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SUMMARY In this paper, we propose a new speaker-class modeling
and its adaptation method for the LVCSR system and evaluate the method
on the Corpus of Spontaneous Japanese (CSJ). In this method, closer
speakers are selected from training speakers and the acoustic models are
trained by using their utterances for each evaluation speaker. One of the
major issues of the speaker-class model is determining the selection range
of speakers. In order to solve the problem, several models which have a
variety of speaker range are prepared for each evaluation speaker in ad-
vance, and the most proper model is selected on a likelihood basis in the
recognition step. In addition, we improved the recognition performance
using unsupervised speaker adaptation with the speaker-class models. In
the recognition experiments, a significant improvement could be obtained
by using the proposed speaker adaptation based on speaker-class models
compared with the conventional adaptation method.
key words: speech recognition, speaker adaptation, speaker-class model,
LVCSR, corpus of spontaneous Japanese

1. Introduction

High recognition accuracy has been achieved for read
speech with a large vocabulary continuous speech recogni-
tion (LVCSR) system. However, it is well known that rather
poor performance is reported for spontaneous speech recog-
nition. Although there are full of problems to be solved
in spontaneous speech recognition, we focus on the prob-
lem of speaker characteristics in this paper. Gathering a
large amount of speech data has been a general solution
of the problem. A large scale speech corpus containing
a total speech length of 2100–2300 hours is available for
research organizations participating in DARPA EARS pro-
gram now [1], [2]. In Japan, a spontaneous speech database
‘Corpus of Spontaneous Japanese (CSJ)’ is available. This
corpus consists of about 7M words with a total speech length
of 650 hours [3]. However, gathering a large amount of data
cannot always succeed because mismatched speech data
may be included in a corpus. There are some reasons for
the acoustic mismatch. For example, a variation of speaker
characteristics, a speaking style and a recording environ-
ment often have adverse effects upon the performance of
speech recognition.

The aim of this work is to improve the recognition
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performance of spontaneous speech by using unsupervised
batch-type adaptation for acoustic models. The batch-type
adaptation is mainly applied to the automatic transcription
of meetings and lectures. It is useful in those applications,
since there is no need for real-time speech recognition.

Adaptation techniques can be classified into two meth-
ods, i.e. supervised and unsupervised modes. The unsu-
pervised method is more difficult to improve the recogni-
tion performance because recognition results are used for
adaptation. In particular, it is difficult to improve the per-
formance of spontaneous speech because it has relatively
higher error rate. In order to improve the unsupervised
adaptation performance, we propose a novel unsupervised
speaker adaptation method by using speaker-class models.

On the issue of speaker characteristics, the use of
speaker-class model has been proposed. There are two ma-
jor problems to be solved: 1) how to select speakers who are
acoustically close to the test speaker, and 2) how to deter-
mine the selection range of speakers. For the former prob-
lem, it has been proposed that a speaker clustering method
in which speaker-class models are created in advance and
the most proper speaker-class model is selected [4]. It will
be referred to ‘speaker clustering’ method in this paper. An
alternative is to select ‘cohort speakers’ for each evaluation
speaker and to create speaker-class model by using the se-
lected speakers [5], [6]. Comparing between the two meth-
ods, the ‘cohort speakers’ method is thought to be more ef-
fective because it takes the evaluation speaker into account
for creating speaker-class model. A basic solution for the
problem of determining the selection range of speakers is
that the number of selected speakers is determined on an
experimental basis [5], [6]. However, the selection range of
speakers depends on the evaluation speaker and the accu-
racy of acoustic models. For example, if there is a training
speaker whose characteristics are very close to the evalua-
tion speaker, many cohort speakers may not be necessary. It
is difficult to estimate how many speakers should be selected
for creating the speaker-class model.

In order to solve the problem, we employ the selection
method of speaker-class model based on likelihood basis.
Several models which have variety of speaker range are pre-
pared for each evaluation speaker in advance, and the most
proper model is selected in recognition step. Tani et al. de-
fined the distance between speaker models, and proposed
the method of determining the number of speakers based on
the distance [7]. However, if the accuracy of the speaker
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Table 1 Comparison of speaker-class based methods.

previous speaker selection determination of
works selection range

[4] speaker clustering likelihood
[5], [6] cohort speakers -

[7] cohort speakers distance
proposed cohort speakers likelihood

class model changes, a re-setup of a threshold value is re-
quired. Table 1 shows the classification of speaker-class
methods. To briefly summarize the merits of this work: 1)
Speaker-class models depending on evaluation speaker are
used, and 2) the range of speaker selection is determined
automatically based on likelihood basis.

