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Novel Confidence Feature Extraction Algorithm Based on
Latent Topic Similarity

Wei CHEN†a), Gang LIU†, Jun GUO†, Nonmembers, Shinichiro OMACHI††, Masako OMACHI†††, Members,
and Yujing GUO†, Nonmember

SUMMARY In speech recognition, confidence annotation adopts a sin-
gle confidence feature or a combination of different features for classifi-
cation. These confidence features are always extracted from decoding in-
formation. However, it is proved that about 30% of knowledge of human
speech understanding is mainly derived from high-level information. Thus,
how to extract a high-level confidence feature statistically independent of
decoding information is worth researching in speech recognition. In this
paper, a novel confidence feature extraction algorithm based on latent topic
similarity is proposed. Each word topic distribution and context topic dis-
tribution in one recognition result is firstly obtained using the latent Dirich-
let allocation (LDA) topic model, and then, the proposed word confidence
feature is extracted by determining the similarities between these two topic
distributions. The experiments show that the proposed feature increases the
number of information sources of confidence features with a good informa-
tion complementary effect and can effectively improve the performance of
confidence annotation combined with confidence features from decoding
information.
key words: speech recognition, confidence annotation, confidence feature,
latent topic similarity

1. Introduction

Along with the rapid development of automatic speech
recognition (ASR) technology, an ASR system is continu-
ously widely applied. However, the performance of speech
recognition is still far from perfect, and a large number of
errors still exist in the recognition results. To evaluate the
reliability of recognition results accurately, confidence an-
notation is applied to postprocessing after the initial speech
recognition results are obtained. The confidence annotation
is used to determine the reliability of the hypothesis pro-
duced by a speech recognizer and could be regarded as a pat-
tern classification issue [1]. It classifies the units of recog-
nition results into the following two classes: the correctly
recognized class and the incorrectly recognized class based
on a single confidence feature or a combination of differ-
ent features. The unit of confidence annotation is usually a
word and could also be a frame, a phone, a sentence, and so
on [1]–[4].
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Recently, how to extract an effective word confidence
feature has always been the key issue of confidence annota-
tion based on a word, and there have been many associated
research studies [2]–[7]. Currently, word confidence fea-
tures are always extracted from decoding information and
can be mainly classified into two types as below.

The first type of word confidence feature is extracted
from an acoustic or language model level, and mainly in-
cludes word normalized acoustic likelihood score, language
model score, word duration, the number of phones per word,
acoustic stability, log-likelihood ratio, and so on [1], [7]–[9].
This type of confidence feature is regarded as the most con-
veniently extracted feature.

The second type is based on lattice, word graph, N-best
list, confusion network, and so on, which record a decoding
process explicitly including each candidate path, start time,
end time, probability information of each candidate word,
and so on. On the basis of the obtained information, several
types of feature, such as posterior probability, lattice density,
N-best homogeneity score, and so on, could be extracted for
each target word [7], [9]–[11]. Now, the posterior probabil-
ity based on a word graph is shown to be one of the most
useful single confidence features [11].

A human hearing experiment has shown that people
can only clearly hear 70% of all known syllables in continu-
ous speech and can be guided mainly by high-level informa-
tion sources, such as semantics and syntax, in the case of un-
clear speech [12]. Since the performance of ASR has been
determined by the ability of ambiguity resolution and er-
ror correction in postprocessing, the confidence feature ex-
tracted from high-level information sources that are statis-
tically independent of decoding information becomes very
important. However, it is still difficult for machines to ex-
tract this type of confidence feature effectively at the ASR
postprocessing stage. In recent years, although there have
been several related research studies such as those on parse
quality [13], the number of semantic slots filled [14], and in-
domain confidence [15], the methods used in these studies
are limited to either a simple, low vocabulary spoken dia-
logue task or a specific domain application of a back-end
system.

