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SUMMARY In this paper, we propose a hybrid model adaptation ap-
proach in which pronunciation and acoustic models are adapted by incor-
porating the pronunciation and acoustic variabilities of non-native speech
in order to improve the performance of non-native automatic speech recog-
nition (ASR). Specifically, the proposed hybrid model adaptation can be
performed at either the state-tying or triphone-modeling level, depending
at which acoustic model adaptation is performed. In both methods, we
first analyze the pronunciation variant rules of non-native speakers and
then classify each rule as either a pronunciation variant or an acoustic vari-
ant. The state-tying level hybrid method then adapts pronunciation models
and acoustic models by accommodating the pronunciation variants in the
pronunciation dictionary and by clustering the states of triphone acoustic
models using the acoustic variants, respectively. On the other hand, the
triphone-modeling level hybrid method initially adapts pronunciation mod-
els in the same way as in the state-tying level hybrid method; however, for
the acoustic model adaptation, the triphone acoustic models are then re-
estimated based on the adapted pronunciation models and the states of the
re-estimated triphone acoustic models are clustered using the acoustic vari-
ants. From the Korean-spoken English speech recognition experiments, it is
shown that ASR systems employing the state-tying and triphone-modeling
level adaptation methods can relatively reduce the average word error rates
(WERs) by 17.1% and 22.1% for non-native speech, respectively, when
compared to a baseline ASR system.
key words: non-native speech recognition, pronunciation variability,
acoustic model adaptation, pronunciation model adaptation, state-tying
level hybrid adaptation, triphone-modeling level hybrid adaptation

1. Introduction

Due to the increasing use of non-native speech, such as in
international business meetings or travel, both native and
non-native speech commonly exist in a natural environment.
Therefore, it becomes likely that non-native speech will be
used in automatic speech recognition (ASR) systems; how-
ever, the ASR performance for non-native speech tends to
degrade severely since typical ASR systems are only trained
with native speech. Moreover, non-native speech displays
broad variabilities due to a speaker’s lack of fluency and/or
the different pronunciation spaces between the target lan-
guage and a speaker’s mother tongue [1]. In attempts to
handle non-native speech on ASR systems, research per-
taining to these systems can be classified as acoustic mod-
eling, pronunciation modeling, language modeling, and hy-
brid modeling approaches [2]–[11]. First, acoustic model-
ing approaches can simply retrain the acoustic models of
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native speech using a non-native speech database in order to
compensate for the variability of non-native speech. How-
ever, there is a general lack of non-native speech data; in-
stead, transforming or adapting acoustic models based on an
analysis of pronunciation variation has been proposed [2]–
[4]. Second, pronunciation modeling approaches build a
multiple pronunciation dictionary by including pronuncia-
tion variants for each word in the pronunciation dictionary
dedicated to non-native speech [2], [5]. To this end, sev-
eral methods have been proposed that used either phoneme
recognition or decision trees [6]–[9]. Third, language mod-
eling approaches adjust a language model designed from na-
tive speech to compensate for the variability regarding the
grammar or the speaking style of non-native speakers [10].
Finally, hybrid modeling approaches combine the above ap-
proaches to further improve the performance of non-native
ASR [11].

In this paper, we focus on a hybrid modeling approach
that combines pronunciation and acoustic model adaptations
in order to handle the variability of non-native speech in an
ASR system. In particular, we propose two types of hy-
brid modeling; one at the state-tying level and the other at
the triphone-modeling level. The two hybrid modeling ap-
proaches first investigate pronunciation variabilities of non-
native speech in an indirect data-driven manner and then
classify each pronunciation variability as either pronuncia-
tion or acoustic variants. In other words, phoneme recogni-
tion is first performed to obtain N-best phoneme sequences
using a development set of non-native speech. Then, the rec-
ognized N-best phoneme sequences are applied to a decision
tree in order to derive the pronunciation variant rules [12].
Next, each pronunciation variant rule is classified into either
a pronunciation variant or an acoustic variant, where they
are used for pronunciation and acoustic adaptations, respec-
tively.

