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Design of Hierarchical Fuzzy Classification System Based on
Statistical Characteristics of Data∗

Chang Sik SON†, Member, Yoon-Nyun KIM††, Kyung-Ri PARK†††, and Hee-Joon PARK††††a), Nonmembers

SUMMARY A scheme for designing a hierarchical fuzzy classification
system with a different number of fuzzy partitions based on statistical char-
acteristics of the data is proposed. To minimize the number of misclassified
patterns in intermediate layers, a method of fuzzy partitioning from the de-
fuzzified outputs of previous layers is also presented. The effectiveness of
the proposed scheme is demonstrated by comparing the results from five
datasets in the UCI Machine Learning Repository.
key words: hierarchical fuzzy classification system, fuzzy partitioning, rule
generation

1. Introduction

The design of a fuzzy rule-based system is commonly a
time-consuming activity involving the acquisition of knowl-
edge, reduction of the total number of rules, and tuning
of the involved parameters, all of which affect the accu-
racy and/or interpretability of the fuzzy systems. In recent
years, various approaches have been proposed to generate
fuzzy rules from training data for classification problems:
heuristic approach [1], neuro-fuzzy approach [2], genetic
approach [3], [4], and hierarchical approach [5] to overcome
“curse of dimensionality” problems. Almost all of these
studies were aimed at developing methods that have classifi-
cation ability comparable to those of the conventional meth-
ods with less computational burden while dealing with high-
dimensional problems. However, the total number of rules
in standard fuzzy systems (SFSs) increases exponentially
with the number of input variables. To overcome this explo-
sion problem, a hierarchical fuzzy system (HFS) has been
devised [6], the theoretical validity for which is established
in [7]. Since this pioneering work, various other related
studies have also been performed, including the approxi-
mation capabilities of a nonlinear function in HFSs [8], [9],
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and the evolutionary approach to optimize the parameters of
nonlinear consequents [10] where the results have confirmed
that HFSs are useful for overcoming the explosion problem
in SFSs. However, the main problem with HFSs is that the
outputs in the intermediate layers do not possess a physical
meaning when the outputs of the previous layer and inputs
of the subsequent layers are defined as mapping variables
for the next layers. Thus, to reduce this problem, [11] de-
scribes a mapping rule-based scheme to reduce the number
of rules involved in the middle layers of the HFSs. This
letter proposes a scheme for designing a hierarchical fuzzy
classification system (HFCS) based on statistical character-
istics of the data. Also, we present a method that minimizes
the number of misclassified patterns in intermediate layers
to improve the classification capability of HFCS. We then
apply the proposed method to classification problems and
discuss its effectiveness.

2. Design of Hierarchical Fuzzy Classification System

Figure 1 shows a structure of the proposed HFCS, com-
prised of n−1 two input fuzzy systems with n input vari-
ables.

In Fig. 1 (a), two input variable a1 and a2 are fed into
the first layer, whose output y∗1 is then combined with an-
other input variable a3 into the second layer, and this proce-
dure continuous until all the input variables have been used.
Each substructure has two main components, fuzzy parti-
tioning and rule generation as shown in Fig. 1 (b), where
y∗j( j = 1, . . . , n − 1) denotes the defuzzified outputs of j-th
fuzzy system in the HFCS.

(a)

(b)

Fig. 1 Block diagram of HFCS. (a) Structure of n input HFCS and
(b) Substructure of j-th fuzzy system in the HFCS.
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2.1 Fuzzy Partitioning

Most of high-dimensional data is overlapped in feature
space relative to some classes and its distribution is hetero-
geneous for each attribute. This section describes how to
partition the input space into fuzzy regions by the statisti-
cal characteristics of the labeled data. Let X = {xi|xi =

(xi1, xi2, . . . , xin), i = 1, 2, . . . , s} be a set of s training
patterns with n attributes, aj = {x1 j, x2 j, . . . , xs j}, ( j =
1, 2, . . . , n) be a set of the j-th input attributes, and C =
{ck |k = 1, 2, . . . ,m} be a set of labels. Fuzzy regions for each
input attribute are determined by the following procedures:
Step 1: Find the whole domain of the input attribute aj and
individual domain I jk, I jk ∈ ck for each label, as shown in
Fig. 2.
Step 2: Find an overlapped region Oj = [o

L j

j , o
U j

j ] of I jk and

I jk+1, where o
L j
j and o

U j
j denote the minimum and maximum

of every overlapped region, respectively.
Step 3: Calculate the number of fuzzy partitions Pj given
by