A latent Dirichlet allocation (LDA) [16] model has
been found useful in unsupervised language model (LM)
adaptation in ASR [17]–[20] and spoken language transla-
tion [21] systems. In this paper, a novel confidence feature
extraction algorithm based on latent topic similarity, which
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is called the latent topic similarity-based confidence feature
extraction (LTS) algorithm, is proposed. LDA is used to
calculate each word topic distribution and context topic dis-
tribution in one recognition result, and the proposed word
confidence feature is extracted by determining the similar-
ities between these two topic distributions. The experi-
ments show that the proposed feature increases the num-
ber of sources of confidence features with a good informa-
tion complementary effect and can effectively improve the
performance of confidence annotation combined with confi-
dence features from decoding information.

This paper is divided into five parts: firstly, background
information and organization are shown; secondly, LDA is
introduced; thirdly, the proposed confidence feature extrac-
tion algorithm based on latent topic similarity is emphati-
cally shown; and then, the experimental results are given;
lastly, we present our conclusion.

2. LDA Model

Recently, statistical topic models have been widely applied
to many fields, such as text classification and information
retrieval, and have achieved good performance [22], [23].
Given a corpus, a topic model can extract latent topics by
analyzing numerous statistics so as to obtain understandable
and relatively stable latent topic knowledge, which can also
be regarded as short descriptions for documents in a large-
scale corpus.

LDA is an unsupervised topic model that has been pro-
posed recently [16]. It is a generative probabilistic hierar-
chical model with three levels including word, topic, and
document. In LDA, each document is represented as ran-
dom mixtures over latent topics, where each topic is charac-
terized by a multinomial distribution over words. The topic
proportions for a document are treated as a draw from the
Dirichlet distribution. The words are obtained in the docu-
ment by repeatedly choosing a topic assignment from those
proportions and then drawing a word from the correspond-
ing topic. In Fig. 1, the graphical model of LDA is shown.

In Fig. 1, α and β are two hyperparameters of LDA.
Given a corpus D including M documents containing K top-
ics expressed over V unique words, for each document d in
the corpus, the word sequence −→w with the length Nd could

Fig. 1 LDA graphical model.

be described as −→w = (w1,w2, . . . ,wNd ), where wi is the i-th
word in the sequence and assigned to the topic zi, which is an
element of the topic sequence −→z = (z1, z2, . . . , zNd ) and zi= j
represents the topic assignment of wi to the topic j( j = 1 . . .
K).

According to the notation in the previous paper [23],
the two variables φ and θ are defined as

φ(w)
j = P(w|z = j), (1)

θ(d)
j = P(z = j|d). (2)

In LDA, some distributions are defined as

θ ∼ Dirichlet(α), (3)

φ ∼ Dirichlet(β), (4)

zi|θ(d)
zi
∼ Multinomial(θ(d)

zi
), (5)

wi|zi, φ ∼ Multinomial(φ(wi)
zi

). (6)

Only the posterior distribution P(−→z |−→w) requires sam-
pling; however, concerning the calculation complexity
brought by computing a probability distribution over a large
discrete state space [22], it is impractical to make accurate
inference and parameter estimation. Hence, Gibbs sam-
pling [24], [25] is adopted for approximation. As one of
the simple classes of Markov chain Monte Carlo (MCMC)
sampling methods, Gibbs sampling enables the construc-
tion of a Markov chain converging to a certain target proba-
bilistic distribution and then draws the samples approaching
that distribution from the Markov chain [22]–[24]. More-
over, the full conditional posterior distribution P(zi|−→z−i,

−→w),
where −→z−i denotes all the word assignments of zn, where
n � i(i,n = 1 . . .Nd), is used for approximation. The sam-
pling equation is shown as

P(zi = j|−→z−i,
−→w) ∝

n(wi)
−i, j + β

n(.)
−i, j + Vβ

.
n(d)
−i, j + α

n(d)
−i,. + Kα

, (7)

where n(wi)
−i, j is the number of times that the word wi in a cor-

pus is assigned to the topic j; n(.)
−i, j is the total number of

times that words in a corpus are assigned to the topic j; n(d)
−i, j

is the number of times that the topic j appears in the docu-
ment d; n(d)

−i,. is the total number of times that topics appear

in the document d; and n(wi)
−i, j, n(.)

−i, j, n(d)
−i, j, and n(d)

−i,. all exclude
the assignment at the time zi= j.

