
2162
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

PAPER

A Concurrent Instruction Scheduling and Recoding Algorithm
for Power Minimization in Embedded Systems

Sung-Rae LEE†, Ser-Hoon LEE††, Nonmembers, and Sun-Young HWANG††a), Member

SUMMARY This paper presents an efficient instruction scheduling al-
gorithm which generates low-power codes for embedded system applica-
tions. Reordering and recoding are concurrently applied for low-power
code generation in the proposed algorithm. By appropriate reordering of
instruction sequences, the efficiency of instruction recoding is increased.
The proposed algorithm constructs program codes on a basic-block basis by
selecting a code sequence from among the schedules generated randomly
and maintained by the system. By generating random schedules for each
of the basic blocks constituting an application program, the proposed algo-
rithm constructs a histogram graph for each of the instruction fields to es-
timate the figure-of-merits achievable by reordering instruction sequences.
For further optimization, the system performs simulated annealing on the
generated code. Experimental results for benchmark programs show that
the codes generated by the proposed algorithm consume 37.2% less power
on average when compared to the previous algorithm which performs list
scheduling prior to instruction recoding.
key words: embedded system, low-power, instruction scheduling, recoding

1. Introduction

The demand for embedded application devices that operate
on batteries, such as mobile phones, MP3 players and note-
book computers, has been growing explosively. Chips are
being designed in response to the growing requirements of
embedded applications. Whereas battery capacity growth
has been rather slow, battery power requirement has been
increasing due to the clock frequency increase to achieve
high performance levels to satisfy system specifications and
integration requirements. Thus, the importance of low-
power design is increasingly critical in embedded system
designs [1]. Various low-power design methods have been
proposed and adopted including gated clocking, instruction
recoding, DVS (Dynamic Voltage Scaling) [2], and DPM
(Dynamic Power Management) [3].

ASIPs (Application Specific Instruction-set Proces-
sors) have the flexibility of general purpose processors
and the high performance of ASICs. ASIPs are suitable
for embedded system designs, where chips of high per-
formance need to be designed within a short period of
time. A retargetable compiler is essential for application
analysis and code generation in the design of ASIPs [4]–
[6]. By equipping a retargetable compiler with an efficient

Manuscript received December 28, 2009.
Manuscript revised March 21, 2010.
†The author is with the Telechips Inc., KORAD Bldg., 1000–

12 Daechi-dong, Gangnam-gu, Seoul, 135–280, Korea.
††The authors are with the Department of Electronic Engineer-

ing, Sogang University, C.P.O. Box 1142, Seoul, 100–661, Korea.
a) E-mail: hwang@sogang.ac.kr

DOI: 10.1587/transinf.E93.D.2162

scheduling algorithm, application code with low power con-
sumption can be generated. In [7], the power consumption
of ASIP instruction memory was found to account for 30
percent or more of the entire processor’s power consump-
tion. Minimizing power consumption at the instruction bus
is critical in low-power ASIP design. Numerous studies
have reported that a minimization of bus line bit-switching
can reduce bus power consumption. Lately it has been found
that the amount of crosstalk between bus lines is also a crit-
ical power consumption factor as the buses are convention-
ally routed close to each other due to advances in deep sub-
micron processes.

Instruction recoding is a technique which was origi-
nated from the low-power state assignment algorithm in de-
signing sequential circuits. In the low-power state assign-
ment algorithm, the state stationary probability vector and
the total transition probability are calculated, whereupon the
state is encoded to reduce bit switching frequency [8]. In-
struction recoding is performed through graphic modeling
of fields which constitute an instruction, such as opcodes
or registers. Histogram graphs are constructed by mapping
opcodes in a given instruction sequence as vertices, and con-
necting a pair of vertices whose opcodes appear in sequence
as an edge. Edge weight is assigned according to the fre-
quency of occurrence of the adjacent vertices. Low-power
codes are generated by assigning a new binary code to each
vertex, such that the hamming distance between a pair of
vertices with large edge weight is minimized. In [9], in-
struction recoding was performed by simply considering the
memory bit-line switching activities. Crosstalk is also taken
into consideration, and the result of applying this recoding
scheme is presented in [7] and [10]. In [11], instruction
recoding is performed after low-power instruction schedul-
ing based on the assumption that instruction recoding and
scheduling are orthogonal. However, the number of symbol
transitions depends on the order of instruction sequence. In-
struction scheduling, which determines the order of instruc-
tion sequence, cannot be orthogonal to instruction recoding.
Instruction recoding and low-power scheduling are mutually
dependent. Results of instruction recoding can be different
depending on the order of instruction sequence, and the low-
power scheduling which uses instruction binary cannot be
performed without recoded binary codes. In [10], a regis-
ter perturbation method is presented for effective recoding
through appropriate register reassignment. It adjusts regis-
ter working sets in the direction of increasing the variance of
histogram edge weights and the self-loop transition count.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

