
24
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

PAPER Special Section on Test, Diagnosis and Verification of SOCs

A Fault Dependent Test Generation Method for State-Observable
FSMs to Increase Defect Coverage under the Test Length
Constraint∗

Ryoichi INOUE†, Nonmember, Toshinori HOSOKAWA††, Member, and Hideo FUJIWARA†††, Fellow

SUMMARY Since scan testing is not based on the function of the cir-
cuit, but rather the structure, it is considered to be both a form of over
testing and under testing. Moreover, it is important to test VLSIs using
the given function. Since the functional specifications are described explic-
itly in the FSMs, high test quality is expected by performing logical fault
testing and timing fault testing. This paper proposes a fault-dependent test
generation method to detect specified fault models completely and to in-
crease defect coverage as much as possible under the test length constraint.
We present experimental results for MCNC’91 benchmark circuits to eval-
uate bridging fault coverage, transition fault coverage, and statistical delay
quality level and to show the effectiveness of the proposed test generation
method compared with a stuck-at fault-dependent test generation method.
key words: state-observable FSMs, logical fault testing, timing fault test-
ing, fault sensitization coverage, n-detection

1. Introduction

In recent years, very large scale integrated circuit (VLSI)
testing has become increasingly important because of the
rapidly increasing number of gates on VLSIs and the grow-
ing complexity of VLSIs due to advances in semiconduc-
tor technology. Currently, scan testing for the stuck-at fault
model [1], [2] is one of the most popular test methods for
VLSIs. However, it has been reported that scan testing for
the stuck-at fault model may not detect defective VLSIs [3],
and that delay testing and at-speed functional testing can ef-
fectively improve test quality [4]. Scan testing is based on
the structure of the circuit rather than its function and the test
pattern can be generated with this method. During scan test-
ing, the states of the circuits are turned into invalid states [5]
by the shift operation during the testing in order to detect
faults. Invalid states occur when test patterns contain values
for the state register that cannot be stored as state transitions
after the reset state. Due to this, scan testing is considered
as form of over testing, hence, yield loss of VLSIs may oc-
cur. Moreover, this testing method detects faults through

Manuscript received February 6, 2009.
Manuscript revised June 1, 2009.
†The author is with the Graduate School of Industrial Technol-

ogy, Nihon University, Narashino-shi, 275–8575 Japan.
††The author is with the College of Industrial Technology,

Nihon University, Narashino-shi, 275–8575 Japan.
†††The author is with the Graduate School of Information Sci-

ence, Nara Institute of Science and Technology (NAIST), Ikoma-
shi, 630–0192 Japan.

∗A previous version of this paper has been published at Asian
Test Symposium 2008.

DOI: 10.1587/transinf.E93.D.24

the process of shifting-in test vectors, operating on normal
mode for the combinational circuit part, and shifting-out.
Thus, faults are not detected by performing sequential oper-
ations of the circuits. With this, scan testing is also consid-
ered as a form of under testing. Therefore, the test quality
deteriorates and outflow of defective VLSIs into the market
may occur.

VLSI design methodologies using hardware descrip-
tion languages have been adopted to reduce VLSI design
time. VLSIs are designed at the Register Transfer Level
(RTL), and RTL circuits consist of a data path part and
a controller part. The data path contains hardware element
(e.g., registers, multiplexers, and operational modules) and
signal lines. The controller, on the other hand, is represented
by a finite state machine (FSM). The controller and the data
path are interconnected by internal signals: control signals
and status signals. A non-scan-based Design For Testabil-
ity (DFT) method of the data path part is proposed in [6],
whereas a non-scan-based DFT method for the controller
part is proposed in [5]. At-speed testing is possible and test
patterns for a stuck-at fault model are completely generated
using non-scan-based DFT methods. In [5], [6], both control
signals from the controller and status signals from the data
path were assumed to be directly controllable from primary
inputs and observable at primary outputs. As mentioned
above, if at-speed functional testing and/or delay testing are
applied to VLSIs with a non-scan-based DFT, the test qual-
ity can be further improved. As for the FSM, which is the
controller part of an RTL circuit, the circuit specification is
described explicitly. Thus, high test quality is expected by
performing a logical fault testing and a timing fault testing
under the constraints of the circuit specifications.