After that, the state-tying level hybrid method builds a
multiple pronunciation dictionary for non-native speech so
that the pronunciation variants of each word are included
in the pronunciation dictionary [12]; the states of the tri-
phone acoustic models are clustered based on a decision tree
using the acoustic variants [13]. In addition, the triphone-
modeling level hybrid method adapts pronunciation mod-
els in the same way as the state-tying level hybrid method.
However, there is one main difference between the state-
tying level and the triphone-modeling level hybrid methods.
In the triphone-modeling level method, the acoustic models
are adapted by re-estimating the triphone acoustic models
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using the adapted pronunciation models and the states of the
re-estimated triphone acoustic models are then clustered us-
ing the acoustic variants. In this paper, the proposed hybrid
modeling methods are applied to a baseline ASR system
constructed using a native-English speech database, where
the English utterances spoken by Koreans are recognized as
non-native speech.

The organization of the remainder of this paper is as
follows. Following this introduction, the speech databases
and a baseline ASR system are briefly described and then
the effect of non-native speech variabilities on the ASR per-
formance is discussed in Sect. 2. Section 3 describes how
to investigate pronunciation variability including the deriva-
tion of variant rules from non-native speech and the clas-
sification of pronunciation or acoustic variants. In Sect. 4,
we propose the state-tying and triphone-modeling level hy-
brid methods by combining the acoustic and pronunciation
model adaptations. In Sect. 5, we evaluate the performance
of a non-native ASR system employing the proposed hybrid
model adaptation methods and compare their performance
with that of the baseline ASR. Finally, we conclude our
findings in Sect. 6.

2. Speech Database and Baseline ASR

In this section, we briefly describe the speech databases and
a baseline ASR system that is trained with a native speech
database. We then discuss the effect of non-native speech
variability on the performance of this ASR system.

2.1 Speech Database

Two speech databases are used in this paper to train a
baseline ASR system and to develop or evaluate a non-
native speech ASR system. Table 1 provides the descrip-
tions of the training set, in which a subset of the Wall
Street Journal database (WSJ0) is used to train the system.
WSJ0 is a 5,000-word closed-loop task used to evaluate
the performance of a large vocabulary continuous ASR sys-
tem [14]. The WSJ0 training set consists of 7,138 sentences
(130,507 words in total) uttered by 83 native English speak-
ers recorded using a Sennheiser close-talking microphone
and several far-field microphones, where each utterance is
sampled at a rate of 16 kHz.

In order to construct a non-native ASR system from the

Table 1 Comparison of the training corpus.

Item Training set

Language American English
Database WSJ0 [14]

Mother tongue American English
Utterance type Sentence
No. of speakers 83
No. of sentences 7,138

No. of words 130,507
Amount of 3 hours
speech data

baseline ASR system, we use a subset of the Korean-spoken
English corpus (K-SEC) [16] supported by the Speech Infor-
mation Technology and Industry Promotion Center (SiTEC)
in Korea. Table 2 describes the development set and the
evaluation set, respectively, in several aspects. As shown
in the table, the development set is composed of 1,103 iso-
lated word utterances spoken by one Korean speaker, and
the evaluation set is composed of 784 sentence utterances
(8,176 words in total) with an average of 10.4 words per sen-
tence, spoken by 49 Koreans and 7 native speakers. More-
over, the isolated word and sentence utterances are the read
speech of phonetically balanced words (PBW) and a part of
one of Aesops Fables, The Wind and the Sun, respectively.

2.2 Baseline ASR System for Native Speech

As the speech feature vector of an ASR system, we extract
12 mel-frequency cepstral coefficients (MFCCs) with log-
arithmic energy for every 10 ms analysis frame and con-
catenate their first and second derivatives, resulting in a
39-dimensional feature vector. For all training and test ut-
terances, we apply cepstrum mean normalization and en-
ergy normalization to the feature vectors. For the acous-
tic models, cross-word triphone hidden Markov models
(HMMs) are constructed based on 3-state left-to-right,
context-dependent HMMs with 4-mixture Gaussian distri-
butions, and they are trained using the HTK version 3.2
Toolkit [17].

Figure 1 shows the main procedure for constructing
acoustic models and building pronunciation models for the
baseline ASR system. In other words, all of the triphone
models are expanded from 41 monophones, which also in-
clude silence and pause models, as shown in Table 3. Af-
ter that, the states of the triphone models are joined using
a decision tree [18]. As a result, the acoustic models con-
sist of 9,655 triphones and 5,297 states, referred to as AM0
throughout this paper. Moreover, each pronunciation of a
word is built from the Carnegie Mellon University (CMU)
pronunciation dictionary [19] and any words missing in the
CMU dictionary are manually transcribed. A set of these
baseline pronunciation models with 87 unique words and
340 pronunciations is referred to as PM0.