In order to improve the unsupervised adaptation per-
formance further, we propose a speaker adaptation method
based on speaker-class models. The error rate is crucial for
the unsupervised adaptation because recognition results are
used for adaptation in the unsupervised mode. In the pro-
posed method, recognition results by speaker-class models
are used as transcriptions of unsupervised adaptation. From
the recognition experiments, we show that accurate tran-
scriptions are important for unsupervised adaptation, while
initial model itself is not significant.

The rest of this introduction reviews some related
works. The speaker-clustering approach utilizes the corre-
lation among speakers. Two similar approaches were pro-
posed, i.e. reference speaker weighting (RSW) and eigen-
voice (EV) [8], [9]. In the former method, the parameters of
a set of models are adapted to match the recognized speaker
based on the recognized speaker’s similarity to a set of ref-
erence speakers. The basic idea of the latter method is
not essentially different from the RSW method except the
reference vectors are computed. Mak et al. proposed the
combination of reference speaker selection and the RSW
method [10]. The method consists of two processes. First,
the top M reference speakers are selected based on likeli-
hood basis. After the speaker selection, the RSW proce-
dure is conducted. Since the number of M is fixed in the
speaker selection step, the issue of the selection range of
speakers cannot be solved. Then the method differs from
our approach. The results of that work showed that the com-
bination of the speaker selection and the RSW was effec-
tive. Then, it is expected that the combination method of
our speaker selection approach and the RSW is effective,
however, it is out of our investigation in this paper.

2. Speech Recognition with Speaker-Class Models

2.1 Overview

The basic idea of speaker-class modeling is that closer
speakers are selected from training speakers and acoustic
models are trained by using their utterances for each eval-
uation speaker. It is expected that recognition performance
will be improved because an acoustic mismatch between in-
put speech and models becomes small. Since the speaker-

class models are created for each evaluation speaker sepa-
rately, the models are more suitable for input speech than
speaker-class models which are created independently of
evaluation speaker. One of the major issues of speaker-class
model is determining the selection range of speakers. So, we
employ the following method to determine the range. Sev-
eral models which have a variety of speaker range are pre-
pared for each evaluation speaker in advance. In the recog-
nition step, the most proper model is selected for each ut-
terance based on likelihood basis. By way of comparison,
model selection not for each utterance but for each speaker
is also conducted. Since a feature variation of utterances is
large in spontaneous speech condition, the former method
is expected to show better recognition performance. The
details of speaker-class modeling are described in the fol-
lowing subsections.

2.2 Speaker-Class Modeling

In order to create speaker-class models, closer training
speakers must be selected. Generally, Gaussian Mixture
Models (GMMs) are used to measure similarity between
training and evaluation speakers. In the example of [5], the
likelihood values of the input speech uttered by the evalu-
ation speaker are calculated by speaker-dependent GMMs.
Using the values, the training speakers are ordered accord-
ing to the similarity to the evaluation speaker. Referring to
the results of speaker recognition in [11], phoneme HMMs
are used to measure it instead of GMMs. In that paper, a
speaker vector-based speaker identification was conducted
and HMM-based system showed better results than GMM-
based system. Based on the results, HMMs are used to mea-
sure similarity in this paper.

The procedure for creating the speaker-class model
is as follows. First, speaker-dependent (SD) monophone
HMMs for each training speaker are prepared to measure
similarity. Next, likelihood calculation is carried out by us-
ing a simple frame-synchronous beam search decoder with
a phone-pair grammar. The first 20 utterances of each eval-
uation speaker are used for likelihood calculation. This is
because that it was found that a few utterances were not
enough for similarity measurement in a preliminary exper-
iment. Finally, all training speakers are arranged in the
likelihood order for each evaluation speaker by using the
SD HMMs. In order to obtain various sizes of speaker-
class models, the number of speakers is varied and sev-
eral speaker-class models are trained for each evaluation
speaker. In addition, we perform unsupervised speaker
adaptation with recognition results derived from speaker-
class models. Performance improvement can be expected by
using more accurate labels from speaker-class models. We
use MLLR which is widely used for speaker adaptation. In
this paper, we compare the following adaptation methods: 1)
Comparison between speaker-independent (SI) model and
speaker-class model is conducted to clarify which model is
suitable for initial model to be adapted, and, 2) comparison
between label sets derived from SI model and speaker-class
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model to clarify which label set is better to use for adapta-
tion.