LEE et al.: A CONCURRENT INSTRUCTION SCHEDULING AND RECODING ALGORITHM
2163

This is based on the fact that power consumption can be
reduced by reassigning binary codes to the symbols with
least hamming distance that are connected by an edge with
the largest weight in the histogram graph. However, op-
timal results cannot be guaranteed because the change in
the order of instruction sequence through scheduling is not
considered.

In this paper we present an efficient instruction
scheduling algorithm which can increase the variance of
edge weights and the self-loop transition count in the his-
togram graph for efficient recoding. This paper consists of
five sections. Section 2 describes the background and pre-
vious research results. Section 3 presents the proposed low-
power code generation algorithm. Experimental results are
presented in Sect. 4, and conclusions and future research are
presented in Sect. 5.

2. Background and Related Works

In this section we present the bus power model and related
works.

2.1 Bus Power Model

In a deep sub-micron process, the bus power consump-
tion arises largely by self capacitance between the bus line
and the ground, and the coupling capacitance between bus
lines. Changes in voltage levels at each bus line result in
charge/discharge of the self capacitance and power is con-
sumed. Power consumption Pself by self capacitance is ex-
pressed in Eq. (1).

Pself =
1
2
αCself V

2
DD (1)

Here, α is the total number of single-bus-line bit tran-
sitions and Cself is the self capacitance. Power consumption
by coupling capacitance is a serious power consumption fac-
tor as the bus line spacing is narrowed with the progress in
deep sub-micron technology. In the case of a voltage change
in a bus line due to coupling capacitance, it affects the adja-
cent bus line and becomes an additional power consumption
factor. The effective coupling capacitance based on signal
changes with adjacent bus lines of bi and bi+1 are as shown
in Table 1. Ccouple is the actual coupling capacitance be-
tween bit lines.

When the same transitions occur along two adjacent
bit lines, the coupling effect does not occur. When a tran-
sition occurs only at a bit line, the effective capacitance be-
comes Ccouple, whereas when transitions occur in opposite
directions at two adjacent bit lines, the effective capacitance
becomes 2Ccouple. Thus, the power consumption Pcouple

from coupling capacitance is as expressed in Eq. (2) [12].

Pcouple =
1
2

(βCcouple + γ 2Ccouple)V2
DD (2)

Here, β is the count where the effective capacitance
between bit lines is Ccouple, and γ for 2Ccouple. Total bus

Table 1 Crosstalk model.

power Ptot, when considering both the self capacitance and
the coupling capacitance, is the sum of power consumptions
by the two factors and is expressed as in Eq. (3) where we
set Ccouple/Cself as λ [7].

Ptot = Pself + Pcouple

=
1
2

(α + βλ + 2γλ)Cself V
2
DD (3)

2.2 Related Works

2.2.1 Instruction Recoding

Instruction recoding was proposed to generate low-power
code suitable for a specific application by analyzing the per-
formance pattern of the application program and reassigning
the binary code. Histogram graphs are used for the analy-
sis of application performance patterns. Histogram graph
H(V, E) is a weighted undirected graph, where vertex v ∈ V
is the symbol for considered instruction field and undirected
edge e ∈ E has the transition frequency between a vertex
pair as the weight. In our paper we categorize edge types
into self-loop edges, which connect to the same vertex, and
transition edges, which connect to different vertices in his-
togram graph. For a transition between the same symbol, no
dynamic power consumption arises at bus lines. In the in-
struction recoding algorithm, self-loop edges are not consid-
ered, but only transition edges are considered for performing
instruction recoding.

Instruction recoding is performed on each of the fields
that constitute an instruction. For opcode reassignment, an
opcode histogram graph is constructed by the execution se-
quence of an opcode field within instructions and recoding
is performed in the direction of reducing power consump-
tion through analysis of the constructed opcode histogram
graph. For register name adjustment, a register histogram
graph is constructed through analysis of a register’s usage
sequence and recoding is performed to minimize the power
consumption.

