
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.8 AUGUST 2010
2331

LETTER

Estimation of Phone Mismatch Penalty Matrices
for Two-Stage Keyword Spotting

Chang Woo HAN†a), Shin Jae KANG†b), Nonmembers, and Nam Soo KIM†c), Member

SUMMARY In this letter, we propose a novel approach to estimate
three different kinds of phone mismatch penalty matrices for two-stage key-
word spotting. When the output of a phone recognizer is given, detection
of a specific keyword is carried out through text matching with the phone
sequences provided by the specified keyword using the proposed phone
mismatch penalty matrices. The penalty matrices associated with substi-
tution, insertion and deletion errors are estimated from the training data
through deliberate error generation. The proposed approach has shown a
significant improvement in a Korean continuous speech recognition task.
key words: phone mismatch penalty matrices, multistage keyword spotting,
phone recognition

1. Introduction

Currently, there is a growing interest in multistage ap-
proaches to automatic speech recognition (ASR) and key-
word spotting [1]–[8]. In a multistage system, N-best phone
sequences, phone lattices, or confusion networks are ob-
tained at the first stage followed by a lexical search applying
specialized decoding steps, or using more detailed informa-
tion, e.g., morphological and domain-dependent knowledge.

The multistage systems are not only flexible in altering
keywords but also useful to build a vocabulary-independent
system. We only need to modify the lexical decoding part
while the first part, the phone recognition module, is inde-
pendent of the desired keywords. Furthermore, the decoding
part of the system requires only a small computation com-
pared with the conventional techniques for keyword spot-
ting, even though the vocabulary size is huge. Since hand-
held devices such as PDAs, e-books, or mobile phones have
low computing power and small memory size, this keyword
spotting approach can be usefully implemented on such de-
vices.

The performance of the decoding module at the second
stage is mainly dependent on the phone mismatch penal-
ties imposed to the substitution, insertion and deletion er-
rors. There have been several studies on determining these
penalties for multistage keyword spotting [2]–[6]. In [4] and
[5], the penalties for substitution are decided on the basis of
some rules defined over the broad acoustic-phonetic classes,
and the penalties for insertion and deletion are fixed to con-
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stant values. In [6], the substitution penalties are automati-
cally derived from the phone confusion matrix of the recog-
nizer, while the insertion and deletion penalties are still set
to fixed constants.

In this letter, we propose a new method to estimate
the phone mismatch penalty matrices for two-stage keyword
spotting. In the proposed approach, the phone mismatch
penalties are estimated from the training data while consid-
ering all possible types of phone recognition errors. We ap-
ply a two-stage keyword spotting system based on the multi-
pass phone recognition results, e.g. N-best phone sequences
or phone lattices, to verify the performance of the proposed
technique. The keyword spotting system using the proposed
penalty matrices shows better performance than those us-
ing other penalties when evaluated on a Korean continuous
speech recognition task.

2. Two-Stage Keyword Spotting

The overall block diagram of the implemented two-stage
keyword spotting system is shown in Fig. 1. In our imple-
mentation, we use the mel-frequency cepstral coefficients
(MFCCs) as the basic feature vectors. At the first stage,
multi-pass phone recognition outputs, such as the N-best
phone sequences or phone lattices, are generated by per-
forming the conventional phone recognition based on the
hidden Markov model (HMM). At the second stage, key-
words are detected by comparing the generated recognition
results with the hypothesized lexical phone sequences of the
keywords in the lexical decoding block. The decoding oper-
ation can be regarded as a simple string match algorithm. To
measure the similarity between each pair of phone strings,
the phone mismatch penalties are defined to consider each
type of errors. The multi-pass phone recognition outputs are
decoded by applying a dynamic programming algorithm.

Let Q(n) =
(
q(n)

1 , q
(n)
2 , · · · , q(n)

NQ(n)

)
be one of the phone se-

quences obtained from the multi-pass phone recognizer, and

Fig. 1 Overall block diagram of the implemented two-stage keyword
spotting system.
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P =
(
p1, p2, · · · , pNP

)
be the lexical phone sequence of a hy-

pothesized keyword where NQ(n) and NP denote the number
of phones of Q(n) and P, respectively. Then, we can compute
the sequence mismatch distanceD

(
P,Q(n)) by applying a dy-

namic programming technique similar to the dynamic time
warping (DTW) algorithm [3]. Finally, keyword spotting is
accomplished according to the following decision rule:

min
1≤n≤N

D
(
P,Q(n)) H1

≶
H0

γ (1)

where N is the number of possible phone sequences from the
multi-pass outputs, γ is a prespecified threshold and the two
hypotheses H1 and H0 respectively indicate the presence and
absence of the target keyword.