In addition, in order to explore discrepancies in the be-
havior of the pronunciation and the acoustic models due to

Table 2 Comparison of the development and evaluation set for
non-native ASR.

Item Development set Evaluation set

Language American English
Database K-SEC [16]

Mother tongue Korean American Korean
English

Utterance type Isolated word Sentence
No. of speakers 1 7 49
No. of sentences - 98 686

No. of words 1,103 1,022 7,154
Amount of 0.3 0.2 1.1
speech data hours hours hours
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Fig. 1 Main procedure for constructing acoustic models and
pronunciation models in a baseline ASR system.

Table 3 List of phonemes used for a baseline ASR system.

Vowels (15) AA AE AH AO AW AY EH ER
EY IH IY OW OY UH UW

Consonants (24) B CH D DH F G HH JH K L M N
NG P R S SH T TH V W Y Z ZH

Silences (2) sil sp

Table 4 Comparison of average WERs (%) of a baseline ASR system
for non-native and native speech.

Native Non-native

Baseline ASR system 0.7 19.9

differences between the target language and the speaker’s
mother tongue, the texts collected from the evaluation set are
only used to construct a backed-off bigram language model
with a perplexity of 3. It is noted here that there is no out-of-
vocabulary word. However, if the language model is gener-
ated using a large text corpus and thus the language model
perplexity is increased, the performance improvement may
be different from that obtained in this paper [15].

2.3 Effect of Non-native Speech Variability on the ASR
Performance

Table 4 compares the average word error rates (WERs) of
the baseline ASR system for the two evaluation sets de-
scribed in Table 2. As shown in the table, the baseline ASR
system achieves average WER of 0.7% for native speech.
Note here that the high recognition performance is due to
the small size of the language model. On the other hand,
average WER for non-native speech is severely increased at
19.9%. This is because the baseline ASR system is trained
with a native speech database thus it cannot properly han-
dle non-native speech that yields a broad range of speech
variability against native speech. As mentioned in Sect. 1,
non-native speech has variabilities that are originated from
either a speaker’s lack of fluency or from the difference in
pronunciation spaces between the mother tongue and the tar-
get language. In addition, such variabilities also occur due

to coarticulation effects within a specific context. These is-
sues are discussed in detail in the next section.

3. Pronunciation Variability of Non-native Speech

In this section, we first describe how to obtain the pronun-
ciation variant rules from a non-native speech database in
a data-driven approach. Next, we describe how to classify
each rule into either a pronunciation or an acoustic variant
rule, which is used for pronunciation adaptation or acoustic
adaptation, respectively.

3.1 Analysis of Pronunciation Variant Rules from Non-
native Speech

The pronunciation variant rules of non-native speech are ob-
tained in an indirect data-driven approach based on a deci-
sion tree [12], which is performed in three steps. For a given
utterance, N-best phoneme sequences are obtained using
phoneme recognition and aligned using dynamic program-
ming with the reference sequence of the utterance. After
that, pronunciation variant rules are derived based on deci-
sion trees.

3.1.1 Phoneme Recognition

We first perform phoneme recognition using each utterance
in the development set of non-native speech. As a phoneme
recognizer, we use acoustic models of the baseline ASR sys-
tem and a back-off bigram language model that is trained
with the reference phoneme sequences of the training text
data. By performing phoneme recognition, we obtain N-
best phoneme sequences for each utterance instead of a 1-
best phoneme sequence in order to get the meaningful pro-
nunciation variabilities. In this paper, we actually use the
200-best phoneme sequences; the phoneme recognition ac-
curacies for the 1-best and 200-best phoneme sequences are
measured as 18.5% and 61.3%, respectively.

3.1.2 Alignment Using Dynamic Programming

For each utterance, the recognized N-best phoneme se-
quences are aligned using a dynamic programming (DP) al-
gorithm, where the reference phoneme sequence is obtained
from the CMU pronunciation dictionary [19]. Table 5 shows
an example of the alignment result for an utterance, ‘un-
chained melody,’ where the reference phoneme sequence
and one of the recognized N-best phoneme sequence are
/AH N CH EY N D M EH L AH D IY/ and /T AH N S
AH N D AH L AH T IY/, respectively†. In the table, /@/ in
the upper row of the alignment result indicates an insertion
error but /@/ in the lower row indicates a deletion error.