Figure 1 shows code sequence of an example basic
block and the histogram graph constructed from it. In
this example, we assume that basic block frequency is
one. When basic block frequency is n, each of the edge
weights of the constructed histogram graph becomes n times
the present value. To solve the instruction recoding prob-
lem, Chattopadhyay et al. [7] obtained initial solution using
MWP (Maximum Weighted Path) algorithm and applied

2164
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

Fig. 1 Example of histogram graph. (a) Code sequence, (b) Opcode his-
togram graph, (c) Register histogram graph.

simulated annealing with the initial solution in implement-
ing their recoding scheme.

2.2.2 Instruction Scheduling

Instruction scheduling can be used for diverse purposes such
as improving the runtime performance of the target proces-
sor, avoiding pipeline hazards and reducing the power con-
sumption. Instruction scheduling is performed by first de-
composing a program code into basic blocks and construct-
ing a data dependence graph for each basic block. A reser-
vation table and an Instruction latency table are necessary
for instruction scheduling. A reservation table includes re-
source information used in each instruction cycle, whereas
an instruction latency table includes information on the la-
tency to resolve RAW (Read After Write), WAW (Write Af-
ter Write) and WAR (Write After Read) hazards. The in-
struction scheduler uses the reservation table for resource
conflict prevention and the instruction latency information
for data hazard prevention. Latency of a basic block can be
measured through instruction scheduling of the basic block.

Cold scheduling for reducing power consumption
through scheduling was first proposed in [13]. In their
work, instruction scheduling was performed to minimize the
hamming distance between instruction sequences under the
assumption that the larger the hamming distance of instruc-
tion binary code, the greater the dynamic power consump-
tion from switching activity. In [14], dynamic power con-
sumed, when instruction pairs are performed in sequence,
is obtained in a matrix format through simulation, and the
TSP (Traveling Salesman Problem) algorithm was applied
to perform cold scheduling. In [15], cold scheduling was
expanded to VLIW and horizontal/vertical scheduling was
proposed.

3. Proposed Instruction Scheduling Algorithm

In this section we present the motivation for this research,
the figure-of-merit formulated and used in the algorithm,
and the proposed scheduling algorithm for maximizing the
figure-of-merit.

Fig. 2 Algorithm motivation example (a) Different scheduling results,
(b) Constructed histogram graphs, (c) Optimal recoding results.

3.1 Motivation

Figure 2 (a) shows two different code sequences which are
results of different instruction scheduling. The histogram
graph for the two code sequences can be constructed as
in Fig. 2 (b). Note that the edge weights of the histogram
graph are different because the numbers of adjacent opcode
pairs are not the same in these code sequences. And the
second code sequence has larger values of self-loop edge
weights and variance of transition edge weights than first
one. Figure 2 (c) shows results of instruction recoding of
each histogram graph. The instruction recoding results of
the second histogram graph have less bit transitions than the
first one. Power consumption depends on instruction order,
and if the histogram graph has a larger sum of self-loop edge
weights and a larger variance of transition edge weights,
instruction recoding results are more optimal in terms of
power consumption.

Instruction recoding adjusts the instruction binary code
so that power consumption can be reduced in proportion
to edge weights in a histogram graph. When the variance

LEE et al.: A CONCURRENT INSTRUCTION SCHEDULING AND RECODING ALGORITHM
2165

of transition edge weights is increased, the inequality of
edge weights is increased. An increased inequality of edge
weights means that a small number of specific code se-
quences appear more frequently. The larger the sum of self-
loop edge weights for transitions between the same sym-
bols, which do not require dynamic power consumption, the
greater the power saving effect of a code sequence will be.
In summary, we can generate a code with less power con-
sumption through recoding in instruction scheduling pro-
cesses by maximizing the sum of self-loop edge weights and
the variance of transition edge weights.

3.2 FM (Figure-of-Merit)

To generate a code sequence with minimal power consump-
tion, instruction scheduling and recoding results must be
considered together. The recoding effect can be increased
by maximizing the sum of self-loop edge weights and the
variance of transition edge weights through instruction re-
ordering. The figure-of-merit FM(Hf (S)) on the histogram
graph Hf (S), calculated upon analysis of a specific instruc-
tion field f for a given schedule S in consideration of the
above two factors, is derived as in Eq. (4).

