAP 4329 ( 37 phonemes × 3 states × 39 dimensions)

MLLR 1560 (39 × 40 )
RSW 90 weighting vectors

Eigenvoice 45 eigenvoices
SCW 179 weighting vectors

Proposed 5, 10, 20, and 40 weighting vectors

Fig. 6 Comparison with existing adaptation methods.

ing values based on EM algorithm. The small number of
weights for the latent reference models can adjust a large
number of parameters. The number of free parameters for
adaptation is really small because only ξz has to be estimated
in the adaptation phase.

5. Conclusions

In this paper, we proposed an improved reference speaker
weighting using the aspect model based on likelihood scores
derived from training utterances. The aspect model is a
“mixture-of-mixture” model, which first calculates a small
number of latent reference models as mixtures of distribu-
tions of the SD models. We then estimated the weights of
the latent reference models using available adaptation data
to obtain the adapted distribution. We used the obtained
mixture weights for interpolating weights of mean param-
eters of the distributions. The number of free parameters
to be estimated from adaptation data was reduced by the
use of the aspect model. We evaluated performance of the
proposed method through a speaker adaptation experiment.
Even though we used only 0.3 s of adaptation data and 40
aspect models, word accuracy improvement of 2.06 point
was achieved from SI model using the proposed method.
Future work will involve performing experiments on many
speakers and in various noisy environments.
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