In consideration of these tests, a fault-independent one-
pattern test generation method and a fault-independent two-
pattern test generation method that enable complete logical
fault testing and timing fault testing have been proposed [7],
[8]. However, when the number of state transitions in-
creases, the test length drastically increases. It is necessary
to detect a specified fault model (e.g. stuck-at fault) com-
pletely and to detect main fault models such as bridging
fault, transition fault, and path delay fault as much as pos-
sible for state-observable FSMs. An n-detection test gen-
eration method (FSOD) used to increase the fault sensiti-
zation coverage [9] comparatively detected many bridging
faults and transition faults.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



INOUE et al.: A FAULT DEPENDENT TEST GENERATION METHOD
25

This paper proposes a fault-dependent test generation
method to detect specified fault models completely and to
increase defect coverage as much as possible under test
length constraint. This paper also proposes weighted state
transition coverage as a measure of test quality.

This paper is organized as follows. In Sect. 2, the defi-
nition of state-observable FSMs is given. In Sect. 3, the de-
tection conditions of main fault models and an n-detection
test generation method to increase defect coverage are de-
scribed. In Sect. 4, a fault-dependent test generation method
for state-observable FSMs is proposed, and experimental re-
sults for MCNC’91 FSM benchmarks [10] with many state
transitions are discussed in Sect. 5. Finally, Sect. 6 con-
cludes the paper and discusses future research possibilities.

2. State-Observable FSMs

Definition 1 (State-observable FSMs):
When an initial state can be identified by observing an
output sequence without being dependent on the input se-
quence, the FSM is said to be state-observable. More
specifically, when an initial state can be identified by ob-
serving an output sequence of length k, the FSM is said to
be k state-observable.

Figure 1 shows an example of an FSM. In this fig-
ure, ST0 through ST5 and T0 through T11 show the states
and the input values, respectively, of the state transitions
(the value of each primary input {0, 1,X}, where X denotes
don’t care). DFT transforms an FSM to a one-state observ-
able FSM by making the outputs of the status registers in
the FSM observable. In this paper, a one-state observable
FSM is hereinafter referred to simply as a state observable
FSM. A synchronous sequential circuit is synthesized from
the FSM by logic synthesis. Figure 2 shows the logic cir-
cuit model that corresponds to the FSM after logic synthesis.
Since the pseudo primary inputs (PPI), which are the outputs
of the status registers, are observable in this figure, the PPIs
connect with the primary output. Thus, multiplexers are
added on the PPI and are connected to the primary outputs
of the data path in order to reduce the overhead of primary
output pins [11]. Here, PI, PO, SR, PPI, PPO, and R denote
the primary inputs, primary outputs, status registers, pseudo
primary inputs (outputs of the status registers), pseudo pri-
mary outputs (inputs of the status registers), and a reset in-
put, respectively.

In testing state-observable FSMs, the PI value is ap-
plied to a state-observable FSM, the resulting PO values are
observed, the state is then transferred from the current state
to the next state, and the resulting PPI values are observed.
A series of these procedures is referred to as a test for state-
observable FSMs.
Example 1: In Fig. 1, T0 is applied to state ST0 on the state-
observable FSM and the state is transferred from ST0 to
ST1. T1 is then applied, and the state is transferred from
ST1 to ST2. Next, the test for the state-observable FSM
is explained in detail. R is activated and the values of the
status registers are initialized to ST0 in the first cycle. In

Fig. 1 Example of an FSM. (six states)

Fig. 2 Logic model for a state-observable FSM.

the second cycle, T0 is applied and the values of the POs
for (PI,PPI) = (T0,ST0) are observed just before the rising
edge of the clock. Here, (PI,PPI) indicates that the value of
PI is applied to the PPI value (state) for the state-observable
FSM. Moreover, the PPI value is observed after the rising
edge of the clock. Thus, it is verified that the state is suc-
cessfully transferred from ST0 to ST1. In the third cycle,
T1 is applied and the PO values for (PI,PPI) = (T1,ST1),
which are observed just before the rising edge of the clock.
The resulting PPI value is observed after the rising edge of
the clock. Thus, it is verified that the state is successfully
transferred from ST1 to ST2.