Among the N alignment results for each utterance, we
then select the M (M < N) best-matched results as an alter-

†From now on, all pronunciation symbols are denoted in the
form of the two-letter uppercase ARPAbet [20], as it is usual to use
ARPAbet symbols in speech recognition.
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Table 5 Example of a DP-based alignment between the recognized
phoneme sequence and the reference phoneme sequence for an utterance,
‘unchained melody.’ The symbol /@/ in the alignment result indicates an
insertion or a deletion error.

Text Unchained melody

Reference
phoneme AH N CH EY N D M EH L AH D IY
sequence

Recognized
phoneme T AH N S AH N D AH L AH T IY
sequence

Alignment @ AH N CH EY N D M EH L AH D IY
result T AH N S AH N D @ AH L AH T IY

Table 6 Example of the pronunciation rule patterns obtained from the
alignment result in Table 4.

@-@-@+AH+N→T N-D-M+EH+L→@
@-@-AH+N+CH→AH D-M-EH+L+AH→AH
@-AN-N+CH+EY→N M-EH-L+AH+D→L
AN-N-CH+EY+N→S EH-L-AH+D+IY→AH
N-CH-EY+N+D→AH L-AH-D+IY+@→T
CH-EY-N+D+M→N AH-D-IY+@+@→IY
EY-N-D+M+EH→D

native to the compensation of the phoneme mis-recognition.
Next, the pronunciation rule patterns for each selected align-
ment result are obtained in the form of

L2 − L1 − X + R1 + R2 → Y (1)

where /X/ is the target phoneme that is to be mapped into
/Y/, and the left and right phonemes in the reference tran-
scription are /L1/ and /L2/, and /R1/ and /R2/, respectively.
Table 6 shows the pronunciation rule patterns obtained from
the alignment result in Table 5. In other words, each pair
in the alignment result has an independent pronunciation
rule pattern defined in the form of Eq. (1). For example,
the pair (/@/, /T/) has the pronunciation rule pattern /@-@-
@+AH+N/→/T/; other pronunciation rule patterns can then
be generated in the same manner.

3.1.3 Derivation of Pronunciation Variant Rules

In order to derive the pronunciation variant rules from the
development set of non-native speech, a decision tree for
each target phoneme is generated using all the correspond-
ing pronunciation rule patterns. In this paper, C4.5 is used
to generate a decision tree, which is a software extension of
the basic ID3 algorithm designed by Quinlan [21]. In the
decision tree, the attributes of the decision tree for a tar-
get phoneme /X/ are the two left phonemes, /L1/ and /L2/,
and the two right phonemes, /R1/ and /R2/. In addition,
the output class is the phoneme /Y/ mapped from the tar-
get phoneme /X/. Next, each decision tree is converted into
an equivalent set of pronunciation variant rules using C4.5,
which is represented as

Table 7 Example of a decision tree and the derived pronunciation rule
set for the target phoneme /Z/.

A decision tree for /Z/ Derived pronunciation
variant rule set for /Z/

R1 =@: Z Rule 1:
R1 = AH: Z L1 = IH, R1 = IY
R1 = AY: Z → class S
R1 = EH: Z Rule 2:
R1 = ER: Z R1 =@
R1 = IH: Z → class Z
R1 = OW: Z Rule 3:
R1 = IY: R1 = AH
| L1 =@: S → class Z
| L1 = AH: S
| L1 = AW: S Default class : Z
| L1 = AY: S
| L1 = ER: S
| L1 = EY: S
| L1 = IH: S
| L1 = IY: S
| L1 = OW: S
| L1 = OY: Z
| L1 = R: S
| L1 = UW: S

Fig. 2 Illustration of the simplified decision tree for the target phoneme
/Z/ according to the pronunciation variant rules listed in Table 6.

Rule id :

L2 = p1, L1 = p2,R1 = p3,R2 = p4

→ class phonemevariant

Default class : phonemedefault (2)

where id is the identifier of a pronunciation variant rule, and
‘L2 = p1, L1 = p2,R1 = p3,R2 = p4’ is a context in which
id is applied. In other words, /phonemetarget/ is mapped
into /phonemevariant/ if the context has the form of /p1-p2-
phonemetarget+p3+p4/; otherwise /phonemetarget/ is mapped
into /phonemedefault/.