VAR(Hf (S)) =
1
N

∑
i∈E−L

(wi − wavg)2

FM(Hf (S)) =

(
1 +

(
∑

i∈L wi)
(
∑

i∈E wi)

)
∗
(
1 +

VAR(Hf (S))

(
∑

i∈E−L wi)2

)

(4)

Here, N is the number of vertex pairs connected by
transition edges, L is the set of self-loop transition edges
and E − L is the set of transition edges which connect to
different vertices in histogram graph. The sum of self-loop
edges are normalized by dividing by the sum of total edge
weights, and VAR(Hf (S)) is normalized using the sum of
transition edge weights. One is added to both two terms to
make them greater than zero. The reason of normalizing
VAR(Hf (S)) is that as the sum of self-loop edge weights is
changed, so is the sum of transition edge weights, result-
ing in a change in the transition edge variance. Transition
edge variance is a measure for inequality between transition
edge weights and must be obtained independent of the sum
of self-loop edge weights. Therefore, VAR(Hf (S)) is nor-
malized to eliminate any dependency between the sum of
self-loop edge weights and the variance of transition edges.

The figure-of-merit FM(S) for a schedule S that con-
siders all instruction fields f that constitute an instruction I
is given in Eq. (5).

FM(S) =
∑

f∈I
width(f)
width(I)

∗ FM(Hf (S)) (5)

The total figure-of-merit FM(S) is the sum of the nor-
malized values of figure-of-merit FM(Hf (S)) for individual
field f with respect to the ratio of the field f width to the
total instruction width.

Fig. 3 Schedule selection.

3.3 Algorithm Overview

It is desirable that instruction scheduling be performed by
constructed histogram graphs for the entire program in ac-
cordance with the figure-of-merit presented herein. When
executing codes with binary code assigned through recod-
ing, the figure-of-merit for the entire program needs to be
maximized to minimize the power consumption. Since
most instruction scheduling is performed in basic block
level, global optimization for an entire program is difficult
to implement. Here, we present the method where multi-
ple schedule instances are generated for each basic block
through random scheduling, whereupon an optimal solution
is determined through proper selection of schedules for ba-
sic blocks. The proposed algorithm is performed within the
limits of available computing power and memory capacity.

Figure 3 shows a summary of the proposed method.
In the figure, a square represents the j-th random sched-
ule si, j for a basic block i. An optimal solution is determined
from all schedules through a schedule selection process. Se-
lection of an optimal solution requires global optimization
considering all schedule consequences of basic blocks and
is a difficult task. In this paper the proposed schedule se-
lection scheme employs a ‘greedy selection’ process where
a global schedule is constructed by processing a basic block
sequentially from the first to the last basic block. An op-
timal solution is obtained through simulated annealing as
a post optimization step.

3.4 Random Scheduling

The proposed algorithm generates random code sequences
that satisfy semantics of each basic block as the first step.
The random scheduling process considers the runtime per-
formance as well as latency because power consumption
tends to increase in proportion to latency. In the ran-
dom scheduling, the latency obtained from the heuristic
minimum-latency list scheduling is set as an upper bound,

2166
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

Fig. 4 Proposed random scheduling algorithm.

whereupon the subsequent random schedules whose latency
values are less than the upper bound are stored in the solu-
tion list. Here, the number of solutions in the solution list is
limited so that solutions with fewer similarities to other solu-
tions are kept to ensure a diverse schedule solution set. The
similarity check is useful for obtaining an optimal solution
in that it prevents solution duplicity and ensures mutually
exclusive and diverse patterns. Multiple random schedules
are attempted for each basic block in forming the solution
list. The iteration count of random schedule generation for
basic blocks is designed to be proportional to the product
of the basic block size and the basic block frequency. This
ensures that more diverse schedule instances are obtained
for larger basic blocks and for basic blocks with higher ex-
ecution frequency to facilitate determination of an optimal
solution. Figure 4 shows a pseudo code for the procedure of
generating a solution set through random scheduling.