The FSM has both a completely specified FSM [14],
in which the next state and the output are specified for all
of the inputs of each state, and an incompletely specified
FSM [11], in which the next state and the output are not
specified for all of the inputs of each state. In this paper,
state transitions in the incompletely specified FSMs that are
not specified are assumed to be the same as either of the
state transitions that are specified.

3. Detection Conditions for Each Fault Model

First, an n-detection test generation method to increase fault
sensitization coverage [9] is explained. Next, detection con-
ditions for the main fault models such as bridging faults [2],
and transition faults [4] are described.



26
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

3.1 An n-Detection Test Generation Method to Increase
Fault Sensitization Coverage

Definition 2 (Fault Sensitization Coverage):
Fault sensitization coverage for fault f is defined as the ratio
of the number of signal lines sensitized by test set T to the
number of all signal lines that are reachable from f . Here,
sensitized signal lines for f are lines on the fault propagation
path at the time that f is detected. Fault sensitization cover-
age for the whole circuit is expressed by the average value of
fault sensitization coverage for all faults. The equations to
solve fault sensitization coverage for f and the whole circuit
are expressed as follows.

• senf : Fault sensitization coverage for fault f

senf =
Number of sensitized signal lines{

Number of the signal lines
which are reachable from f

} × 100 (1)

• SEN: Fault sensitization coverage for the whole circuit

SEN =

∑
senf

Number of faults
(2)

An n-detection test generation method to increase fault
sensitization coverage, FSOD, can be used for stuck-at
faults to increase fault sensitization coverage based on the
following strategies.

(1) For each fault, FSOD generates n test patterns that sen-
sitize different fault propagation paths and detect faults.

(2) FSOD selects a D-frontier [1], [2] to sensitize long fault
propagation path segments.

3.2 Detection of Bridging Faults

A bridging fault is a fault model that expresses a short be-
tween signal lines. Bridging faults are classified into AND
type and OR type based on failure behavior. It is necessary
to generate a test pattern that detects a stuck-at 0 (1) fault for
one signal line and sets 0 (1) to the other signal line in order
to detect an AND (OR) type bridging fault. In this paper,
U model [12] is used. Both an AND type and an OR type
must be detected for the detection of a U model of the bridg-
ing fault. A bridging fault may be detectable only when it
sensitizes a specific path. Therefore, if test patterns are gen-
erated so that many paths are sensitized as much as possible,
bridging fault coverage is increased. Since FSOD sensitizes
many fault propagation paths by increasing fault sensitiza-
tion coverage, it is considered that the generated test patterns
achieve high bridging fault coverage.

3.3 Detection of Transition Faults

A transition fault model assumes that a delay fault affects
only one signal line in the circuit. There are two transi-
tion faults associated with each signal line: a slow-to-rise

fault and a slow-to-fall fault. It is assumed that in the fault-
free circuit each signal line has some nominal delay. Delay
faults result in an increase of this delay. Under the transi-
tion fault model, the extra delay caused by the delay fault
is assumed to be large enough to prevent the transition from
reaching any primary output at the time of observation. In
other words, the transition fault can be observed indepen-
dent of whether the transition propagates through a long or
short path to any primary output. To detect a transition fault,
it is necessary to apply a test pattern pair, V = (v1, v2). For
testing a slow-to-rise fault (a slow-to-fall fault), the first pat-
tern, v1, initializes the fault site to 0 (1), and the second pat-
tern, v2, is a test pattern for stuck-at-0 (1) fault at the fault
site. It is considered that FSOD can detect a small size of
delay fault because it sensitizes a long fault propagation path
to increase fault sensitization coverage. Because FSOD also
generates n-detection test patterns, transition probability of
fault sites between the first pattern and the second pattern
is high. Then, the probability of transition fault detection is
considered to increase.

4. Fault Dependent Test Generation Method for State-
Observable FSMs

This method generates a test sequence by generating an
FSM test generation graph from state-observable FSMs and
searching for a path. We propose weighted one-state transi-
tion coverage and weighted two-state transition coverage as
measures of test quality for logical fault testing and timing
fault testing, respectively, for the generated test sequence.