In order to carry out dynamic programming, we need a
set of penalties that measure the degree of phone sequence
mismatch. For this, we introduce three penalty matrices for
the three types of phone errors: substitution, insertion and
deletion. Let Ψ = {φ1, φ2, · · · , φNφ } be the set of all phone
identities, where Nφ is the total number of phones. The
penalty matrix for each type of phone errors is a Nφ×Nφ ma-
trix. Let PMsub(φi, φ j) be the (i, j)th element of the penalty
matrix for substitution. PMsub(φi, φ j) represents a penalty
imposed when the actual phone identity is φ j but misrecog-
nized as φi. In a similar manner, PMins(φi, φ j), the (i, j)th
element of the penalty matrix for insertion, is defined as
the penalty for the case when φi is inserted after a spo-
ken phone φ j. Finally, PMdel(φi, φ j), the (i, j)th component
of the penalty matrix for deletion, indicates the penalty re-
quired when the spoken phone φ j is missed after φi.

There are a number of string matching methods tak-
ing into consideration of substitution, insertion and deletion
errors [1]–[9]. They usually implement the decoder by ap-
plying a dynamic programming algorithm to Markov chains
or finite state machines. Since our purpose in this work is
to propose and evaluate a new method to estimate the three
different kinds of phone mismatch penalty matrices, we ap-
ply the conventional dynamic programming method similar
to that used in [3].

Let C(n)
i, j be the accumulated penalty of the best path

upto (q(n)
i , p j). Then, it is updated as follows:

C(n)
i, j =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PMsub(q(n)
i , p j), i = j = 1

C(n)
i, j−1 + PMdel(p j−1, p j), i = 1, j � 1

min
[
PMsub(q(n)

i , p j),

C(n)
i−1, j + PMins(q

(n)
i , p j)

]
, i � 1, j = 1

min
[
C(n)

i−1, j−1 + PMsub(q(n)
i , p j),

C(n)
i−1, j + PMins(q

(n)
i , p j),

C(n)
i, j−1 + PMdel(pi−1, p j)

]
, otherwise,

(2)

in which 1 ≤ i ≤ NQ(n) and 1 ≤ j ≤ NP.
Since we do not know the exact starting point of

the hypothesized keyword, we use
(

min
[
PMsub(q(n)

i , p j),

C(n)
i−1, j + PMins(q

(n)
i , p j)

])
when i � 1 and j = 1 instead of

(
C(n)

i−1, j + PMins(q
(n)
i , p j)

)
. This modification enables us to

spot the hypothesized keyword regardless of the exact start-
ing time.

After calculating C(n)
i, j for all the possible (i, j) grids,

D
(
P,Q(n)) is obtained as follows:

D
(
P,Q(n)) = min

1≤i≤NQ(n)

(
C(n)

i,NP
/l(n)

i,NP

)
(3)

where l(n)
i,NP

is the length of the best path upto (q(n)
i , pNP )

which is available through the backtracking technique.

3. Phone Mismatch Penalty Matrices

It has been reported that the accuracies of the state-of-the-art
HMM-based phone recognizers are around 70% [10], [11].
The performance deteriorates in the presence of background
noise. In many cases, the phone sequences of spoken key-
words may not be found in the phone recognition results
because there exist frequent occurrences of the three type of
errors: substitution, insertion and deletion. For that reason,
an appropriate penalty to each type of error should be taken
into consideration.

A simple way may be to assign the same penalty to all
the possible errors. This is called the Levenshtein metric
which counts the number of corrections required for con-
verting a sequence to the target sequence. In a number of
preliminary experiments, we could observe that some spe-
cific error patterns occur more frequently than others. In that
case, for a better performance, it is desired to assign different
penalty for each error pattern depending on its possibility of
occurrence. One of the successful previous approaches is
the phone confusion matrix, in which the penalties are esti-
mated based on the recognition error patterns obtained from
the training data [6]. However, the amount of recognition
errors observed in the training data is usually considered
to be insufficient to reflect all the possible phone error pat-
terns. Here we propose a novel technique to determine each
penalty matrix from a set of training data.