Table 7 shows an example of a decision tree and the de-
rived pronunication variant rule set for the target phoneme
/Z/, which is obtained from all the utterances in the develop-
ment set. The derived rule set in Table 7 can be depicted as a
simplified decision tree, which is shown in Fig. 2. In Table 7,
‘:’ means a separator of a condition. In addition, ‘x=y’ and
‘z’ that are separated terms by ‘:’ interpret as ‘when x is y’
and ‘a mapped phoneme is z,’ respectively. Moreover, ‘|’ is
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used when more than one conditions are applied.

3.2 Classification of Pronunciation Variant Rules for Non-
native Speech

We classify each pronunciation variant rule into either a pro-
nunciation variant or an acoustic variant based on the as-
sumption that a pronunciation variant occurs due to the coar-
ticulation effect within a specific context, while an acoustic
variant occurs due to the difference in pronunciation spaces
between the mother tongue and target language. For exam-
ple, ‘misstep’ could be uttered by a Korean as /M IH S UW S
T EH P/ instead of /M IH S S T EH P/ since Koreans tend to
pronounce each word clearly by inserting a vowel even if the
/S/ in the sub-word ‘mis’ and the /S/ in the sub-word ‘step’
are adjacent in the context. Thus, the pronunciation variant
rule, /S/→/S UW/, is classified as a pronunciation variant
due to the coarticulation effect. As another example, ‘strike’
could be uttered by a Korean as /S UW T UW R AY K/ in-
stead of /S T R AY K/ due to the different syllable structure
of languages [22]. The situation is caused by the fact that
‘strike’ has a consonant cluster ‘str’ in the word; however,
the syllable structure of Korean allows no more than one
consonant and thus Koreans try to utter the complex con-
sonants /S T R/ as /S UW T UW R/ by inserting a vowel
/UW/ between each two concatenated consonants. There-
fore, a pronunciation variant rule, /S T R/→/S UW T UW
R/, is classified as a pronunciation variant due to a specific
context for non-native speech. On the other hand, Koreans
often utter ‘five’ as /P AY B/ instead of /F AY V/ because
the Korean language does not include the two phonemes
/F/ and /V/. Thus, the pronunciation variant rules, /F/→/P/
and /V/→/B/, are classified as acoustic variants for Korean
speakers. In practice, we classify a pronunciation variant
rule as an acoustic variant if the default class has a different
phoneme as a target phoneme; otherwise, the pronunciation
variant rule is classified as a pronunciation variant.

Table 8 shows an example of the pronunciation vari-
ant rule sets for the target phonemes /Z/ and /TH/, which
are obtained from all the utterances in the development
set. As shown in the table, /Z/ has a same default
class but /TH/ has a different default class. Among
the pronunciation variant rules, the pronunciation variant
/TH/→/DH/ is classified as an acoustic variant and oth-
ers are as pronunciation variants. In other words, we
have 8 different pronunciation variants such as /*-IH-
Z+IY+*/→/S/, /*-*-Z+@+*/→/Z/, /*-*-Z+AH+*/→/Z/,
/*-*-TH+@+*/→/S/, /*-*-TH+AH+*/→/S/, /*-AH-TH+
*+NG/→/IY/, /*-*-TH+AO+*/→/TH/, and /*-*-TH+IH+*/
→/F/, where ‘*’ indicates any phoneme.

After classifying the pronunciation variant rules ob-
tained from all the utterances in the development set into
pronunciation variants or acoustic variants, we finally ob-
tain 473 pronunciation variants and four acoustic variants.
Table 9 classifies the 473 pronunciation variants accord-
ing to the form of pronunciation variant rules and shows
the number of pronunciation variants classified to each

Table 8 Construction of the pronunciation variant rule sets for the target
phonemes /Z/ and /TH/.

