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LETTER

Study of Prominence Detection Based on Various Phone-Specific
Features

Sung Soo KIM†a), Chang Woo HAN†b), Nonmembers, and Nam Soo KIM†c), Member

SUMMARY In this letter, we present useful features accounting for
pronunciation prominence and propose a classification technique for
prominence detection. A set of phone-specific features are extracted based
on a forced alignment of the test pronunciation provided by a speech recog-
nition system. These features are then applied to the traditional classifiers
such as the support vector machine (SVM), artificial neural network (ANN)
and adaptive boosting (Adaboost) for detecting the place of prominence.
key words: prominence, phone-specific, SVM, ANN, Adaboost

1. Introduction

An important application of speech recognition technologies
is the computer-assisted language learning (CALL) system.
A key component of a CALL system is the pronunciation
evaluation module which assesses the test speaker’s pronun-
ciation in terms of intonation, prominence and articulation.
This pronunciation evaluation is generally achieved by com-
paring the variation in pitch, energy and duration observed
in the utterance with those of the given reference pronunci-
ation.

It is difficult to give a simple but rigorous definition
of prominence. However, in the related area, it is gener-
ally accepted that the prominence corresponds to words or
syllables that are perceived as standing out from their en-
vironment [1]. A number of attempts have been made to
detect the prominences in the given pronunciation. Tam-
buruni [2] proposed an algorithm in which an unsupervised
learning approach is applied to a set of acoustic features ex-
tracted from the test pronunciation. In [3], a system utiliz-
ing acoustic measures was proposed without applying any
speech recognition algorithms. To our knowledge, there
have been very few, if any, studies in prominence detection
that are based on the speech recognition technologies.

In this letter, we propose a prominence detection al-
gorithm which is based on an extended class of features.
We apply the hidden Markov model (HMM) to segment
the given pronunciation into phone-sized units. This forced
alignment enables us to extract phone-specific features and
improves the performance of prominence detection. Once
the phone-specific features are extracted, we apply the con-
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ventional classifiers to detect the prominences. As the clas-
sifiers, we apply the support vector machine (SVM), ar-
tificial neural network (ANN) and adaptive boosting (Ad-
aboost), which are trained in a supervised manner. From
a number of prominence detection experiments, it has been
observed that the proposed features are effective to improve
the performance.

2. Features for Prominence Detection

The first step in our prominence detection algorithm is to
apply the HMM for the purpose of segmenting the given
utterance into phone-sized units. If the transcript of the ut-
terance is available, forced alignment is carried out with ref-
erence to the model concatenating the corresponding phone
HMMs. If, on the other hand, the transcript is not given, tra-
ditional phone recognition is performed in conjunction with
the phone boundary information. It is noted that our pur-
pose is to segment the pronunciation into phone-sized units
not to find the exact phone identity of each segment. Se-
lecting good features is very important to build a successful
prominence detection system. It has been reported that the
duration, energy and pitch are useful to spot the prominence.
In this section, we present a number of features extracted
from each phone-sized segment.

2.1 Duration

In general, the duration of a prominent phone tends to be
longer than that of a non-prominent phone. Since, however,
the duration of a phone is affected by the learner’s mother
tongue and speaking rate, it needs to be normalized. In or-
der to normalize the phone duration, we apply a measure of
rate of speech (ROS), which indicates the average number
of phones uttered by the test speaker per a unit time [4]. Let
d̂(i) denote the normalized duration of the i-th phone seg-
ment. Then,

d̂(i) = d(i) × rosa (1)

where d(i) represents the phone duration and rosa is the ROS
for the speaker a.

2.2 Energy

People usually tend to speak a phone louder when they want
to emphasize it. For that reason, the energy of the pronun-
ciation serves a good acoustic parameter together with the
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duration. In our study, we extract three energy-related fea-
tures.

First, the root mean square (RMS) energy is consid-
ered as a parameter. The RMS energy has been employed to
detect the prominence in many previous researches, includ-
ing the studies conducted by Tamburini [2]. It is defined as
follows:

ERMS (i) =

√√√
1

d(i)

d(i)∑
k=1

s2
i (k) (2)

where ERMS (i) denotes the RMS energy of the i-th phone
segment, si(k) represents the k-th sample of the speech
waveform in the i-th phone segment and d(i) is the duration
of the i-th phone segment.

Secondly, a log-scaled energy is also used as a parame-
ter. Since the sensitivity of human auditory perception is not
linear but log-scaled with respect to the signal strength, it is
worth taking the logarithm. The log-scaled energy is given
by

Elog(i) = log

⎛⎜⎜⎜⎜⎜⎜⎝ 1
d(i)

d(i)∑
k=1

s2
i (k)

⎞⎟⎟⎟⎟⎟⎟⎠ (3)

where Elog(i) stands for the log-scaled energy of the i-th
phone segment.