Pj = round
({

max
(
a j

)
−min

(
a j

)} /
α · σ j

)
(1)

where round() denotes a function for rounding-off to the
nearest integer, and σ j is a standard deviation value of the
input attribute a j. In Eq. (1), the denominator α · σ j is used
to select the different number of fuzzy partitions because
the data distribution for each attribute is heterogeneous in
the set of labeled patterns. Also the adjustable value of a
free parameter α (α > 0) is in the range satisfying the con-
dition Pj ≥ 2. The whole domain of each input attribute
is modified as D∗j = [min

(
a j

)
− Wj,max

(
a j

)
+ W] to en-

sure a variation space, where Wj is the half-width of fuzzy
membership functions as shown in Fig. 3.

Wj =
(
o

U j

j − o
L j

j

) /(
Pj − 1

)
(2)

Fig. 2 An overlapped region O j of the input attribute a j.

Fig. 3 Fuzzy membership functions defined on overlapping regions
when P j = 3.

2.2 Rule Generation

Next, we consider the following type of fuzzy rules in the
proposed HFCS.

1) First layer (fuzzy system 1)

R1
k : If a1 is Ak,1 and a2 is Ak,2 Then y1 is ck

where R1
k denotes the k-th fuzzy rule in first layer (i.e., fuzzy

system 1) of HFCS, Ak,1 and Ak,2 are the linguistic value for
the input variable a1 and a2, y1 is a dummy output variable,
and ck(k = 1, . . . ,m) is the label with a trapezoid-type mem-
bership function defined in the domain [0,1], as shown in
Fig. 4. In Fig. 4, the parameters z1, z2, and z3 denote the
points to define fuzzy membership functions with two lin-
guistic labels.

The compatibility grade of an input pattern xi is defined
with the antecedent part Ak = Ak,1×Ak,2 of the fuzzy rule R1

k
using the product operator as

μ1
k (xi) = μk,1 (xi1) × μk,2 (xi2) (3)

where μk, j(·) is the membership function of the antecedent
fuzzy sets Ak,1 and Ak,2. The input pattern xi is classified by
the candidate rule R1∗

k defined as

μ1∗
k (xi) = max

k

{
μ1

k (xi) : k = 1, . . . ,m
}

(4)

However, there exist some conflicting rules among all
possible candidate rules generated by Eq. (4) when different
labels involve the same rules. To overcome this limitation,
[12] discussed the method that accepts only the rule with the
maximum degree in a conflict group among the generated
candidate rules. Although [12] reduces a conflict problem
in the generated rules, it is dependent on the positions of
fuzzy membership functions defined on each domain inter-
val. Thus, the proposed method uses two criteria, the max-
imum degree of the candidate rules and its frequency for
each label, to minimize the conflicting rules without tun-
ing of parameters to adjust rule weights. Table 1 shows a
procedure, the selection of the consequent label, to resolve
the conflict problem. In Table 1, α = fre(R1∗

k ⇒ cp) and
β = fre(R1∗

k ⇒ cq) are the total number of fuzzy rules be-
longing to p- and q-th label among the overall candidate
rules generated by Eq. (4), where fre (·) denotes a frequency
function. Also, γ = max(R1∗

k ⇒ cp) and δ = max(R1∗
k ⇒ cq)

denote the maximum degrees among fuzzy rules for the two
labels, respectively. ‘NA’ represents a “not allowable rule”

Fig. 4 Fuzzy membership functions defined on dummy variable y1.
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in case the two criteria are the same.

2) Subsequent layer (fuzzy system 2 . . . n − 1)

Rj+1
k : If y j is c∗k and a j+2 is Ak, j+2 Then y j+1 is ck

where c∗k is the linguistic label with a trapezoid fuzzy mem-
bership function, which is newly constructed from the de-
fuzzified outputs y∗j of previous layer (see Fig. 6).

y∗j =
∑

y j

y j · μk̃

(
y j

) /∑
y j

μk̃

(
y j

)
, j = 1, . . . , n − 1

where μk̃

(
y j

)
= max

k

[
μ

j
k (xi) × μk

(
y j

)]
(5)

μ
j
k(xi) × μk(y j) represents the fuzzy implication operation

between the antecedent and consequent parts in the fuzzy
rule, which is newly defined by Eqs. (3), (4) and Table 1,
fired by the input pattern xi. μk̃

(
y j

)
is the fuzzy outputs, i.e.,

degree of fulfillment, of the rule obtained from the max op-
eration after carrying out the fuzzy implication. The fuzzy
partitioning of subsequent layer in HFCS is adjusted by the
following procedures:
Step 1: Find a boundary point for fuzzy partition from the
defuzzified outputs of the previous layer, as shown in Fig. 5.

z∗2 =
(
Tc1 + Tc2

) /
2, z∗1 = z∗2 − τ j, z∗3 = z∗2 + τ j,

where Tc1 = max
y∗j∈c1

y∗j , Tc2 = min
y∗j∈c2

y∗j (6)

Table 1 Two criteria to resolve the conflict problem.