After several iterations, the topic assignments for
words could be obtained, and the parameters φ and θ could
be estimated using Eqs. (8) and (9).

φ(w)
j = P(w|z = j) =

n(w)
j + β

n(.)
j + Vβ

(8)

θ(d)
j = P(z = j|d) =

n(d)
j + α

n(d)
. + Kα

(9)
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Here, n(w)
j represents the number of times that the word w

is assigned to the topic j; n(.)
j represents the total number of

times that words are assigned to the topic j; n(d)
j represents

the total number of times that words are assigned to the topic
j in the document d; and n(d)

. represents the word number in
the document d.

3. Confidence Feature Extraction Algorithm Based on
Latent Topic Similarity

The proposed LTS algorithm is based on the following as-
sumptions: each document has unified topics for which each
word in the document serves, and the topic distributions of
the words in one document are similar.

From these assumptions, the speech recognition result
of one utterance is called the document, and the unified topic
distribution of the document is called the context topic dis-
tribution. In the document, namely, the recognition result,
if the topic distribution of one word is closer to the con-
text topic distribution, this word will probably be recog-
nized more correctly. In contrast, if the topic distribution
of one word is different from the context topic distribution,
this word will probably be less correct. In this paper, both
context and word topic distributions could be estimated by
LDA, and the latent topic similarity between these two dis-
tributions is proposed as our word confidence feature.

Suppose that the corpus D includes M documents and
V unique words, and K is the number of topics. Both φ(w)

j

and θ(d)
j could be calculated using Eqs. (8) and (9), respec-

tively. The proposed confidence feature of wi in the docu-
ment d is defined as the similarity between the topic distribu-
tion of wi and the context topic distribution of the document
d, which is shown as

LTS (wi) = S im(Topic dis(wi),Topic dis(d)), (10)

where
LTS (wi) is the proposed confidence feature of wi;
Topic dis(wi) is the topic distribution of wi;
Topic dis(d) is the context topic distribution of d; and
S im() is the latent topic similarity function.
The following are three problems that should be solved:

a) how to calculate the word topic distribution by LDA;
b) how to accurately estimate the context topic distribu-

tion of one document, which reveals the unified topics
of the document; and

c) how to measure the similarity between the two distri-
butions in a) and b).

The solutions of these problems will be introduced respec-
tively as below.

3.1 Word Topic Distribution

In Eq. (10), the K-dimensional vector Topic dis(wi) is the
topic distribution of wi in the document d. φ(wi)

j = P(wi|zi =

j) and θ(d)
j = P(z = j|d) could be firstly calculated by LDA

inference, and the topic distribution of the word wi could be
calculated using φ(wi)

j and θ(d)
j shown in Eq. (11).

Topic dis(wi)

= (H(wi, zi = 1),H(wi, zi = 2), . . . ,H(wi, zi = K)),
(11)

where

H(wi, zi = j) = P(zi = j|wi)

=
φ(wi)

j ∗ P(zi = j)

P(wi)
. (12)

In Eq. (12),

P(wi) =
K∑

j=1

P(wi, zi = j)

=

K∑

j=1

P(wi|zi = j) ∗ P(zi = j)

=

K∑

j=1

φ(wi)
j ∗ P(zi = j), (13)

P(zi = j) =
M∑

m=1

P(zi = j, dm)

=

M∑

m=1

P(zi = j|dm) ∗ P(dm)

= P(d) ∗
M∑

m=1

θ(dm)
j . (14)

In Eq. (14), the prior probability of the document dm(m =
1 . . .M) is assumed to obey a uniform distribution, indicat-
ing that

P(dm) = P(d),m = 1 . . .M. (15)

3.2 Context Topic Distribution

In Eq. (10), the K-dimensional vector Topic dis(d) is the
context topic distribution of the document d, which could
be calculated as

Topic dis(d)

= (L(d, z =1), L(d, z = 2), . . . , L(d, z = K)). (16)

In the document d, topics reflected by every word
should be consistent with the unified topics of the docu-
ment d. Concerning the fact that the unified topics of the
document d are always determined by certain words with
strong topic orientations, which are called anchor words,
the context topic distribution of d could be calculated us-
ing the arithmetic mean of word topic distributions of these
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anchor words. Therefore, how to find anchor words in the
document becomes the key issue of context topic distribu-
tion calculation. Considering that for confidence annota-
tion, misrecognized words may occur in the recognition re-
sults, there are two requirements for anchor words. Firstly,
the anchor words should have to be recognized much more
correctly with high posterior probabilities. Secondly, these
words should have strong topic orientations.

