
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010
1997

LETTER

Privacy-Preserving Authentication of Users with Smart Cards
Using One-Time Credentials∗

Jun-Cheol PARK†a), Member

SUMMARY User privacy preservation is critical to prevent many so-
phisticated attacks that are based on the user’s server access patterns and
ID-related information. We propose a password-based user authentication
scheme that provides strong privacy protection using one-time credentials.
It eliminates the possibility of tracing a user’s authentication history and
hides the user’s ID and password even from servers. In addition, it is resis-
tant against user impersonation even if both a server’s verification database
and a user’s smart card storage are disclosed. We also provide a revocation
scheme for a user to promptly invalidate the user’s credentials on a server
when the user’s smart card is compromised. The schemes use lightweight
operations only such as computing hashes and bitwise XORs.
key words: authentication, user privacy, smart card, one-time credentials

1. Introduction

Since proposed by Lamport [1] in 1981, password-based
user authentication has been widely used for verifying re-
mote users over an insecure channel, such as the Internet.
Many elegant schemes in this area were proposed to ad-
dress various security and efficiency aspects such as replay
attack [2]–[5], parallel session attack [6], mutual authentica-
tion [2], [6], [7], necessity of a verification table [2], [7], [8],
[10], user impersonation [9]–[12], ID-theft [12]–[14], and
communication and computation overhead [2], [4], [7], [10].
However, the preservation of user privacy has been much
less investigated with respect to password-based authentica-
tion.

A user is likely to visit different sites with a single ID
and password, since otherwise the user has to memorize
many different IDs and/or passwords. In that case, the sites
visited by the user might be linked and then used for ma-
licious purposes, for example, phishing, spamming emails,
and cracking the user’s least protected account. In this pa-
per, we propose a strong privacy-preserving authentication
scheme for users with smart cards. Using one-time cre-
dentials in a clever way, the scheme not only hides the ID
and password of a user even from a server that verifies the
user but also makes each authentication session random and
unique. It allows a user to reuse a single ID and password to
multiple servers without the user’s accessing pattern being
traced. The idea of one-time credentials is similar to the one-
time password notion in [16] because both require a user

Manuscript received December 2, 2009.
†The author is with the Department of Computer Engineering,

Hongik University, Seoul, Korea.
∗This work was done while the author was on sabbatical during

the 2008–2009 academic year.
a) E-mail: jcpark@hongik.ac.kr

DOI: 10.1587/transinf.E93.D.1997

to remember one set of credentials only. But our scheme
provides mutual authentication using lightweight operations
such as hash, XOR, and concatenation only, whereas the
scheme in [16] provides one-way authentication only using
the AES block cipher.

The proposed scheme does not make its security solely
dependent on the security of smart cards. Although smart
cards are designed to be tamper-resistant, one can mount
a direct attack on the card itself [15] and determine the se-
cret values stored by reverse engineering the card. The val-
ues to be stored at the smart card are carefully chosen so
that nothing useful for attacking can be deduced from them.
Therefore, even if an adversary can steal secret values from
someone else’s smart card, the adversary will not be able to
impersonate the owner of the card or to obtain the owner’s
ID or password. Moreover, we provide a revocation scheme
to promptly invalidate a user’s data on a server whose smart
card was stolen or lost.

2. Mutual Authentication

We propose a scheme with three phases: registration, au-
thentication, and verification and update, where the last two
are intertwined. From now on, we use U to denote a user,
D to denote a smart card, and S to denote a server. Also,
h() denotes a secure one-way hash function with a sufficient
length of output. HMAC(x, y) is a hash function based mes-
sage authentication code [17], where x is a secret key and y
is the message to be authenticated. Other notations are: a
secure channel as ⇒, a non-secure channel as →, the bit-
wise XOR operation as ⊕, the reverse of a bit sequence seq
as [seq]R and the concatenation operation as ||.

2.1 Registration Phase

Registration is assumed to be done only once via a secure
channel. This phase is invoked when U with the device D
wants to register with S for the first time.