Finally, Teager energy is considered as another feature
for signal. The Teager energy has been applied to vari-
ous speech applications, including endpoint detection and
prosody recognition. It was proposed by Kaiser [5] and a re-
markable property of this feature is that it is affected not only
by the current signal, but also by the past and future sam-
ples. Let ETeager(i) be the Teager energy of the i-th phone
segment. Then,

ETeager(i) = E(i)2 − E(i − 1) × E(i + 1) (4)

where E(i) is the energy computed from the i-th phone seg-
ment.

2.3 Spectral-Temporal Correlation

A spectral-temporal correlation is thought as a promising
feature for prominence, which is affected by the spectral
density proposed by Wang [3]. Advantages of this feature
are to boost up the points which have more energy and to se-
lect the sonorant frequency bands in the segment. A proce-
dure for obtaining the spectral-temporal correlation is given
in Fig. 1. First, the input signal is passed through the 19

Fig. 1 Flowchart for spectral-temporal correlation.

channel filter bank where the pass band of each bandpass
filter is specified as in [7]. Secondly, the temporal correla-
tion is computed by

Cm
t (n) =

1
K(K − 1)

K−2∑
j=0

K−1∑
p= j+1

em(n + j)em(n + p) (5)

where Cm
t (n) represents the temporal correlation of the sig-

nal at time n for the m-th subband and em(n) is the m-th
subband energy at time n, and K is the number of filter
banks. Then subband selection is performed by following
the procedures proposed in [6]. The purpose of this sub-
band selection module is to focus on the sonorant frequency
bands. After subband selection, the spectral correlation is
computed by

Cs(n) =
1
M

N−1∑
i=1

N∑
j=i+1

Ci
t(n)C j

t (n) (6)

where Cs(n) is the value of spectral correlation, N repre-
sents the number of selected subbands, which is set to 12
in our work, and M means the number of pairs of non-
overlapping subbands given by M =

N(N−1)
2 . Finally, the

spectral-temporal correlation of the i-th phone segment is
obtained by summing the correlation among the selected
subbands over the interval of the segment. Interested read-
ers are referred to [6] for a more detailed information of the
procedures.

2.4 Spectral Emphasis Features

It has been reported that all the frequency bands do not have
significant effects on the prominence. Tamburini [2] divided
the whole frequency range into three bands: 0-500 Hz, 500-
2000 Hz and 2000-4000 Hz. The 500-2000 Hz band was
found very useful for prominence detection while the other
two bands 0-500 Hz and 2000-4000 Hz were less informa-
tive [2]. Based on this observation, we extract all the afore-
mentioned energy-related features including RMS energy,
log-scaled energy, Teager energy and spectral-temporal cor-
relation after passing the signal through a bandpass filter of
which pass band is 500-2000 Hz as depicted in Fig. 2.

2.5 Pitch Information

The pitch information, which is related to the fundamen-
tal frequency, has been a popular research issue for a long
time. Unlike the parameters mentioned above, it is difficult
to find a fixed-dimensional feature that summarizes the pitch

Fig. 2 Procedure to obtain spectral emphasis features.
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Table 1 Measures for pitch information of the i-th phone segment.

MAX(i) the maximum of pitch values
MIN(i) the minimum of pitch values
MEDIAN(i) the median of pitch values
MEAN(i) the mean of pitch values
STD(i) the standard deviation of pitch values
FLUC(i) the fluctuation of pitch values

characteristic of a phone-segment. For this reason, we use
several simple statistics of the pitch obtained from the given
phone segment as the features. The pitch statistics we apply
are listed in Table 1 where FLUC(i) is defined as

FLUC(i) =
|MAX(i)| − |MIN(i)|
|MAX(i)| + |MIN(i)| , (7)

and it gives a rough measure of pitch fluctuation over the
given segment.

2.6 Delta and Acceleration Parameters

In speech recognition technologies, a dramatic performance
improvement has been achieved with the incorporation of
the dynamic features which are basically the time deriva-
tives of the original static features. Inspired by this success,
we also extract the delta and acceleration parameters from
the static features which are introduced in this section. Let
c(i) be a feature parameter extracted from the i-th phone seg-
ment. Then, its delta parameter is calculated according to

Δ(c(i)) =

∑K
k=1k(c(i + k) − c(i − k))

2
∑K

k=1k2
(8)

where Δ(c(i)) is the delta parameter of c(i), and K = 1 in
our work. Once the delta parameter Δ(c(i)) is obtained, the
acceleration parameter ΔΔ(c(i)) can be derived from Δ(c(i))
in a similar way by applying (8).