Suppose that there are L anchor words corresponding

to the word sequence
−→
A = (A1, A2, . . . , AL) in the document

d. The j-th dimension of Topic dis(d), namely, L(d, z = j),
could be calculated as

L(d, z = j) =
1
L
∗

L∑

i=1

H(Ai, z = j). (17)

The explicit algorithm of finding anchor words in the docu-
ment d is shown in algorithm 1.
algorithm 1:

a) Analyze the document d, and record the posterior prob-
ability of each word in d.

b) Set the threshold of posterior probability PPThresh. If
the posterior probability of a word in d is larger than
PPThresh, this word will be added to the authentic
class CClass; In contrast, if the posterior probability
of a word in d is smaller than PPThresh, this word
will be added to the unauthentic class MClass.

c) Count the number of words named by Cnum in the au-
thentic class CClass. If Cnum is equal to 0, the words
in MClass will all be added to CClass.

d) For each word w in the document d, calculate the
Topic dis(w) of the word w using Eq. (11) and record
the maximum H(w, z = j) of Topic dis(w) represented
by max prob(w), where

max prob(w) = max
j=1...K

H(w, z = j). (18)

Here, max prob(w) corresponds to the topic orienta-
tion intensity of the word w.

e) Set the ratio named Aratio for selecting anchor words,
and the number of anchor words can be written as

L = INT (Cnum ∗ Aratio) + 1, (19)

where the function INT() is the top integral function.
f) Sort the words in CClass by max prob(w) in step d) by

descending order and select L words as anchor words
of document d.

After finding the anchor words, L(d, z = j) could be
calculated using Eq. (17), and Topic dis(d) could then be
obtained.

3.3 Latent Topic Similarity

Kullback-Leibler (K-L) divergence, which is a meaningful
statistical measure, is widely used to measure the difference

between different probabilistic distributions [26]. In this pa-
per, K-L divergence is adopted to measure the latent topic
similarity.

The topic distribution Topic dis(w) of the word w in d
and the context topic distribution Topic dis(d) of the docu-
ment d are respectively represented by M1 and M2 as,

M1:Topic dis(w); M2:Topic dis(d).
The K-L divergence between M1 and M2 is calculated

as,

DKL(M1||M2)

=

K∑

j=1

H(w, z = j) ∗ log(
H(w, z = j)
L(d, z = j)

). (20)

To eliminate the use of the reference model, the symmetric
K-L divergence is defined as

S ym KL

=
1
2
{DKL(M1||M2) + DKL(M2||M1)}. (21)

The latent topic similarity between the word and con-
text topic distributions is calculated using Eq. (21), and is
proposed as our confidence feature for confidence annota-
tion.

4. Experiments

4.1 Experimental Data

Our continuous mandarin speech recognizer is trained on
the National High-Tech Research and Development Plan
of China (863) speech recognition database, which is the
read-speech database of newspaper under the silent condi-
tion [27]. The data is coded into 25 ms frames with a frame
shift of 10 ms and parameterized to 39-D vectors consisting
of 12 MFCCs and normalized log energy + delta + accelera-
tion coefficients. Context-dependent initial and final models
are used as basic units for acoustic hidden Markov models
(HMMs). The specifications of the recognizer are as fol-
lows:

1) The speaker-independent female training set of the 863
speech recognition database is used for acoustic mod-
eling (30 hours, 41 female speakers, 520 utterances per
speaker);

2) 24718 physical cross-word triphones are created, each
triphone is composed of 5 emitting states, each of
which is modeled by a single Gaussian mixture, and
83740 states are generated by tree clustering;

3) The vocabulary size is 20196;
4) A bigram language model is trained on 6M words from

People Daily Corpus, and its perplexity is 102.