2.3 Algorithm

The training procedure of the speaker class models is de-
scribed below.

1. Create SD HMMs by using training data consist of S
speakers. Then, the number of SD HMMs is S . The
SD HMMs for speaker qs are referred to as Λqs .

2. Let X = {x1, x2, · · · , xM} be the set of the input features
of an evaluation speaker where M is the number of ut-
terances. In the experiments, M is set to 20. Calculate
P(X|Λqs ) by using a standard speech recognizer.

3. Sort the training speakers in the order of likelihood ba-
sis, i.e. q1, q2, · · · , qS when P(X|Λq1 ) > P(X|Λq2 ) >
· · · > P(X|ΛqS )

4. Make a classification of the training speakers on the ba-
sis of likelihood in order to generate N speaker-classes.
Then, S 1 < S 2 < · · · < S N = S where S n is the number
of speakers in class n.

5. Create N speaker-class models {Θn} based on the Maxi-
mum Likelihood (ML) criterion by using each speaker-
class data set. For example, the speaker-class model for
the class n is trained by {X(q1), X(q2), · · · , X(qS n )} where
X(qS n ) is the whole training data for speaker qS n .

In the recognition step, the optimal number of n for
speaker-class model Θn is determined automatically based
on likelihood basis. There are two methods for determina-
tion:

Utterance The optimal model is selected on a utterance-
by-utterance basis by using

n̂ = argmax
n

P(xi|Θn), (1)

where xi is i-th utterance of the evaluation speaker.
The utterance is recognized by the selected model Θn̂.
Therefore, the model may be replaced at every utter-
ance.

Speaker The model is selected by using whole utterances
of the evaluation speaker. Let L is the number of utter-
ances of the evaluation speaker. Then, n̂ is set as

n̂ = argmax
n

L∏
i=1

P(xi|Θn). (2)

Whole utterances of the evaluation speaker are recog-
nized by Θn̂.

Here we will discuss the issue of calculation cost in
the recognition step. Since it mainly depends on decoding
process, it increases with the number of speaker-class (SC)
models considered. It is expected that it will be reduced if
the SC models are used only at the second decoding pass
in multi-pass decoder. This will be the subject of the future
investigation.

2.4 Acoustic Models

Since the speaker class model is selected based on likelihood
basis in our approach, there is an advantage that the re-setup
of a threshold value in distance based methods is not re-
quired if the accuracy of the speaker class model changes.
In order to demonstrate the merit in the experiments, both
block-diagonal HMMs and diagonal HMMs are used.

In our implementation, the output probability distribu-
tion is represented by multiple Gaussian mixture densities:

b(x) =
W∑

w=1

λwN(x;µw,Σw)

=

W∑
w=1

λw
1

(2π)D/2|Σw|1/2 exp

{
−1

2
(x − µw)TΣ−1

w (x − µw)

}
, (3)

where λw is the mixture weight of w-th component, µw is
mean vector and Σw is covariance matrix. In the diagonal
case, the covariance matrix of Gaussian mixture is given by
the diagonal elements:

Σw = diag(σ2
1, σ

2
2, · · · , σ2

D) (4)

The block-diagonal matrix, in which correlations between
static, delta or delta-delta coefficients are assumed to be
zero, can be given as:

Σw =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
M1 O O
O M2 O
O O M3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ , (5)

where Mi is a di-dimensional symmetric matrix and di satis-
fies:

3∑
i=1

di = D. (6)

The matrix M1 represents correlations among static coeffi-
cients. Also, M2 for delta coefficients and M3 for delta-delta
coefficients are used.