4.1 FSM Test Generation Graph

Definition 3 (FSM test generation graph):
Given an FSM M and a set T of test patterns generated by
FSOD, an FSM test generation graph is defined as a di-
rected graph G = (V, E, s, d, t,wtv,wte) that has the follow-
ing properties.

1. Each vertex v in V corresponds to a state transition
of M.

2. s: V → A defines a source state of each state transition
for M corresponding to a vertex v, where A denotes
a set of m-bit state assignment code words and m is the
number of state assignment variables or the size of the
state register;

3. d: V → A defines a destination state of each state tran-
sition for M corresponding to a vertex v;

4. t: V → B defines an input value of each state transition
for M corresponding to a vertex v, where B denotes
a set of n-bit primary input vectors and n is the number
of primary inputs;

5. There is an edge (u, v) in E if d(u) = s(v);
6. wtv: V → {0, 1} where wtv(v) = 1 if (s(v), t(v)) is equiv-

alent to a test pattern generated by FSOD and wtv(v) =
0 otherwise;

7. wte: E → Z where Z is the set of all inte-
gers, wte((v1, v2)) is the Hamming distance between



INOUE et al.: A FAULT DEPENDENT TEST GENERATION METHOD
27

(s(v1), t(v1)) and (s(v2), t(v2)) if wtv(v2) is 1, and
wte((v1, v2)) is 0 if wtv(v2) is 0.

The quality of logical fault testing is considered to
increase by executing test patterns generated by FSOD.
Therefore, the weight wtv is assigned to the vertex. The
transition between the first pattern and the second pattern
must occur at a fault site in order to increase the quality of
transition fault testing. It has been reported that when the
number of transitions at primary inputs is large, the num-
ber of transition at the internal signal lines is also large [13].
Thus, when the Hamming distance between the first pattern
and the second pattern is large, the probability that the tran-
sition will occur is high. Therefore, the probability for the
detection of transition faults becomes high.
Example 2: Figure 3 shows the state-observable FSM.
Figure 4 shows the FSM test generation graph of
Fig. 3. The two test patterns, (PPI1,PPI2,PI) = (1, 0, 0) and
(PPI1,PPI2,PI) = (1, 0, 1), are generated for the combina-
tional circuit after logic synthesis using the FSOD. In Fig. 4,
a state assignment code of the source state (label s), a state
assignment code of the destination state (label d), and the
input value in each vertex corresponding to a state transition
are assigned. Moreover, the weight wtv is assigned to each
vertex and the weight wte is assigned to each edge. In Fig. 4,
triangles indicate the values of wtv and the squares indicate
the values of wte. Each vertex is expressed as (s, d, t). The
edge ((00, 01, 0), (01, 10, 1)) means that the state 00 trans-
fers to the state 01 with input 0 and the state 01 transfers to
the state 10 with input 1. Since the test pattern generated by
FSOD, (PPI1,PPI2,PI) = (1, 0, 0), corresponds to the vertex
(10, 10, 0), the wtv is 1. Similarly, since the test pattern gen-
erated by FSOD, (PPI1,PPI2,PI) = (1, 0, 1), corresponds to
the vertex (10, 00, 1), the wtv is 1. In other vertices, wtvs
are 0. The weight of the edge, wte((01, 10, 1), (10, 10, 0))

Fig. 3 Example of an FSM. (Three States)

Fig. 4 FSM test generation graph.