1. U provides S with personal information of U
2. U inputs 〈id, pw, P, rpw〉 into D

id, pw: U’s (real) ID and password
P: U’s revocation PIN(4-digit), P = (P1||P2)
rpw: U’s revocation password (different to pw)

3. D⇒ S : M, id
′
,K

M = HMAC(pw, Xi||id)
Xi: a random secret selected by D

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



1998
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

id
′
: U’s one-time passcode for the first time

K = hP1+5([hP2+5(rpw||S ’s URL)]R)
4. S ⇒ D : m

m = h(id
′ ||Y ′ ) ⊕ M

Y
′
: a random nonce selected by S

The Xi and id
′

are pseudorandom nonces generated
by D using a modern stream cipher such as those in
eSTREAM [18]. id

′
serves as an index key into the server’s

verification database. After the registration, D stores id
′
,

m, and Xi and deletes id, pw, M, P, rpw, and K. And S
stores the tuple 〈id′ , h2(id

′ ||Y ′ ), h(M),K〉 for user U, where
h2(·) = h(h(·)), and deletes M, Y

′
, and m. The tuples in S are

sorted by their first component id
′
. The secret K will not be

used for login authentications of its associated user, but for
the revocation of the user’s tuple on the server. The server S
maintains a separate revocation database other than the ver-
ification database to store each user’s personal information
and revocation secret K. If a user requests to invalidate his
authentication tuple, the server S will look up the user’s K
in this database and then use it to find the user’s tuple of the
verification database.

Note that a user can freely choose his ID, password,
and revocation PIN and password, which are not given to
the server, sent in plaintext, or stored in the user’s smart
card.

2.2 Authentication Phase

User U inserts the card D into a terminal device and types
in his id and pw. Then D on behalf of user U will exchange
messages with S for mutual authentication.

1. D→ S : id
′
, a, b, c,T // request

id
′
: U’s current one-time passcode

a = m ⊕ HMAC(pw, Xi||id)
b = h(HMAC(pw, Xi||id)) ⊕ id

′′

id
′′
: U’s next one-time passcode to-be

c = h(id
′ ||a||id′′ ||T )

T : D’s current timestamp
2. S → D : d, e // response

d = h(id
′′ ||T ||id′ ||Y ′′ )

e = h(h(M)||id′′ ) ⊕ Y
′′

Y
′′
: a random nonce selected by S

3. D→ S : f // confirmation
f = h(Y

′′ ||id′′ ||id′ )
Every component of the messages is designed not to

repeat in any other authentication phase, which guarantees
the infeasibility of associating two or more authentication
sessions from the same user.

2.3 Verification and Update Phase

The server S checks if T is current enough. If no,
stop and discard the request. S then looks up id

′
in its

database. If there is no matching tuple, stop. Other-
wise, continue the verification process with the matching

tuple 〈id′ , h2(id
′ ||Y ′ ), h(M),K〉. S computes and sees if

h(a) equals to h2(id
′ ||Y ′ ). If yes, S computes and sees if

h(id
′ ||a||b ⊕ h(M)||T ) equals to c. If yes, S assumes the re-

quest is valid and responds with the message (d, e). On the
receipt of the message (d, e), the smart card D computes
t1 = h(HMAC(pw, Xi||id)), t2 = h(t1||id′′ ), and t3 = e ⊕ t2
in that order. D then computes and sees if h(id

′′ ||T ||id′ ||t3)
equals to d. If yes, D assumes the response is valid. After
verifying its validity, D sends a confirmation message ( f )
back to S , where S verifies it by computing and checking if
h(Y

′′ ||id′′ ||id′ ) equals to f .
Since it is crucial to synchronize the usage of one-time

passcode and other nonces between D and S , the update of
stored information at both sides must follow the verification.
D sends its request to S and waits for its response from S
for a reasonable time. Unless D receives a valid response
from S within the time, D will keep making and sending its
request to S using a new id

′′
and a more recent T . Likewise,

S will keep sending its response (d, e) to D until it receives
a valid confirmation within a reasonable time.

If everything goes well, S receives a confirmation from
D. If it turns out to be valid, S updates its stored values for
the user as follows. (1) Replace id

′
with id

′′
, and h2(id

′ ||Y ′ )
with h2(id

′′ ||Y ′′ ), respectively, and keep h(M). (2) Destroy
all received values id

′
, a, b, c, T and f from D, and the

values d, e, and Y
′′

generated by S .
After sending a confirmation to S , D also waits for a

reasonable time to make sure the confirmation be arrived
and verified at S . If D hears no message from S for the du-
ration, D concludes that S accepted its confirmation. Af-
ter that, D updates its stored values as follows. (1) Re-
place id

′
with id

′′
, and m with h(id

′′ ||t3)⊕HMAC(pw, Xi||id),
respectively, and keep Xi. (2) Destroy all other values
including d and e received from S , and the computed
HMAC(pw, Xi||id), id, pw, a, b, c, T and f .