For each BB in the basic block set BB SET[],

Fig. 5 Result of random scheduling.

performance oriented list scheduling is performed to gen-
erate solutions. It sets the latency of list schedule solution
as the latency upper bound and includes it in
Schedules for BBs[BB]. If any random schedule solu-
tion is not found in BB, list schedule solution becomes the
only one solution. The algorithm generates random sched-
ules for a suitable number of iterations for each BB. If
a schedule’s latency is less than latency UB and its simi-
larity measure with respect to other solutions with the same
latency is small, it is inserted into Schedules for BBs[BB].
If a schedule’s latency is less than latency UB and no
other solution with the same latency has been obtained, it
is also inserted into Schedules for BBs[BB]. We gener-
ate a random schedule (new schedule) and compare its la-
tency with each of the schedules in Schedules for BBs[BB].
If two schedules have the same latency, the similarity of
new schedule is measured. Our instruction scheduler in-
serts a NOP instruction, if any instruction cannot be is-
sued. Thus, two instruction sequences can be compared
on a control step basis. At each control step, if the same
instruction appears in two schedules, similarity measure is
increased by one. If similarity measure is smaller than
θth ∗LATENCY(new schedule), the schedule is inserted into
Schedules for BBs[BB]. Here, θth is the similarity thresh-
old and has a value between 0 and 1. The larger the simi-
larity threshold, the greater is the probability of discarding
a new schedule upon comparison. The above process is re-
peated for ITERATION COUNT(BB).

Figure 5 shows the schedule set generated randomly.
In our experiment, about 34% of randomly generated sched-
ules are accepted when θth is set to be 0.7. Because all sched-
ule solutions have less latency than performance-oriented
list schedule solution in each basic block, execution perfor-
mance can be preserved.

3.5 Schedule Selection

For each basic block, a schedule with an optimal result is
selected from among multiple schedule solutions. We de-
note the global schedules of a specific application program
as Sprogram and the selected schedule of the ith basic block

LEE et al.: A CONCURRENT INSTRUCTION SCHEDULING AND RECODING ALGORITHM
2167

Fig. 6 Merge of histogram graphs.

as ssi. Sprogram consists of basic block schedules. Here, for
convenience, we denote it as a set with basic blocks as its el-
ements. FM of Sprogram formed to obtain an optimal sched-
ule of a specific application program must be the maximum
as presented in Eq. (6). n is the number of basic blocks.

Sprogram =

{ss0, ss1, ss2, · · · ssn−1}, maximize (FM(Sprogram)) (6)

FM(Sprogram) for Sprogram can be expressed as Eq. (7) by
applying Eqs. (4) and (5).

FM(Sprogram) =∑
f∈I

[
width(f)
width(I)

∗
(
1 +

(
∑

i∈L wi)
(
∑

i∈E wi)

)

∗
(
1 +

VAR(Hf (Sprogram))

(
∑

i∈E−L wi)2

)]
(7)

Hf (Sprogram) can be attained by merging histogram
graphs Hf (ssi) for all basic block schedules ssi. Examina-
tion of Fig. 6 shows that, for opcode field f of an applica-
tion program consisting of 3 basic blocks, Hf (Sprogram) can
be obtained by merging Hf (ss0), Hf (ss1) and Hf (ss2).

Since Hf (Sprogram) is obtained by merging selected
histogram graphs Hf (ssi) for each basic block sched-
ule ssi, VAR(Hf (Sprogram)) for a program consisting of
n basic blocks can be expressed as Eq. (8) [16]. Here,
COV(Hf (ssi),Hf (ss j)) is the covariance of two histogram
graphs Hf (ssi) and Hf (ss j).

VAR(Hf (Sprogram)) =∑n−1

i=0
VAR(Hf (ssi))

+ 2
∑

i

∑
j<i

COV(Hf (ssi),Hf (ss j)) (8)

Fig. 7 Greedy selection algorithm.

For Hf (Sprogram) maximization, ssi must be selected
so that self-loop transition of Hf (Sprogram) for each field is
large, and the sum of transition variances of all ssi and the
covariance of transition edge weights of all ssi are large. It
is an NP-hard problem to maximize the covariance of tran-
sition edge weights of all ssi while satisfying a number of
other constraints. In this paper, we employ the method of
a greedy selection followed by simulated annealing. For the
greedy selection we use the dynamic programming method
to achieve local cost maximization via a bottom-up ap-
proach while proceeding with the schedule selection to ob-
tain the overall schedule. Let si, j be the j-th random sched-
ule of the i-th basic block and Sg(i, j) be the set of selected
schedules for up to si, j. Sg(i, j) can be determined by select-
ing one with the largest value of figure-of-merit from among
the schedules obtained by inserting si, j into Sg(i−1, k), for all
k’s, which are the schedules up to (i − 1)-th basic block. Fig-
ure 7 shows a pseudo code of the greedy selection algorithm.