Derived pronunciation Derived pronunciation
variant rule set for /Z/ variant rule set for /TH/

Rule 1: Rule 1:
L1 = IH, R1 = IY R1 =@
→ class S → class S

Rule 2: Rule 2:
R1 =@ R1 = AH
→ class Z → class S

Rule 3: Rule 3:
R1 = AH L1 = AH, R2 = NG
→ class Z → class IY

Rule 4:
Default class : Z R1 = AO

→ class TH
Rule 5:

R1 = IH
→ class F

Default class : DH

Table 9 Classification of pronunciation variants according to their
forms, where the number of a form means the number of pronunciation
variants belonging to the form.

Form Number

X+R1 113
X+*+R2 27

L1−X 88
L2−*−X 77

X+R1+R2 23
L1−X+R1 41

L1−X+*+R2 22
L2−L1−X 36

L2−*−X+R1 27
L2−*−X+*+R2 8
L2−L1−X+R1 8
L1−X+R1+R2 1

L2−L1−X+*+R2 1
L2−*−X+R1+R2 1

form. Moreover, the four acoustic variants are /G/→/sil/,
/L/→/R/, /TH/→/DH/, and /ZH/→/Z/. Note here that the
phonemes /R/, /TH/, /DH/, and /ZH/ do not exist in the Ko-
rean phoneme set, thus the pronunciations are likely to be
affected by the speaker’s mother tongue.

4. Hybrid Model Adaptation for Non-native Speech

In this section, we first introduce pronunciation and acoustic
model adaptation methods. Then, we propose two hybrid
pronunciation and acoustic model adaptations such as state-
tying and triphone-modeling level hybrid methods for a non-
native ASR system by incorporating the pronunciation and
acoustic variants derived from the development set of native
speech.

4.1 Pronunciation Model Adaptation

The pronunciation models employed in ASR systems are
commonly generated based on the native pronunciations for
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Fig. 3 Example of building a multiple pronunciation dictionary for
non-native speech by using the rules listed in Table 7.

each word. Therefore, we need to adapt pronunciation mod-
els in order to compensate for variabilities that are originated
from non-native speech. In other words, a pronunciation se-
quence for each word is examined to determine whether or
not it matches the pronunciation rules obtained in Sect. 3.2.
If a matched pronunciation rule is found, a variant pronun-
ciation sequence is generated by using this matched pronun-
ciation rule and is added as an additional pronunciation for
the corresponding word. This pronunciation model adapta-
tion method is used as a first step for the proposed hybrid
model adaptation methods.

Figure 3 shows an example of building a multiple pro-
nunciation dictionary by using the pronunciation rules de-
scribed in Table 8. For example, the pronunciation dictio-
nary in the baseline ASR system has a pronunciation se-
quence of the word ‘busiest’ as /B IH Z IY AH S T/. How-
ever, it is found from the pronunciation variability analy-
sis described in Sect. 3.2 that a pronunciation variant rule
regarding /Z/ (Rule 1 in Table 8) is /*-IH-Z+IY+*/→/S/.
Thus, a variant pronunciation sequence of the word is gen-
erated as /B IH S IY AH S T/ and is included in the pronun-
ciation dictionary for non-native speech.

4.2 Acoustic Model Adaptation

To adapt the acoustic models for non-native speech, differ-
ent procedures are applied to cluster the states of the tri-
phone acoustic models depending on whether or not the cen-
tral phone of a triphone has an acoustic variant [23]. For in-
stance, for a phoneme with no acoustic variant, a decision
tree for /phonemetarget/ is generated by using all the triphone
acoustic models having the form of /*-phonemetarget+*/. On
the other hand, for a phoneme having an acoustic variant
such as /phonemetarget/→/phonemevariant/, a decision tree for
/phonemetarget/ is generated by using the triphone acoustic
models having the form of either /*-phonemetarget+*/ or /*-
phonemevariant+*/. After clustering all acoustic models us-
ing the decision tree, the models in each leaf node of the
decision tree are tied with their representative phonemes.

Figures 4 and 5 illustrate the procedure for generat-

Fig. 4 Example of generating a decision tree for the phoneme /Z/without
any acoustic variant.

Fig. 5 Example of generating a decision tree for the phoneme /TH/
having an acoustic variant of /TH/→/DH/.

ing a decision tree for /Z/ and /TH/, respectively, where /Z/
has no acoustic variants but /TH/ has the acoustic variant
/TH/→/DH/ as described in Table 8.