is assigned 3 which is the Hamming distance between
{s, t} = {10, 0} of (10, 10, 0) and {s, t} = {01, 1} of (01, 10, 1).
The weight of the edge, wte((00, 10, 1), (10, 10, 0)) is as-
signed 2 which is the Hamming distance between {s, t} =
{10, 0} of (10, 10, 0) and {s, t} = {00, 1} of (00, 10, 1). The
weight of the edge, wte((10, 10, 0), (10, 10, 0)) is assigned 0
which is the Hamming distance between {s, t} = {10, 0}
of (10, 10, 0) and {s, t} = {10, 0} of (10, 10, 0). Likewise,
The weight of the edge, wte((00, 10, 1), (10, 00, 1)) is as-
signed 1 which is the Hamming distance between {s, t} =
{10, 1} of (10, 00, 1) and {s, t} = {00, 1} of (00, 10, 1). The
weight of the edge, wte((01, 10, 1), (10, 00, 1)) is assigned 2
which is the Hamming distance between {s, t} = {10, 1} of
(10, 00, 1) and {s, t} = {01, 1} of (01, 10, 1). The weight of
the edge, wte((10, 10, 0), (10, 00, 1)) is assigned 1 which is
the Hamming distance between {s, t} = {10, 1} of (10, 00, 1)
and {s, t} = {10, 0} of (10, 10, 0). In the other edges, wtes
are 0.

4.2 Weighted State Transition Coverage

The two types of weighted state transition coverage are de-
fined as follows.
Definition 4 (Weighted one-state transition coverage):
The Weighted one-state transition coverage is expressed in
Eq. (3) and is used as the measure of the test quality for log-
ical fault testing.

Weighted one-state transition coverage

=
Sum of weights of vertices covered by test sequence

Sum of weights for all vertices
× 100(%) (3)

Definition 5 (Weighted two-state transition coverage):
The Weighted two-state transition coverage is expressed in
Eq. (4) and is used as the measure of the test quality for tim-
ing fault testing.

Weighted two-state transition coverage =∑
v

max
{
The weight of input edges for each vertex v
which covered by test sequence

}

∑
v

max
{
The weights of input edges for each vertex v

}

× 100(%) (4)

Weighted one-state transition coverage is calculated us-
ing the weights assigned to vertices while weighted two-
state transition coverage is obtained using the weights as-
signed to edges in an FSM test generation graph. Since
an n-detection test generation method (FSOD) has been
reported to detect many bridging faults and transition
faults [9], it can be said that the two types of weighted state
transition coverage increase as the ratio of test patterns of
FSOD covered by the test sequence generated for FSMs
increases.

The following problem is formulated for the test gener-
ation for state-observable FSMs under test length constraint.



28
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Problem Formulation:
Input:

– a state-observable FSM.
– a test set that can detect all detectable stuck-at faults on

valid states.
– a test set generated by the FSOD.

Constraint: test length
Output: a test sequence for the state-observable FSM such
that all detectable stuck-at faults on valid states are detected.
Optimization:

(1) maximization of weighted one-state transition cover-
age

(2) maximization of weighted two-state transition cover-
age

The valid states are assigned to PPI values as con-
strains. FSOD is performed for the combinational circuit
part to generate the test patterns. Then, an FSM test gen-
eration graph is generated, and the given stuck-at fault test
pattern set are assigned to the corresponding vertices on the
FSM test generation graph. Next, the test patterns gener-
ated by the FSOD are assigned to the corresponding ver-
tices on the FSM test generation graph. Finally, paths are
searched from the FSM test generation graph such that all
of the edges on which stuck-at fault tests are assigned are
traversed at least once. The traversal passes along vertices
such that as many test patterns generated by the FSOD are
assigned as possible, so as to increase the weighted one-
state transition coverage. The traversal also passes along the
edges with the largest possible weight, in order to increase
the weighted two-state transition coverage. If all stuck-at
fault test patterns do not cover vertices under test constraint,
the problem is not given any solution since it is not the focus
of this work.

4.3 Strategy of Test Generation

The procedure of test generation is as follows. Reset states
are first set to current states.
STEP1
From the current state of an FSM test generation graph,
a k-state transition search is done and all of the paths are
extracted. k is a parameter with a positive integer value.
STEP2
One path is selected by using the heuristic algorithm applied
to all of the paths, and it is added to the test sequence.
STEP3
To reduce test length, a transition to selected path is limited
as it is not needed.
STEP4
If the test sequence does not abide with the given test length
constraint, start again from STEP1. The final state of the
selected path is set to its current state.