After the update, therefore, neither D nor S would have
sufficient information for recovering any previous authenti-
cation session done between them.

3. Revocation of Authentication Credentials

We provide a way to promptly revoke a user’s credentials on
the server S whose smart card was stolen or lost. Suppose
a user U wants to invalidate his authentication credentials
on S using a computer C. For U, C will perform the below
revocation procedure with S . A revocation credential will
be computed using the input values P and rpw, and a one-
time challenge selected by S . We use the SSL protocol [19]
for C to verify S ’s digital certificate and provide encryption
and integrity protection.

1. U provides S with personal information of U
2. S looks up U’s revocation credential K in the revoca-

tion database using the personal information
3. S ⇒ C : v

v: a random positive integer nonce selected by S
4. U inputs 〈P, rpw〉 into C, where P = (P1||P2)



LETTER
1999

5. C ⇒ S : z
z = hP1+5+v([hP2+5(rpw||S ’s URL)]R)

To verify the revocation request, S computes hv(K) and
checks if it equals to the received value z. After confirming
the received value, S will search the verification database
for K and delete the tuple 〈id′ , h2(id

′ ||Y ′ ), h(M),K〉 with the
matching K value. As a result, the user U will not be able to
login to S any more using the information on his lost smart
card. S will delete the revocation credential of U with his
personal information, too.

4. Security Analysis

This section provides a security analysis of the proposed
scheme for a set of possible attacks.

4.1 Linking Authentication Sessions of a User

No request, response, or confirmation part of an authentica-
tion phase will repeat. Hence, it will be infeasible to link two
authentication sessions to a single user. The feature greatly
enhances the privacy level of users by concealing each user’s
visiting pattern completely.

4.2 Attacks to Obtain User ID and Password

A user has no need to give its real ID or password in plain-
text to a server even in the registration phase. Besides, nei-
ther a user’s smart card nor a contacting server stores the
user’s ID or password in plaintext. As a result, to obtain a
user’s ID or password is at least as difficult as to break the
HMAC function.

4.3 Impersonating a User Using Server Database and/or
Smart Card’s Storage

Even with the access to the server database somehow, the
attacker will not be able to impersonate a user using the
database. To impersonate a user with the current one-time
passcode id

′
, the attacker needs to compute a value in a

request, which must be equal to h(id
′ ||Y ′ ) to deceive the

server. However, the only available value in the database
is h2(id

′ ||Y ′ ), from which it is not feasible to get h(id
′ ||Y ′ )

due to the h()’s one-way property. Assume the attacker ob-
tains the m value as well by physically attacking the user’s
smart card D. Even so, he will not be able to compose a
from m because of the difficulty in getting M from h(M) in
the database. Besides, without the user ID and password, it
should be infeasible to compute M from the scratch.

4.4 Replay Attack

Because every component in the messages of an authenti-
cation phase is used only once and then destroyed, any re-
played part from a previous phase will fail at the verification
process.

4.5 Parallel Session Attack

Each component of a request is carefully devised to be dif-
ferent from the components of a response. As a result, it
is infeasible to generate a valid looking response from a re-
quest and vice versa. A response does not display any com-
mon structure with a confirmation to take advantage of, ei-
ther. Therefore, it will not work to open multiple sessions
and take one session’s message to make a valid looking mes-
sage for another session.

4.6 Attacks on Revocation

A server might attempt to use a user’s revocation informa-
tion to impersonate the user for invalidating the user’s cre-
dentials on another server. To do so, however, the server
will have to retrieve the user’s revocation PIN and password
from the user’s input z and stored K. Due to the server’s
one-time challenge v and its unique URL, z is one-time and
thus non-reusable to another server. It should be infeasible
for a server to obtain a user’s revocation password from the
user’s K and input z because of the way they were computed
using the secrets of the user unknown to the server.

5. Conclusion

Using one-time credentials, we proposed a novel mutual au-
thentication scheme for users with smart cards that greatly
enhances the user privacy at the ID level. It eliminates the
possibility of linking any two or more authentication ses-
sions. Moreover, a user’s ID and password are hidden even
from the user’s authentication server. It shows a strong re-
sistance against user impersonation even if the server veri-
fication database and the user’s smart card storage are com-
promised at the same time.