Sg is initialized to NULL at start. For all BBi of
BB SET[], St becomes Sg(i, j) where FM(St) is larger than
FM(Sg(i, j)) on the set St of random schedule solutions si, j

and Sg(i − 1, k), for all k’s, which are the schedules up to
(i − 1)-th basic block BBi−1. Global schedule Sresult[], which
has the largest figure-of-merit among selected schedule sets
on the last (n − 1)-th basic block, is returned.

3.6 Further Optimization

Our greedy selection process forms a schedule for the entire
program by generating a schedule set that maximizes the
figure-of-merit. Although this process is efficient, global

2168
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

Fig. 8 Simulated annealing algorithm.

optimization cannot be guaranteed because schedules are
generated by maximizing local figure-of-merit. Therefore,
we apply a simulated annealing [17] scheme for further op-
timization. The simulated annealing process takes an initial
solution and improves it iteratively. It obtains near-global
optima beyond local optima.

Figure 8 shows the pseudo code of the applied sim-
ulated annealing algorithm. The simulated annealing pro-
cedure takes the global schedule Sresult[] obtained by the
greedy selection algorithm shown in Fig. 7 as initial solu-
tion. Selecting a schedule sssel not included in the current
schedule set at each iteration, the procedure creates a new
schedule set by replacing the schedule of the corresponding
basic block with sssel. To ensure that optimization is focused
on basic blocks of higher importance, basic blocks are ran-
domly selected with a priority on the execution frequency
of each basic block. A new schedule set is accepted based
on its acceptance probability. It is naturally accepted if its
figure-of-merit is larger than that of the current schedule.
Otherwise, the algorithm returns to the previous condition
prior to the schedule set swapping.

4. Experimental Results

To measure the performance of the proposed algorithm,
we implemented the algorithm in the retargetable compiler
with MIPS R3000 [18] as the target processor and per-
formed an experiment. We used our retargetable simula-
tor to measure execution performance and power consump-
tion. For optimization purposes, we applied loop unrolling
to make basic blocks larger. The larger basic block size

has an advantage in that more random schedules are gen-
erated, which increases the chances of generating optimal
result. We measured the reduction in power consumption
between existing algorithms and the proposed algorithm
using benchmark programs such as qsort (quick sort), fft
(fast Fourier transform), ARIA (encryption algorithm) [19],
JPEG (image compression algorithm), mat inv (matrix in-
version) and edge detect (edge detection algorithm).

The proposed algorithm works greedily and has poly-
nomial time complexity. Because of its exhaustive random
scheduling and schedule selection, the proposed algorithm
needs longer compile time. For example, JPEG encoder pro-
gram consisting of 417 basic blocks, it takes about 2 hours
to compile.

In the development environment for embedded sys-
tems, programs are developed, compiled, and downloaded
to instruction ROM. They will be used without modifica-
tion for their life time. Generated code quality is very im-
portant in embedded systems where resources are limited.
High code quality can be achieved by compiler optimization
effort, which requires longer compilation time. Because of
the properties of one time compilation and high code quality
requirement, longer compilation time is not critical in devel-
oping embedded systems. Our code generation algorithm is
valuable in developing the programs running in embedded
system environment.

To show the effectiveness of the proposed algorithm,
the values of constituent factors in the FM of Eq. (4)
were measured. For this, we measured the normalized
sum (

∑
i∈L wi)/(

∑
i∈E wi) of self-loop edges of the histogram

graphs for the entire instruction field, and the normalized
variance of transition edge VAR(Hf (S))/(

∑
i∈E−L wi)2. The

results are presented in Table 2 and Table 3. As shown in
the tables, our proposed algorithm generates instruction se-
quences which have larger sum of edge weights and variance
of transition edges.

Table 4 compares the number of execution cycles of
the codes generated by list schedule, min-latency schedule
obtained from random schedules, and the schedule obtained
by the proposed algorithm. For each of the benchmark pro-
grams, our proposed algorithm shows an increased perfor-
mance compared with the list scheduling algorithm by about
2∼4%. Because we gathered random scheduling solutions
in the list scheduling latency bound, the proposed algorithm
shows better performance than the performance-oriented list
scheduling algorithm. Thus, the proposed algorithm gener-
ates application codes consuming less power without per-
formance degradation.