3. Experimental Results

The speech material used in our experiments was selected
from Intonational Variation in English (IViE) corpus. This
corpus contained recordings of nine urban dialects of En-
glish spoken in the British Isles. It has been used in two
research projects: IViE and Oxigen projects [8].

A total of 924 utterance files were used in our exper-
iments and the information on the locations of prominence
was also available from the database. For the experiments,
we divided the utterance files into training and test groups
consisting of 660 and 264 utterances, respectively. Speech
data were sampled at 16000 Hz, and the HMM-based speech
recognition system was applied to segment each pronuncia-
tion waveform into phone-sized units. The units for recog-
nition were composed of 40 context-independent phones in-
cluding silence. The parameters of this HMM were trained
based on the TIMIT database.

An overall block diagram of proposed prominence de-
tection algorithm is shown in Fig. 3. First, the phone bound-
aries are identified by the forced alignment performed in the

Fig. 3 Flowchart of the prominence detection algorithm.

Table 2 Features used in test.

duration ROS
energy RMS energy, log-scaled energy,

Teager energy
spectral-temporal STC
correlation (STC)

spectral RMS of SE, log-scaled of SE,
emphasis (SE) Teager of SE, STC of SE

pitch MAX, MIN, MEDIAN,
information MEAN, STD, FLUC

HMM-based speech recognition. Based on this segmenta-
tion, we extract the phone-specific features as summarized
in Table 2. By appending the delta and acceleration param-
eters, a 45 dimensional feature vector is extracted for each
phone segment.

A test was performed to measure the detection accu-
racy with various different combinations of the features. For
this test, we applied the SVM algorithm as a basic classi-
fier and the detection performance was described by a re-
ceiver operating characteristic (ROC) curve. The obtained
ROC curves are shown in Fig. 4 where SVM15 applied all
the 15 static features listed in Table 2, SVM45 used all the
45 features including static, delta and acceleration param-
eters, SVM11 applied the features of SVM15 except for
the 4 features related to SE. We also implemented the tech-
niques proposed by Wang and Narayanan [3] and Streefk-
erk et al. [1] for performance comparison. In [1], acous-
tic features accounting for duration, energy and pitch were
applied to the ANN, and in [3], similar features were di-
rectly extracted from the input speech without a need for a
speech recognition technique. Since the proposed algorithm
in this letter is based on the extended phone-specific fea-
tures generated based on a speech recognition technique, the
comparison with these techniques is considered meaningful.
From the results, it is seen that the incorporation of proposed
features improves the performance as compared with those
used in [1] and [3]. It is also found that the features related
to spectral emphasis have no significant effect on detecting
prominence. Comparing between SVM45 and SVM15, it
can be found that using both delta and acceleration parame-
ters is superior to applying only the static features.

Next, an experiment was carried out to see the perfor-
mance when the exact transcript of the utterance was un-
available. In this case, the phone recognition result pro-
vided by the HMM system should be treated as the reference
transcript for alignment. The test result is given in Table 3
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Fig. 4 Comparison according to feature incorporations.

Table 3 Performances with and without transcript.

Error Precision Recall
rate rate rate

With transcript 21.79 78.16 78.45
Without transcript 21.75 77.94 80.10

Fig. 5 Comparison among three algorithms. (SVM, ANN, Adaboost)

where the performance is compared with that obtained when
the exact transcript was provided. From the results, it can
be seen that the proposed prominence detection algorithm
works well even without the exact transcript and is robust to
the recognition errors of the HMM system.

Finally, we applied three different classifiers: SVM,
ANN and Adaboost. Adaboost is a technique combining
multiple weak classifiers whose performance can be signifi-
cantly better than that of any of the weak classifiers [9]. For
this experiment, we used all the 45 phone-specific features.
The ANN was composed of single output node and 3 hidden

units, and the Adaboost consisted of 400 weak classifiers de-
signed based on decision tree structure, which showed good
performance in our experiments. The ROC curves obtained
from the three classifiers are compared in Fig. 5 where we
can see that SVM, ANN and Adaboost show a very simi-
lar performance. In [2], it is reported that the accuracy of
the manual tagging of prominence is around 80%. The re-
sult with the proposed features is comparable with those ob-
tained by human taggers.

4. Conclusions

In this letter, we proposed a prominence detection algorithm
based on phone-specific features. These phone-specific fea-
tures showed high performance in a number of experiments
on prominence detection. In addition, it has also been
demonstrated that the proposed algorithm can be efficiently
applied even when the transcript is unavailable.
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