The HMM training/decoding software used for all experi-
ments is HTK v3.4 [28].

The LDA training set includes 311029 sentences from
People Daily Corpus. After removing certain meaning-
less words, such as empty words, adverbs, and so on, and
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Table 1 Summary of training, test, and development sets.

Training Test Development
Set Set Set

#Speakers 22 11 9
#sentences 11957 6140 4683
#words 67935 35235 27805
#WER 10.35% 8.89% 9.29%

deleting the stopped and low-frequency words whose occur-
rences are lower than 3, the training set has 94641 word
terms and 6168185 words. Phan’s GibbsLDA++ [29] is
used for LDA parameter estimation and inference. Keeping
the empirical values α = 0.5 and β = 0.1, LDA parame-
ter estimation iterates 1000 times, and inference iterates 30
times. By comparison, the topic number K=50 is used.

4.2 Experimental System

Considering that a support vector machine (SVM) is com-
monly used in many classification problems and considered
to be an accurate and robust confidence classifier in confi-
dence annotation [9], [13], [30], we adopt a SVM as our con-
fidence classifier. Utterances of the female test set of the 863
speech recognition database, which are 30 hours in length
and consist of 42 female speakers, each of which speaks
about 520 utterances and is independent of the speakers of
the female training set, are recognized, and the recognition
results are processed by removing stopped words and used
in the confidence annotation database including 22780 sen-
tences and 130975 words. Three subsets of the database
are separately used as training, test, and development sets.
Their speakers and sentences are mutually exclusive, and
word error rates (WERs) are recorded. We summarize the
information in Table 1.

The process of confidence annotation in our experi-
ments includes the following four parts: initialization, SVM
training, SVM recognizing, and annotation performance
evaluation, which are described below.

1. Initialization:
By comparing with the references, each word in the
recognition output from each sentence could be an-
notated into the following two classes: the correctly
recognized word class and the incorrectly recognized
word class.

2. SVM training:

a) Different confidence features or a combination of
different features of each word in the training set
are extracted.

b) A two-class SVM is trained to classify the cor-
rectly recognized word class represented by C+

and the incorrectly recognized word class repre-
sented by C−.

3. SVM recognizing:

a) Different confidence features or a combination of
different features of each word in the test set are
extracted.

Table 2 Different types of confidence feature.

Feature Meaning
PP Word posterior probability [7], [11]

Meanpp = 0.95, σpp = 0.15
LLD Word-frame-based acoustic likelihood score

[1], [8], [9]
Lg Word language model score [1], [8], [9]

LTS Proposed word confidence
feature based on latent topic similarity

b) Each word in the test set is classified by the trained
two-class SVM in step 2 to determine whether the
word is correctly recognized (C+) or not (C−).

4. Annotation performance evaluation:
Comparing the classification result of each word in the
test set in step 3 with its corresponding label anno-
tated in step 1, annotation error rate (AER) [3], false
acceptance rate (FAR) [4], [9], and false rejection rate
(FRR) [4], [9] are calculated using Eqs. (22), (23), and
(24), respectively.

AER =
Number WR

Total number o f words
(22)

FAR =
Number FA

Total number o f words
(23)

FRR =
Number FR

Total number o f words
(24)

Here,
Number WR is the number of incorrectly annotated
words;
Number FA is the number of incorrectly recognized
words, which are classified as C+;
Number FR is the number of correctly recognized
words, which are classified as C−.

In our experiments, the radial basis function (rbf)

k(x, xi) = exp(−γ|x − xi|2) (25)

is adopted as the kernel function of the SVM, where γ is set
to 0.5 in our experiment.

Different types of confidence feature are listed in Ta-
ble 2.

In Table 2, the PP is calculated using the confusion
network [10]. By analyzing the PPs of all the words in the
confidence annotation database, the mean PP represented by
Meanpp is equal to 0.95, and the standard deviation of the
PP represented by σpp is equal to 0.15. LLD and Lg could
be obtained during decoding. For the word w, LLD is the
acoustic score per frame, and Lg is the score P(w|v) of the
bigram language model for w and its context v.