To measure power consumption cost, we defined the
PCC (Power Consumption Cost) suggested in [7] as in
Eq. (9) and used it as our measure of performance.

PCC = α + βλ + 2γλ (9)

λwas set to be 3 in our experiment using a 0.18 μm pro-
cess technology, as was used in Ref. [20]. The values of α,
β, γ were obtained by simulation performed after assigning
binaries to opcodes and register operands. Those values are

LEE et al.: A CONCURRENT INSTRUCTION SCHEDULING AND RECODING ALGORITHM
2169

Table 2 Comparison of sum of self transition.

Table 3 Comparison of transition variance.

Table 4 Comparison of execution cycles.

※ The figures in the parenthesis are obtained when compared with the list scheduling results in the first column.

for the entire instruction fields. To demonstrate performance
of our proposed algorithm against existing algorithms, we
compared the results obtained by applying different meth-
ods. Table 5 lists PCC values for the benchmark application
programs.

When comparing with the cases only recoding and only
list scheduling are applied and the case list scheduling plus
recoding is applied, we find that about 20∼30% reduction
of power consumption is obtained through recoding. Com-
parison of the proposed random scheduling followed by
recoding with greedy selection and the case of list schedul-

ing only yielded about a 35∼55% reduction of power con-
sumption. As Table 4 shows, numbers of execution cycles of
the codes generated by the proposed algorithm are compara-
ble to those of the min-latency schedule. In the proposed al-
gorithm, recoding performance is greatly increased by max-
imizing self transitions and transition variance. However,
the efficiency of recoding cannot be utilized in the min-
latency schedule. The power consumption was achieved for
all benchmark programs with respect to recoding only. Re-
coding with additional simulated annealing resulted in about
a 45∼65% reduction of power consumption, showing power

2170
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

Table 5 Comparison of PCC values.

* Min-latency schedule is obtained from random schedules.

reduction in all benchmark programs over the case of ap-
plying greedy selection only. Thus, the proposed algorithm
resulted in a significant performance improvement over ex-
isting recoding, which does not consider the order of instruc-
tion sequences.

5. Conclusion

In this paper, we proposed an instruction scheduling al-
gorithm that generates a code for minimizing power con-
sumption by considering both instruction scheduling and
recoding simultaneously. The experimental results prove
a significant performance improvement over the existing
method. The algorithm generates schedules for each basic
block through random scheduling and generates a code for
the entire program by applying a schedule selection process
on the generated schedules. The number of patterns with-
out dynamic power consumption is increased by maximiz-
ing self-loop transitions, and the frequency of power saving
patterns is increased through instruction recoding by max-
imizing the transition variance to ensure the generation of
a low-power code.

The experiment results show that, whereas the recod-
ing only method produced a power reduction of about only
20∼30%, application of the proposed method of recoding af-
ter scheduling yielded about a 45∼65% reduction of power
consumption. The proposed algorithm is thus meaningful
in that it can be a solution for generating low-power codes
in the design of embedded systems, which are becoming in-
creasingly high performance, highly integrated and require
low-power designs.

Future research includes generation of low-power
codes by maximizing the figure-of-merit presented in this
paper by considering instruction scheduling and register al-
location simultaneously.

Acknowledgement

This research work has been supported by the MEST
(Ministry of Education, Science and Technology), through

NRF (National Research Foundation) of Korea under Grant
#2010-0008043.

References

[1] T. Makimoto and Y. Sakai, “Evolution of low power electronics and
its future applications,” Proc. ISLPED, pp.2–5, Aug. 2003.

[2] T. Burd, T. Pering, A. Stratakos, and R. Brodersen, “A dynamic
voltage scaled microprocessor system,” IEEE J. Solid-State Circuits,
vol.35, no.11, pp.1571–1580, Nov. 2000.

[3] L. Benini, A. Bogliolo, and G. De Micheli, “A survey of design tech-
niques for system-level dynamic power management,” IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol.8, no.3, pp.299–316, June
2000.

[4] M. Jain, M. Balakrishnan, and A. Kumar, “ASIP design methodolo-
gies: Survey and issues,” Proc. Int. Conf. VLSI Design, pp.76–81,
Jan. 2001.

[5] R. Leupers, “Compiler design issues for embedded processors,”
IEEE Des. Test Comput., vol.19, no.4, pp.51–58, July-Aug. 2002.