Fig. 5 An example of boundary point.

Fig. 6 Fuzzy membership function constructed from the defuzzified out-
puts of previous layer.

τ j is a standard deviation value for the defuzzifed outputs
y∗j , y∗j ∈ c1 and y∗j ∈ c2 denote the defuzzified output inter-
vals for each label, i.e., its belonging region, in the overall
inference result obtained from Eq. (5).
Step 2: Construct a new fuzzy membership function based
on the boundary point found in Step 1, as shown in Fig. 6.

In this study, we adjusted the parameters of fuzzy mem-
bership functions from the defuzzified outputs of previous
layer, and this procedure continuous until all the input vari-
ables in the proposed HFCS have been used.

3. Experimental Results

To show the effectiveness of the proposed HFCS, experi-
ments for the three-type classification methods (statistical
classifiers, SVMs with three kernel functions, and fuzzy
rule learning methods with rules weights) and the proposed
method were performed on five well-known datasets [13],
Haberman’s survival, Blood transfusion service center, New
thyroid disease, Pima Indians diabetes, and Wisconsin
breast cancer original. Main characteristics of these datasets
are given in Table 2. Each dataset was spilt into 10 groups
randomly, and all samples of each class are uniformly as-
signed to these groups. A group was used as the testing
dataset, the other nine groups as training dataset.

During 10-fold cross validation (CV), the combination
of inputs in the proposed HFCS was determined according
to the degree of redundancy Nj ∈ [0, 1] (i.e., ascending order
from lower to higher redundancy) calculated from Eq. (7).
Then the exhaustive search is used to find the value of pa-

Table 2 Used datasets.

Table 3 Comparison results for statistical classifiers and SVMs.
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Table 4 Comparison results for HFCS and fuzzy rule learning methods.

rameter α as described in Eq. (1).

Nj =
∑
xi∈ck

h
(
xi j

) /
s, xi j ∈ a j, j = 1, . . . , n (7)

where h(.) represents the number of occurrence frequency
when the attribute values xi j(i = 1, . . . , s) correspond to
more than two labels of m class labels. s is the total number
of data points, i.e., attribute values. Tables 3 and 4 show the
average classification accuracy rates of testing during 10-
fold CV. In Tables 3 and 4, the parameter values of SVMs
(i.e., kernel types: Polynomial, RBF, and Sigmoid func-
tions; c: 1000; eps: 0.001; degree(d): 10; gamma(g): 1.0;
coef0(r): 1.0; nu(n): 0.5; p: 1.0; and shrinking(h): 0.0) are
used as the default values provided by KEEL Ver.1.2 [14].
In each Table, ‘Avg±Sd’ denotes the average performance
of each classification method for five datasets. In Table 4,
‘P’ denotes the number of fuzzy partitions and ‘Li’ denotes
the average number of rules in each layer of the HFCS.

For five datasets, we observed that the classification
performance of the proposed HFCS was maximized when
the values of parameter α were updated as 1.27, 1.62,
0.9, 1.3, and 1.2. Moreover, we confirmed that the pro-
posed HCFS with the different number of fuzzy partitions
produces better average testing performance than those of
the three-type classification methods for five datasets, even
though it has slightly lower classification accuracy rate than
that of Fuzzy slave (P=2) with the highest classification per-
formance among the fuzzy rule learning methods. The re-
sults showed that the performance in HFCS is strongly de-
pendent on the number of fuzzy partitions defined in over-
lapping regions.

4. Conclusions

In this letter, we have proposed a scheme for designing a
hierarchical fuzzy classification system based on statistical
characteristics of the labeled data. In order to show the in-
fluence of the different number of fuzzy partitions in over-
lapping regions, we have presented the classification perfor-
mances according to the parameter α (i.e., α · σ j) in Eq. (1)
on five datasets. The effectiveness of the proposed method
was demonstrated by comparing the experimental results of
the five datasets using the proposed scheme and four meth-
ods. The problem on the determination of parameter αwith-
out using the exhaustive search remains to be solved in fur-
ther studies.
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