4.3 Hybrid Model Adaptation

In this subsection, we propose two different hybrid model
adaptation methods performed at the state-tying level or at
the triphone-modeling level of acoustic model adaptation
by using the pronunciation models obtained in Sect. 4.1. In
other words, the state-tying level hybrid method adapts pro-
nunciation models by including the pronunciation variants
of each word in the pronunciation dictionary [12]. In addi-
tion, states of the triphone acoustic models are tied using
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Fig. 6 Main procedure of the proposed state-tying level hybrid model
adaptation for non-native speech.

the acoustic variants [13]. On the other hand, the triphone-
modeling level hybrid method adapts pronunciation mod-
els in the same way as the state-tying level hybrid method,
then re-estimates the triphone acoustic models using the
adapted pronunciation models, and clusters the states of
the re-estimated triphone acoustic models using the acoustic
variants.

4.3.1 State-Tying Level Hybrid Model Adaptation

Figure 6 shows the main procedure of the state-tying level
hybrid model adaptation method. In the figure, pronuncia-
tion and acoustic model adaptations are performed accord-
ing to the classification of pronunciation variant rules. As
described in Sect. 4.1, the pronunciation model adaptation
builds a multiple pronunciation dictionary for non-native
speech using the pronunciation variants. Moreover, the
acoustic model adaptation constructs acoustic models for
non-native speech by re-tying the states of triphone acoustic
models according to acoustic variants using the training set
for native speech as described in Table 1.

4.3.2 Triphone-Modeling Level Hybrid Model Adaptation

Figure 7 illustrates the procedure of the triphone-modeling
level hybrid model adaptation method. As opposed to
the state-tying level hybrid method, the pronunciation and
acoustic model adaptations are combined. First, pronuncia-
tion model adaptation is performed using all the pronuncia-
tion variant rules in the same way as the state-tying level hy-
brid method. Next, acoustic model adaptation is performed
using the pronunciation models for non-native speech and

Fig. 7 Main procedure of the proposed triphone-modeling level hybrid
model adaptation for non-native speech.

the acoustic variants. That is, the reference transcriptions of
the training utterances for acoustic models are newly gen-
erated by forced-alignment using the pronunciation model
adapted from non-native speech. Then, the triphone acous-
tic models of the baseline ASR system are re-estimated us-
ing the newly generated reference transcriptions. Finally,
the states of the re-estimated triphone acoustic models are
re-clustered in the same way as in the state-tying level hy-
brid method.

5. Speech Recognition Experiments

5.1 Acoustic and Pronunciation Model Adaptations

We first performed phoneme recognition using the base-
line ASR system for the development set of non-native
speech, and then obtained the 200-best phoneme sequences
for each utterance. For each phoneme sequence, a DP based
alignment was performed with the corresponding reference
phoneme sequence in order to extract the 20 best-matched
alignment results for each utterance. As previously men-
tioned, the selection of the 20 best-matched sequences out
of the 200-best phoneme sequences was carried out to im-
prove the accuracy in deriving the pronunciation variant
rules. Next, the pronunciation variant rules were derived and
subsequently classified into either pronunciation or acous-
tic variants. As a result, /G/→/sil/, /L/→/R/, /TH/→/DH/,
and /ZH/→/Z/ were classified into acoustic variants and the
others were considered pronunciation variants, as described
in Sect. 3.2. After that, we obtained two sets of pronun-
ciation models 1) using the pronunciation variants alone,
which consisted of 448 pronunciations and was referred to
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Table 10 Comparison of average WERs (%) of the baseline ASR sys-
tem and ASR systems employing acoustic and pronunciation model adap-
tations.

Native Non- Relative WER
ASR systems native Reduction

(for non-native only)

Baseline 0.7 19.9 -
(AM0+PM0)

Pronunciation model 0.7 18.2 8.5
adaptation using

pronunciation variants
(AM0+PM1a)

Pronunciation model 0.7 17.3 13.1
adaptation using both

acoustic and
pronunciation variants

(AM0+PM1b)
Acoustic model 0.9 18.1 9.0

adaptation
(AM1a+PM0)

as PM1a, and 2) using both the pronunciation and acoustic
variants, which consisted of 493 pronunciations and was re-
ferred to as PM1b. Note that AM0 and PM0 were the acous-
tic models and pronunciation models of the baseline ASR
system, as mentioned in Sect. 2.2. Moreover, the acoustic
model adaptation was applied by re-clustering the states of
triphone acoustic models using the acoustic variants in the
same way as in the state-tying level hybrid method; a set of
the adapted acoustic models consisted of 5,361 states and
9,655 triphones and was referred to as AM1a.