3. Experimental Set-Up

3.1 LVCSR System

In this section, we describe our LVCSR system which is
used for recognition experiments. In the speech analysis
module, a speech signal is digitized at a sampling frequency
of 16 kHz and at a quantization size of 16 bits. The short-
time analysis is performed by means of a Hamming window,
having length 25 ms at a rate of 8 ms. The 13-dimensional
feature vector (12-dimensional MFCC and log power) is de-
rived from the digitized samples for each frame. Also the
delta and the delta-delta feature vectors are calculated from
MFCC feature vector and log power. Then the total num-
ber of dimensions is 39. The 39-dimensional parameters
are normalized by the cepstral mean normalization (CMN)
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method. A two-pass search decoder using word 2-gram
and 3-gram is used for recognition. In the first pass, word
graph is generated with acoustic models and 2-gram lan-
guage model. In the second pass, 3-gram language model
is applied for re-scoring the word graph and recognition re-
sult is obtained. Decoding is performed by a one-pass algo-
rithm in which a frame-synchronous beam search and tree-
structured lexicon are applied in the first pass. The 2-gram
and 3-gram are trained from text data containing 2,668 lec-
tures in the CSJ and the total number of words is 6.68M.
Those lectures consist of both academic presentations and
extemporaneous presentations. Trained language models
have 47,099 word-pronunciation entries. A set of shared
state triphones is used as acoustic model.

3.2 Speaker-Class Model

In this section, the condition of speaker-class modeling is
described. Speech data of both academic presentations and
extemporaneous presentations are used as training set for
acoustic modeling. The total number of lectures we used for
modeling is 2,667 and the total speech length is about 447
hours. One lecture is uttered by one speaker, then the total
number of speakers is 2,667 (1594 males, 1073 females).
Note that some speakers give plural lectures. The steps of a
creation procedure are as follows:

1. Speaker-dependent (SD) monophone HMMs are
trained for each training speaker, and are used for a
speaker selection. A model topology is a left-to-right
HMM with 3 states. The number of mixture compo-
nents is 12. Since the number of training speakers is
2,667, the number of model sets of SD HMMs is 2,667.

2. All training speakers are arranged in the order of like-
lihood corresponding to a given evaluation speaker by
using the above SD HMMs.

3. Speaker-class models are trained for each evaluation
speaker based on the result of the above speaker or-
der. In order to obtain various sizes of speaker-class
models, the number of speakers is varied and seven
speaker-class models are trained for each evaluation
speaker (see Table 2). In the experiments, both block-
diagonal HMMs and diagonal HMMs are used. The
block-diagonal system has 3000 tied states with 32
mixture components per state, and the diagonal system
has 3000 states with 16 components per state.

Table 2 Number of speakers for each speaker-class model.

Proportion of all #speakers
1/64 42
1/32 84
1/16 167
1/8 334
1/4 667
1/2 1334

ALL 2667

3.3 Evaluation Set

The evaluation set we use is ‘testset1’ which consists of aca-
demic presentations uttered by 10 male speakers. This is one
of the standard test sets in CSJ corpus. Experimental results
of each research group can be compared each other by using
this test set. The total speech length is 1.7 hours.

4. Result and Discussion

4.1 Selection of Speaker Class Model

In order to investigate the effects of model precision on
recognition performance, we conducted recognition exper-
iments by using both the block-diagonal models and the di-
agonal models. Figure 1 shows the recognition results. In
the figure, 1/64—ALL are the results of speaker-class mod-
els without likelihood selection. The best WER result of
the diagonal covariance models was 20.26% by using 1/32
model. In contrast, the best WER of the block-diagonal
models was 19.11% by using 1/4 model. The reason why the
optimal number of training speakers of the block-diagonal
model increased was lack of training data when the number
of training speakers was limited. Since the optimal number
of training speakers depends on the accuracy of a model, the
framework which chooses the optimal model automatically
is required. Then, we proposed the automatic selection of
the optimal number of speakers by a likelihood basis. In
Fig. 1, ‘Speaker’ and ‘Utterance’ are the results of the au-
tomatic selection. The ‘Speaker’ means one speaker-class
model is selected for each evaluation speaker. The ‘Utter-
ance’ means that a selected speaker-class model is varied by
the likelihood of each utterance. From the results, the auto-
matic selection by the ‘Utterance’ method shows equivalent
or better performance than every speaker-class model. Ta-
ble 3 shows the recognition results for each speaker. The
best performance for each speaker is indicated in boldface.
In this table, the optimal speaker-class model differs among
evaluation speakers. This is the reason why the performance