4.3 Parameter Selection of Algorithm 1

In this paper, the context topic distribution obtained by an-
chor words is necessary for the proposed word confidence
feature LTS. In algorithm 1, how to find anchor words in one
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Fig. 2 Parameter selection using development set.

document is shown. Those words whose posterior probabili-
ties are larger than PPThresh are firstly added to the authen-
tic class to guarantee the correctness of anchor word recog-
nition, and then, the first Aratio of the words with stronger
topic orientations in the authentic class are selected as an-
chor words to calculate the context topic distribution. Since
anchor words markedly affect the context topic distribution,
the PPThresh and Aratio of algorithm 1 should be selected
in advance.

Because LTS has the advantage of a good information
complementary effect, and confidence annotation using LTS
combined with confidence features extracted from decoding
information could achieve higher performance characteris-
tics than that using only LTS, the combination of LTS and
PP is adopted as a confidence feature in these experiments.
Annotation error rates (AERs) of different confidence an-
notation systems using different PPThresh and Aratio val-
ues are computed separately, and the corresponding optimal
PPThresh and Aratio values are determined from the de-
velopment set by the full grid search of the AER surface,
where Aratio ranges from 0.1 to 1 in increments of 0.1 and
PPThresh varies from 0.80 corresponding to Meanpp −σpp

to 0.96 around Meanpp in increments of 0.01. These opti-
mized parameters selected in the development set are then
used in the test set.

The AER contours at various PPThresh and Aratio
values are shown in Fig. 2 for the development set. The
coarse-scale plot shows the AER contours in the full param-
eter range. Fine-scale contours of lower AER regions are
shown in a small range.

In Fig. 2, the lateral axis represents Aratio, and the ver-
tical axis represents PPThresh. The darkness represents the

Fig. 3 Parameter selection using test set.

AER of specific PPThresh and Aratio. In the coarse scale
plot, it can be seen clearly that the low-AER region mainly
lies in the area where Aratio ranges from 0.4 to 0.7. Hence,
a fine-scale contour of a lower AER region is shown in a
smaller range of Aratio, and 0.86 and 0.6 are determined as
the values of PPThresh and Aratio for the lowest AER, re-
spectively. In Fig. 3, parameter selection using the test set is
shown.

In Fig. 3, using a similar parameter selection method,
PPThresh and Aratio could be determined from the test set
by determining the optimal performance, which is the up-
per bound obtained by closed test set tuning. Here, 0.82 and
0.6 are respectively determined as the values of PPThresh
and Aratio. These parameters could be regarded as optimal
references for the parameters determined from the develop-
ment set.

In Fig. 4, to verify whether PPThresh is necessary in
algorithm 1, the performance characteristics of two confi-
dence annotation systems, where PPThresh is set to 0.86
and PPThresh is set to 0, namely, PPThresh is ignored, are
compared using the test set. Aratio varies from 0.1 to 1 in
increments of 0.1.

In Fig. 4, the lateral axis represents Aratio ranging
from 0.1 to 1, and the vertical axis represents AER. It can
be observed that the performance characteristics of the con-
fidence annotation system using PPThresh are much higher
than those of the system not using PPThresh.
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Fig. 4 Necessity verification of PPThresh.

Table 3 Annotation accuracy comparison.

Feature Optimal AER FAR FRR
(%) (%) (%) (%)

Accept All 8.89 8.89 8.89 0.00
LTS 8.89 8.89 8.89 0.00
PP 7.53 7.53 4.60 2.93

PP+LTS 7.12 7.14 4.72 2.42
PP+LLD 7.58 7.58 5.16 2.42

PP+LLD+LTS 7.13 7.16 4.78 2.38
PP+Lg 6.85 6.85 4.63 2.23

PP+Lg+LTS 6.51 6.43 4.57 1.86
PP+LLD+Lg 6.85 6.85 4.76 2.09

PP+LLD+Lg+LTS 6.54 6.48 4.62 1.86

4.4 Comparison Using Different Confidence Features

In our experiments, a baseline system for the test set is used
for performance comparison. It is obtained by accepting all
recognition words, achieving an AER of 8.89%.