A smart card’s owner can access many different servers
using the proposed scheme. For each server, the smart card
just needs to store the tuple 〈id′ ,m, Xi〉. Assume that each
component of a tuple is 256 bits long, respectively, which,
we believe, is long enough to discourage a brute-force at-
tack. Then a tuple will be 768 bits (96 bytes) long. Also, the
smart card needs a field for server identity, which can be,
say, 32 bits (4 bytes) long to accommodate up to 232 different
servers. As a result, the space for a server will be 100 bytes.
An ordinary user probably has no more than 20 servers with
which the user is registered. Then a 2 K bytes space on a
smart card will be required for storing information on the
servers. Accordingly, the proposed scheme should be eas-
ily deployed on almost every smart card with a reasonable-
sized memory. We also provided a revocation scheme to
promptly invalidate a user’s credentials on a server using a
single set of revocation PIN and password. The scheme is
lightweight since it requires no expensive encryption meth-
ods such as RSA. In short, the proposed scheme is practical
and efficient, considering the technology development of to-
day’s smart card chips.



2000
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.7 JULY 2010

References

[1] L. Lamport, “Password authentication with insecure communica-
tion,” Commun. ACM, vol.24, no.11, pp.770–772, 1981.

[2] H.Y. Chien, J.K. Jan, and Y.M. Tseng, “An efficient and practi-
cal solution to remote authentication: Smart card,” Comput. Secur.,
vol.21, no.4, pp.372–375, 2002.

[3] M.S. Hwang, C.C. Lee, and Y.L. Tang, “A simple remote user
authentication scheme,” Mathematical and Computer Modeling,
vol.36, pp.103–107, 2002.

[4] H.M. Sun, “An efficient remote user authentication scheme using
smart cards,” IEEE Trans. Consum. Electron., vol.46, no.4, pp.958–
961, 2000.

[5] W.H. Yang and S.P. Shieh, “Password authentication schemes with
smart cards,” Comput. Secur., vol.18, no.8, pp.727–733, 1999.

[6] C.L. Hsu, “Security of Chien et al.’s remote user authentication
scheme using smart cards,” Computer Standards and Interfaces,
vol.26, pp.167–169, 2004.

[7] H.T. Liaw, J.F. Lin, and W.C. Wu, “An efficient and complete remote
user authentication scheme using smart cards,” Mathematical and
Computer Modeling, vol.44, pp.223–228, 2006.

[8] S.T. Wu and B.C. Chieu, “A user friendly remote authentication
scheme with smart cards,” Comput. Secur., vol.22, no.6, pp.547–
550, Sept. 2003.

[9] J.J. Shen, C.W. Lin, and M.S. Hwang, “Security enhancement for
the timestamp-based password authentication scheme using smart
cards,” Comput. Secur., vol.22, no.7, pp.591–595, 2003.

[10] R. Lu and Z. Cao, “Efficient remote user authentication scheme us-
ing smart card,” Comput. Netw., vol.49, pp.535–540, 2005.

[11] K.L. Leung, L, M. Cheng, A.S. Fong, and C.K. Chan, “Cryptanal-
ysis of a modified remote user authentication scheme using smart
cards,” IEEE Trans. Consum. Electron., vol.49, no.4, pp.1243–1245,
2003.

[12] M. Kumar, “New remote user authentication scheme using smart
cards,” IEEE Trans. Consum. Electron., vol.50, no.2, pp.597–600,
2004.

[13] M.L. Das, A. Saxena, and V.P. Gulati, “A dynamic ID-based re-
mote user authentication scheme,” IEEE Trans. Consum. Electron.,
vol.50, no.2, pp.629–631. 2004.

[14] J.J. Shen, C.W. Lin, and M.S. Hwang, “A modified remote user au-
thentication scheme using smart cards,” IEEE Trans. Consum. Elec-
tron., vol.49, no.2, pp.414–416, 2003.

[15] S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor,
“Improving smart card security using self-timed circuits,” Proc.
IEEE Int’l Symp. on Asynchronous Circuits and Systems, pp.211–
218, 2002.

[16] M. Long and U. Blumenthal, “Manageable one-time password for
consumer applications,” Proc. IEEE Int’l Conf. On Consumer Elec-
tronics, pp.1–2, 2007.

[17] H. Krawczyk, M. Bellare, and R. Canetti, “HMAC: Keyed-hashing
for message authentication,” RFC 2104, IETF, Feb. 1997.

[18] The eSTREAM (the ECRYPT Stream Cipher) Project,
http://www.ecrypt.eu.org/stream/, 2004–2008.

[19] M. Stamp, Information Security: Principles and Practice, Chapter
10 Real-World Security Protocols, Wiley Interscience, 2005.