Fig. 1 The recognition results of speaker-class models and the automatic
selection of speaker model by likelihood basis.
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Table 3 The recognition results of the speaker-class models by using the
block-diagonal model. [Word Error Rate(%)]

speaker ID 1/16 1/8 1/4 1/2 ALL
0097 7.72 7.50 7.38 7.23 7.23
0110 9.56 9.40 9.56 9.56 9.79
0137 18.46 17.34 17.63 17.00 17.54
0106 29.72 28.72 28.36 28.62 28.62
0112 12.09 10.69 11.00 11.13 11.66
0156 32.94 31.30 31.68 31.84 32.62
0051 14.96 14.02 13.94 14.73 15.24
0121 24.68 23.05 22.31 23.22 23.22
0123 17.98 17.81 18.31 19.36 18.98
0011 23.01 23.12 22.47 23.01 23.72

average 20.05 19.16 19.11 19.44 19.75

Fig. 2 Male-female ratios of training speakers.

improvement could be obtained by automatic selection. If
the number of the selected speakers is fixed at the optimal
point on average, it is not necessarily the case that the op-
timal number is selected for each speaker. Comparing be-
tween the two selection methods, the ‘Utterance’ method
shows better performance. This means that the variation of
characteristics of each utterance is large.

We investigated what kind of training speakers were
selected for speaker-class models in the case of 1/64 (42
speakers). Figure 2 shows male-female ratios of the selected
speakers. Note that the all evaluation speakers are male. For
almost all speakers, the proportions of male speakers are
higher, however, the result of speaker ‘0110’ shows a dif-
ferent trend. In this case, the proportion of male speakers is
small, even though ‘0110’ is a male speaker. We have lis-
tened to his presentation, and found out that his voice qual-
ity was high-pitched. It is well known that the recognition
performance of this speaker drops by using male-dependent
model. Then, it is considered that his voice has female-like
characteristics. In Table 3, the results of ‘ALL’ was obtained
by using gender-independent (GI) models. The evaluation
set ‘testset 1’ consists of male speakers only. In this case,
gender-dependent (GD) models are usually effective for the
recognition. In the experiments by using GD models, we
obtained a WER of 20.09%. This is because female-like
speakers such as speaker ‘0110’ have adverse effects on the
recognition performance.

We tried to visualize the result of speaker selection by
using the COSMOS method [12]. In the method, the distri-
bution of the acoustic models is plotted in a two-dimensional

Fig. 3 Scatter plot of the distribution of the training speakers by the
COSMOS method.

diagram by use of multi-dimensional linear measurement.
We employed the Bhattacharyya distance measures to calcu-
late the similarity of two probability distributions. Figure 3
shows the result of the distribution of training speakers. The
cohort speakers for speaker ‘0110’ and speaker ‘0011’ are
plotted on all other training speakers. It is found that the
cohort speakers for ‘0110’ are mainly selected from female
speakers and the speaker class models of ‘0110’ and ‘0011’
are definitely different in speaker space.

4.2 Unsupervised Speaker Adaptation

In order to investigate the effectiveness of the speaker-class
model in unsupervised speaker adaptation, we conducted
some unsupervised speaker adaptation experiments. Fig-
ure 4 shows the block-diagram of the method of unsuper-
vised speaker adaptation. An initial model is adapted by
using labels obtained from the recognition results to create
an adapted model. We compare the following methods:

Baseline: The SI model is used as an initial model. Speaker
adaptation is carried out by using the recognition re-
sults of the SI model as labels for adaptation at the first
iteration. At the following iterations, the results of the
adapted model are used as labels.

Method 1: The ‘1/4’ speaker-class model is used as an ini-
tial model. Speaker adaptation is carried out by using
the recognition results of the speaker-class model with-
out likelihood selection as labels for adaptation.

Method 2: The SI model is used as an initial model.
Speaker adaptation is carried out by using likelihood
selection of the recognition results of the speaker-class
models as labels for adaptation.

Method 3: The ‘1/4’ speaker-class model is used as an ini-
tial model. Speaker adaptation is carried out by using
likelihood selection of the speaker-class models as la-
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Fig. 4 The block-diagram of the method of unsupervised speaker adap-
tation.