In Table 3, the performance characteristics of several
confidence annotation systems using different confidence
features or a combination of different features in the test
set are compared. The column Optimal shows the perfor-
mance characteristics of confidence annotation systems us-
ing the PPThresh 0.82 and Aratio 0.6 determined from the
test set, which are the upper bounds obtained by closed test
set tuning. The columns AER, FAR, and FRR show the per-
formances characteristics of confidence annotation systems
using the PPThresh 0.86 and Aratio 0.6 determined from
the development set.

In Table 3, the performance of the confidence annota-
tion system using LTS is not improved compared with the
baseline system. The LTS feature has a disadvantage in that
it cannot be used alone for confidence annotation. How-
ever, confidence annotation systems using LTS combined
with confidence features extracted from decoding informa-
tion could achieve much higher performance characteristics
with lower AER, FAR, and FRR than those not using LTS,
which proves that LTS has the advantage of a good infor-
mation complementary effect. In addition, the performance
characteristics obtained using LTS in the column AER are
similar to those in the column Optimal.

By using PP as a confidence feature, the relative AER
reduction is determined to be 15.3% compared with that of
the baseline system, and when a combination of PP and LTS
(PP+LTS) is used, AER relatively decreases by 5.2% com-
pared with that of the system using PP and by 19.9% com-
pared with that of the baseline system. Because a large in-
formation redundancy exists between PP and LLD, the per-
formance of the system using PP+LLD is worse than that
of the system using PP, and the relative AER reduction of
the system using LTS combined with PP and LLD is 5.9%
compared with that of the system using PP+LLD.

In Table 3, the AER of the system using PP+Lg
is higher than those of the systems using PP+LLD and
PP+LTS, and the AER of the system using PP+Lg rela-
tively decreases by 9.04% compared with that of the system
using PP. There are two reasons that explain why the per-
formance characteristics of the confidence annotation sys-
tem using PP+Lg are higher than that of the system using
PP+LTS:

a) LDA has a stronger capability of processing long docu-
ments than short documents. However, the documents,
which are speech recognition results for confidence an-
notation in our experiments, are always short docu-
ments.

b) The language model used in our experiments is bigram
which has a higher precision of text modeling than
LDA.

Because the information sources of LDA and the lan-
guage model are relatively independent and show a small
information redundancy, the confidence annotation system
using PP+Lg+LTS shows the best performance among all
related experimental systems. The associated AER rela-
tively decreases by 6.17% compared with that of the sys-
tem using PP+Lg, 14.66% compared with that of the system
using PP, and 27.68% compared with that of the baseline
system. The AER of the confidence annotation system us-
ing PP+LLD+Lg relatively decreases by 22.89% compared
with that of the baseline system. If our proposed feature LTS
is combined with PP+LLD+Lg, the AER of the confidence
annotation system using PP+LLD+Lg+LTS relatively de-
creases by 5.42% compared with that of the system using
PP+LLD+Lg and 27.08% compared with that of the base-
line system.

Our proposed confidence feature LTS is proved to be
effective by these experiments. LTS increases the number
of information sources of confidence features with a good
information complementary effect and can effectively im-
prove the performance of confidence annotation combined
with the confidence features from decoding information.

5. Conclusions

To describe and analyze speech recognition results more ac-
curately and improve the performance of confidence anno-
tation more effectively, numerous confidence features were
proposed; however, how to extract high-performance confi-



2250
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010

dence features and make full use of high-level information
sources such as semantics and syntax remains a problem.
Our proposed feature in this paper has the advantage of a
good information complementary effect and can effectively
improve the performance of confidence annotation com-
bined with the confidence features from decoding informa-
tion. Compared with that of the baseline system, the max-
imum relative reduction in AER 27.68% could be achieved
when LTS is combined with PP and Lg, and AER relatively
decreases by 6.17% compared with that of the confidence
annotation system using PP+Lg and 14.66% compared with
that of the system using PP. Concerning the fact that the LTS
feature has a disadvantage in that it cannot be used alone
for confidence annotation, how to improve the algorithm to
overcome this shortcoming will be our future work.
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