[6] R. Leupers, M. Hohenauer, J. Ceng, H. Scharwaechter, H. Meyr, G.
Ascheid, and G. Braun, “Retargetable compilers and architecture ex-
ploration for embedded processors,” IEE Proc. Computers and Dig-
ital Techniques, vol.152, no.2, pp.209–223, March 2005.

[7] A. Chattopadhyay, D. Zhang, D. Kammler, E.M. Witte, R. Leupers,
G. Ascheid, and H. Meyr, “Power-efficient instruction encoding op-
timization for embedded processors,” Proc. Int. Conf. VLSI Design,
pp.595–600, Jan. 2007.

[8] L. Benini and G. De Micheli, “State assignment for low power dis-
sipation,” IEEE J. Solid-State Circuits, vol.30, no.3, pp.258–268,
March 1995.

[9] L. Benini, G. De Micheli, A. Macii, E. Macii, and M. Poncino, “Re-
ducing power consumption of dedicated processors through instruc-
tion set encoding,” Proc. GLSVLSI, pp.8–12, Feb. 1998.

[10] P. Petrov and A. Orailoglu, “Transforming binary code for low-
power embedded processors,” IEEE Micro, vol.23, no.3, pp.21–33,
May-June 2004.

[11] R. Dimond, O. Mencer, and W. Luk, “Combining instruction cod-
ing and scheduling to optimize energy in system-on-FPGA,” Proc.
Symp. FCCM, pp.175–184, April 2006.

[12] E. Macii, M. Poncino, and S. Salerno, “Combining wire swapping
and spacing for low-power deep-submicron buses,” Proc. GLSVLSI,
pp.198–202, April 2003.

[13] C. Su, C. Tsui, and A. Despain, “Saving power in the control path
of embedded processors,” IEEE Des. Test Comput., vol.11, no.4,
pp.24–31, Winter 1994.

[14] K. Choi and A. Chatterjee, “Efficient instruction-level optimization

LEE et al.: A CONCURRENT INSTRUCTION SCHEDULING AND RECODING ALGORITHM
2171

methodology for low-power embedded systems,” Proc. Int. Symp.
System Synthesis, pp.147–152, Sept. 2001.

[15] C. Lee, J. Lee, and T. Hwang, “Compiler optimization on instruc-
tion scheduling for low power,” Proc. Int. Symp. System Synthesis,
pp.55–60, Sept. 2000.

[16] S. Ross, Probability Models for Computer Science, Academic Press,
2002.

[17] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simu-
lated annealing,” Science Magazine, vol.220, no.220, pp.671–680,
May 1983.

[18] G. Kane and J. Heinrich, MIPS RISC Architecture, Prentice Hall,
1992.

[19] D. Kwon, J. Kim, S. Park, S-H. Sung, Y. Schn, J-H. Song, Y. Yeom,
E-J. Yoon, S. Lee, J. Lee, S. Chee, D. Han, and J. Hong, “New block
cipher: ARIA,” Proc. ICISC, pp.432–445, Nov. 2003.

[20] P. Sotiriadis and A. Chandrakasan, “Bus energy minimization by
transition pattern coding (TPC) in deep sub-micron technologies,”
Proc. Int. Conf. ICCAD, pp.322–327, Nov. 2000.

Sung-Rae Lee received the B.S. degree in
electronic engineering from Sogang University,
Seoul, Korea, in 2007 and 2009. He is currently
working at Telechips Inc. His current research
interests include image processing, embedded
system design and CAD systems.

Ser-Hoon Lee received the B.S. and M.S.
degrees in electronic engineering from Sogang
University, Seoul, Korea, in 2003 and 2005. He
is currently working towards the Ph.D. degree
in electronic engineering at Sogang University.
His current research interests include embedded
system design and CAD systems.

Sun-Young Hwang received the B.S. degree
in electronic engineering from Seoul National
University, Seoul, Korea, in 1976, the M.S. de-
gree from Korea Advanced Institute of Science
in 1978 and the Ph.D. degree in electrical en-
gineering from Stanford University, California,
U.S.A., in 1986. Since 1986, he has been with
the Center for Integrated Systems at Stanford
University, working on design of a high-level
synthesis and simulation system. In 1986 and
1987, he held a consulting position at Palo Alto

Research Center of Fairchild Semiconductor Corporation. In 1989, he
joined the Department of Electronic Engineering at Sogang University,
where he is now a professor. His current research interests include hard-
ware/software co-design, DSP/VLSI systems design, and embedded system
design.