Table 4 Summary of unsupervised speaker adaptation.

labels for adaptation

method initial model
model for

label generation
likelihood
selection

baseline SI SI -
method 1 speaker-class speaker-class no
method 2 SI speaker-class yes
method 3 speaker-class speaker-class yes
method 4 speaker-class SI -

bels for adaptation.
Method 4: The ‘1/4’ speaker-class model is used as an ini-

tial model. Speaker adaptation is carried out by us-
ing the recognition results of the SI model as labels
for adaptation at the first iteration. At the following it-
erations, the results of the adapted model are used as
labels.

Those methods are summarized in Table 4. The block-
diagonal models were used for adaptation, and the likeli-
hood selection was performed with 1/2, 1/4 and 1/8 speaker-
class models. Each adaptation procedure was conducted
until performance was saturated. In the MLLR adaptation,
the Gaussian mean parameters were updated. The mixture
weights were also updated by the maximum likelihood esti-
mation. The number of regression classes is automatically
determined by the amount of adaptation data. 9 to 16 regres-
sion classes were used in the adaptation procedure.

The experimental results are shown in Fig. 5. The best
WERs of the baseline and each method are shown in the
figure. Also, the recognition results of SI, baseline and
method 2 for each speaker are shown in Table 5. The base-
line method obtained 17.50% as the best WER of iteration
sequence, and 17.14% for the method 1, 17.02% for the
method 2, 17.13% for the method 3, and 17.33% for the
method 4 were achieved, respectively. All the proposed
methods could achieve the performance improvement com-
pared with the baseline adaptation method (statistically sig-
nificant at level of 1% by the sign test.) We obtained the best
WER of 17.02% by using the method 2, however, the differ-
ence among the proposed methods excepting the method 4
is small. Although the difference in WERs among the meth-
ods 1, 2, and 3 was small, the method 2 consistently out-
performed the methods 3 and 4. In the method 2, SI model
is adapted by using the labels derived by several speaker-
class models. Then, the initial model and the models for
label generation differ. The unsupervised cross-validation

Fig. 5 Recognition results of unsupervised speaker adaptation by using
‘1/4’ speaker-class model.

Table 5 WERs of unsupervised speaker adaptation for each speaker (%).

speaker ID SI baseline method 2
0097 7.23 6.54 6.46
0110 9.79 9.10 9.10
0137 17.54 17.24 16.41
0106 28.62 23.48 23.64
0112 11.66 8.95 8.30
0156 32.62 28.92 28.11
0051 15.24 13.24 13.12
0121 23.22 21.19 21.36
0123 18.98 18.27 16.93
0011 23.72 21.47 20.26

average 19.75 17.50 17.02

adaptation method has been proposed by [13], where mod-
els for E-step and M-step are purportedly-separated. There
is a possibility that the method 2 causes an effect similar to
the cross-validation method. This will be the subject of the
future investigation.

From the results, all the proposed methods are able to
improve the recognition performance. The reason why per-
formance improvement of the proposed method 1, 2 and 3
could be achieved is that the accuracy of labels for adapta-
tion were improved by likelihood selection. The method 4
is not so effective compared with other proposed methods.
In this method, SI based transcriptions are used as the adap-
tation labels. Then, we can see that accurate transcriptions
are more important rather than the performance of an initial
model. We can conclude that adaptation labels obtained by
speaker-class models are effective.

5. Conclusion

In this paper, we have proposed a new speaker-class mod-
eling and its adaptation method. In order to determine
the selection range of speakers, a suitable model for in-
put speech was selected from speaker-class models which
had different speaker-size by likelihood basis. The re-
sult showed that speaker-class modeling in which closer
speakers were selected automatically was more effective
rather than speaker-independent modeling. Furthermore,
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speaker adaptation was preformed to investigate whether the
speaker-class model was effective. The results showed that
the method in which the recognition results of speaker-class
models were used as labels for adaptation was effective.

Mak et al. proposed the combination of reference
speaker selection and the RSW method, and showed a sig-
nificant improvement [10]. We plan to develop the combina-
tion of our speaker selection method and the RSW method.
In addition, we are now studying the speaker class model se-
lection based on the word graph combination [14]. By using
the combination method, speaker class models can be se-
lected for each word hypothesis. It is expected that the word
level selection is more effective than the utterance level se-
lection which has been proposed in this paper.
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