Let X = (x1, x2, · · · , xNP ) be an acoustic feature vec-
tor sequence corresponding to a spoken phone sequence
P = (p1, p2, · · · , pNP ), in which NP is the number of spoken
phones and xi represents the feature vector segment associ-
ated with the i-th phone, pi. Given P, X can be segmented
into each phone region {xi} by applying forced alignment
such as the Viterbi decoding approach. Once X is segmented
into (x1, x2, · · · , xNP ), the log-likelihood for P can be factor-
ized as follows:

logP(X|P) =
NP∑

k=1

logP(xk |pk) (4)

where P(·) denotes the likelihood computed in the HMM
framework.

For a good performance of string match, it is desirable
to assign a heavy penalty to the error type that occurs rarely
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and light penalties to frequent error patterns. To estimate
the relative frequency of each error pattern, we deliberately
substitute or delete the spoken phones and insert non-spoken
phones so as to create intended phone error patterns. The
penalty matrix for substitution is computed as follows:

PMsub(φi, φ j)

=

⎧⎪⎪⎨⎪⎪⎩
− log Pr

[P(xk |φ j) < P(xk |φi)
∣∣∣pk = φ j

]
+ αsub, φi � φ j

0, φi = φ j

(5)

where Pr[·] denotes the probability of the enclosed event and
αsub is a non-negative control parameter which is empiri-
cally determined depending on the phone insertion/deletion
rates. In (5), it is noted that we make a deliberate substitu-
tion of the spoken phone φ j with another phone φi and if the
likelihood of the substituted phone becomes larger, then we
treat the case as a possible phone substitution error. Train-
ing of PMsub(φi, φ j) based on the training data X is achieved
by using

Pr
[P(xk |φ j) < P(xk |φi)

∣∣∣pk = φ j
]

�
∑NP

k=1 I
[
pk = φ j,P(xk |φ j) < P(xk |φi)

]
∑NP

k=1 I
[
pk = φ j

] (6)

with I
[
a
]

denoting the indicator function which equals 1
when the condition a is satisfied and 0 otherwise.

In a similar manner, PMins(φi, φ j) is obtained by

PMins(φi, φ j)

= − log Pr
[P(xk |φ j) < P(xk |φ j, φi)

∣∣∣pk = φ j
]
+ αins (7)

with

Pr
[P(xk |φ j) < P(xk |φ j, φi)

∣∣∣pk = φ j
]

�
∑NP

k=1 I
[
pk = φ j,P(xk |φ j) < P(xk |φ j, φi)

]
∑NP

k=1 I
[
pk = φ j

] . (8)

In (7) and (8), we replace the original spoken phone φ j

by the concatenated phones (φi, φ j), and αins is an exper-
imentally determined control parameter. The likelihood
P(xk |φ j, φi) can be easily calculated by constructing an
HMM concatenating two phone models for φ j and φi.

Finally, the penalty matrix for deletion is estimated as
follows:

PMdel(φi, φ j)

= − log Pr
[P(xk−1, xk |φi, φ j) < P(xk−1, xk |φi)

∣∣∣
pk−1 = φi, pk = φ j

]
+ αdel (9)

with

Pr
[P(xk−1, xk |φi, φ j) < P(xk−1, xk |φi)

∣∣∣pk−1 = φi, pk = φ j
]

�
∑NP

k=2I
[
pk−1=φi, pk=φ j,P(xk−1, xk |φi, φ j)<P(xk−1, xk |φi)

]
∑NP

k=2 I
[
pk−1 = φi, pk = φ j

]
(10)

where (xk−1, xk) is the concatenation of the two feature vec-
tor segments, xk−1 and xk, and αdel is an empirically deter-
mined control parameter.

The proposed technique is similar to the phone con-
fusion matrix particularly for the substitution error. Phone
confusion matrix is derived from the recognition errors ob-
served in the training data [6]. In contrast, the proposed
method deliberately creates all the possible error patterns,
which will be helpful for robust penalty estimation. Fur-
thermore, more sophisticated treatment of the insertion and
deletion errors is achieved compared to the phone confusion
matrix technique.