Table 10 compares average WERs of the baseline
ASR system and several ASR systems employing the
adapted pronunciation models using the pronunciation vari-
ants (PM1a), the adapted pronunciation models using
both the pronunciation and acoustic variants (PM1b), and
the adapted acoustic models using the acoustic variants
(AM1a). For PM1a and PM1b, we used the acoustic mod-
els of the baseline ASR system (AM0), whereas PM0 was
used to evaluate the performance of AM1a. It was shown
from the table that for non-native speech average WERs of
ASR systems using the adapted pronunciation models were
relatively reduced by 8.5% and 13.1%, respectively, even
though the confusions of PM1a and PM1b are increased,
when compared to the baseline ASR system. In addition,
an ASR system only using the adapted acoustic models also
gave similar WER to an ASR system only using the adapted
pronunciation models, PM1a, but it degraded native ASR
performance a little.

5.2 Performance Comparison of Hybrid Model Adapta-
tion Methods

In this subsection, we compared the ASR performance of
the state-tying and triphone-modeling level hybrid model
adaptation methods. For the state-tying level hybrid method,
acoustic models (AM1a) and pronunciation models (PM1a)
were adapted using the acoustic and pronunciation vari-
ants, respectively, according to the classification of the

Table 11 Comparison of average WERs (%) of the baseline ASR sys-
tem and ASR systems employing state-tying and triphone-modeling level
hybrid model adaptations.

Native Non- Relative WER
ASR systems native Reduction

(for non-native only)

Baseline 0.7 19.9 -
(AM0+PM0)
State-tying 0.8 16.5 17.1
level hybrid

model adaptation
(AM1a+PM1a)

Triphone-modeling 0.9 15.5 22.1
level hybrid

model adaptation
(AM1b+PM1b)

pronunciation variant rules. However, for the triphone-
modeling level hybrid method, pronunciation models were
first adapted using both acoustic and pronunciation variants.
After that, acoustic models were adapted using the adapted
pronunciation models and the states of the triphone acoustic
models were then re-clustered using the acoustic variants. A
set of the acoustic models adapted by the triphone-modeling
level hybrid method consisted of 6,376 states and 14,655 tri-
phones and was referred to as AM1b.

Table 11 compares average non-native WERs of the
baseline ASR system and those of two ASR systems em-
ploying the state-tying and triphone-modeling level hybrid
model adaptation methods, respectively. It was shown from
the table that ASR systems employing the state-tying level
and the triphone-modeling level hybrid methods achieved
average WERs of 16.5% and 15.5% for non-native speech,
respectively, which corresponded to relative WER reduc-
tions of 17.1% and 22.1%, respectively, when compared to
the baseline ASR system.

6. Conclusion

In this paper, we proposed two hybrid model adaptation
methods by combining pronunciation and acoustic model
adaptations in order to incorporate speech variability for
non-native ASR. Specifically, acoustic model adaptation
was applied at different levels of the acoustic modeling pro-
cedure, such as at the state-tying or triphone-modeling level.
Both the state-tying and the triphone-modeling level hy-
brid methods first investigated pronunciation variability of
non-native speech and then classified them as either pro-
nunciation or acoustic variants. After that, the state-tying
level hybrid method adapted the pronunciation and acous-
tic models by including the variant pronunciation sequence
using pronunciation variants and by clustering states of the
triphone acoustic models using the acoustic variants, re-
spectively. On the other hand, the triphone-modeling level
hybrid method first adapted pronunciation models in the
same way as the state-tying level hybrid method; however,
the method then re-estimated the triphone acoustic mod-
els using the adapted pronunciation models and clustered
states of the re-estimated triphone acoustic models using the
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acoustic variants. From the Korean-spoken English speech-
recognition experiments, it was shown that the triphone-
modeling level hybrid adaptation method was better than the
state-tying level hybrid adaptation method, whereas the for-
mer incurred additional complexity in training. In addition,
it was found that ASR systems employing the state-tying
and the triphone-modeling level hybrid adaptation methods
could relatively reduce average WERs for non-native speech
by 17.1% and 22.1%, respectively, when compared to the
baseline ASR system.
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