4. Experimental Results

Performance of a keyword spotting algorithm with the pro-
posed penalty matrices was evaluated on the Korean con-
tinuous speech Reading Sentence DB collected at Speech
Information Technology & Industry Promotion Center
(SiTEC) [12]. The SiTEC Reading Sentence DB contains
20,217 sentences consisting of about 30,000 different word
tokens. It was collected by recording the speech from 200
male and 200 female speakers. The number of keywords
was 1000.

The database was divided into three sets: training, de-
velopment and testing sets. The training set was used for the
estimation of HMM parameters, the development set was
used to train the phone mismatch penalty matrices, and the
testing set was used for the performance evaluation. A de-
tailed information of each set of the DB is shown in Table 1.

In our keyword spotting system, the HMM-based
phone recognizer was applied at the first stage. Context-
dependent triphone models were used to construct this
phone recognizer. The number of states for each phone
was three, and the number of Gaussian mixtures for each
HMM state was eight. As the output of the phone recogni-
tion, we generated N-best phone sequences or phone lattices
where N varied from 10 to 100. The phone recognition ac-
curacy calculated based on the 1-best phone sequences was
69.30%. The phone mismatch penalty matrices were esti-
mated on the development set. To train the penalty matrices,
we applied monophone HMMs instead of the triphone mod-
els used in the phone recognizer. The control parameters
αsub, αins and αdel were set to 0.5, 0.5 and 1.5, respectively,
which showed a good performance in our experiments.

As reference systems with which we compared the per-
formance, we also implemented two other keyword spot-
ting systems which were similar to our approach but em-
ployed different penalties [6]. The first one employed the

Table 1 Database used in this study.

Training Development Testing Total

Sentences 30,399 6,904 3,454 40,757
Speakers 298 68 34 400
(Male/Female) (149/149) (34/34) (17/17) (200/200)

Duration 64:08:36 13:35:08 07:12:47 84:56:31
(hh:mm:ss)
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Fig. 2 FOMs for TSKWS-LD, TSKWS-CM and TSKWS-PM.

Fig. 3 ROC curves for TSKWS-LD, TSKWS-CM and TSKWS-PM
(phone lattice).

Levenshtein distance as the penalties. Let PM′sub(φi, φ j),
PM′ins(φi, φ j) and PM′del(φi, φ j) respectively denote the
(i, j)th penalty value for substitution, insertion and deletion
defined by the Levenshtein distance metric. Then,

PM′sub(φi, φ j) =

⎧⎪⎪⎨⎪⎪⎩
1, φi � φ j

0, φi = φ j

PM′ins(φi, φ j) = PM′del(φi, φ j) = 1. (11)

In the second system, the substitution penalties were calcu-
lated by applying the phone confusion matrix [6] technique
with the insertion and deletion penalties being set to 3.5,
which showed the best performance in our experiments.

The performances of the proposed and the reference
keyword spotting systems were compared in terms of figure
of merit (FOM) and receiver operating characteristic (ROC)
curves. For convenience, we denote the two-stage approach
with Levenshtein metric by TSKWS-LD, with phone confu-
sion matrix by TSKWS-CM, and with the proposed penalty
matrices by TSKWS-PM. First, we compared the FOMs of
the three approaches. The FOM implies the average detec-
tion probability when the number of false alarms per key-
word per hour is kept between 0 and 10. Figure 2 shows
the resulted FOMs from which we can see that the proposed
TSKWS-PM technique significantly outperformed the other
approaches. The average relative improvement in FOM of
the proposed technique was 18.48% compared to TSKWS-

LD and 4.31% compared to TSKWS-CM. Next, the ROC
curves for these three systems were obtained as shown in
Fig. 3 when the first stage output is given by a phone lat-
tice. The detection probability of the proposed algorithm
was higher than that of the other approaches over the whole
range of false alarm. From the results, it can be concluded
that the proposed approach produced better detection per-
formance compared with the conventional approaches.

5. Conclusions

In this letter, we have presented a new technique to estimate
the phone mismatch penalty matrices for two-stage keyword
spotting. Proposed penalty matrices are utilized to mea-
sure the similarity between recognized phone sequences and
phone sequences of the hypothesized keywords. The penal-
ties corresponding to all types of errors are estimated from
the training data. When N-best phone sequences or phone
lattices are given as the outputs of the first stage, detection
of a specific keyword is carried out through dynamic pro-
gramming based on the penalty matrices. From a number of
experiments on the Korean continuous speech recognition
task, it has been shown that the proposed approach outper-
formed the conventional techniques.
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