The heuristic algorithm is explained as follows. In the
early stage of test generation, the probability of having un-
covered vertices at which stuck-at test patterns are assigned

is high in k state transition paths because the number of un-
covered vertices is large. In this case, the state transition
path is selected by the following priority of heuristics: 3,
4, 5, 1, and 2. If multiple paths are selected by the high-
est priority heuristic, the next priority heuristic is applied to
these selected paths. The same process continues until only
one path is selected. If there are multiple paths that satisfy
the last order heuristic, a path is arbitrary selected from the
multiple paths. When the number of uncovered vertices, at
which stuck-at test patterns are assigned, is small, the prob-
ability that the patterns appear in the k state transition path is
low. If the number of uncovered vertices, at which stuck-at
test patterns are assigned, is 0 repeatedly m times, the state
transitions path is selected by the priority of heuristics: 1, 2,
3, 4, and 5. The same process described above is done until
only one path is selected. Here, k and m are parameters with
positive integer values.
Heuristic 1
For complete stuck-at fault detection, the algorithm prefer-
entially selects a path that includes many uncovered vertices
where stuck-at fault test patterns are assigned.
Heuristic 2
To reduce test length, the algorithm preferentially selects
a path such that the distance from the current state to un-
covered vertices, where stuck-at test patterns are assigned,
is short. The algorithm can transfer at next k-state transition
search efficiently to uncovered vertices where stuck-at fault
test patterns are assigned.
Heuristic 3
To increase the quality of logical fault testing, the algorithm
preferentially selects a path such that the total sum of wtv is
large. As a result, the weighted one-state transition coverage
becomes high.
Heuristic 4
To reduce test length, the algorithm preferentially selects
a path such that the distance from the current state to un-
covered vertices, where test patterns generated by FSOD are
assigned, is short. The algorithm can transfer at next k-state
transition search efficiently to uncovered vertices where test
patterns generated by FSOD are assigned.
Heuristic 5
In order to increase the quality of timing fault testing, the

Fig. 5 Example of test sequence.



INOUE et al.: A FAULT DEPENDENT TEST GENERATION METHOD
29

algorithm preferentially selects a path such that the total sum
of wte is large. As a result, the weighted two-state transition
coverage becomes high.
Example 3: Given the stuck-at test patterns, (PPI1,PPI2,PI)
= (0, 0, 1), and (PPI1,PPI2,PI) = (0, 1, 1), Fig. 5 shows
the FSM test generation graph of Fig. 3. FSOD gen-
erates the test patterns, (PPI1,PPI2,PI) = (1, 0, 0), and
(PPI1,PPI2,PI) = (1, 0, 1). In Fig. 5, the vertices indicated
by dashed lines are vertices where stuck-at test patterns are
assigned. When the test sequence (0, 1, 0, 1) is generated
from the reset state, the weighted one-state transition cover-
age is 100% (2/2) whereas the weighted two-state transition
coverage is 80% ((3 + 1)/(3 + 2) = 4/5).

5. Experimental Results

The test generation method was implemented and applied
to MCNC’91 benchmark circuits [10]. The characteristics
of MCNC’91 benchmark circuits are shown in Table 1. In
this table, Circuit, #Node, #PI, #PO, #Reg, and #Edge de-
note the circuit name of the FSM, the number of states, the
number of primary inputs, the number of primary outputs,
the number of status registers and the number of state tran-
sitions, respectively. In these experiments, the FSMs were
made state observable through DFT, and three test genera-
tions were performed for state-observable FSMs.

Table 1 FSM benchmark characteristics.

Table 2 Experimental results for logical fault testing.

Table 2 shows the experimental results of fault-
independent one-pattern test generation method (1a) [7], [8]
and the fault-dependent one-pattern test generation method
(1b) [7], [8].

Table 3 presents the experimental results of the pro-
posed method when the value of m was set to three, and
the test length constraint was set to the same test length
as 1b. This algorithm detects stuck-at faults completely. The
value m is a parameter for switching timing in the algorithm
shown in the heuristic priority rules.

Table 4 shows the experimental results of the proposed
method when test length constraint was set to 300, 500, 800,
and 1300. The circuits indicated by the “*” symbol in the
table are the ones in which stuck-at fault could not be de-
tected completely by the test lengths of 300, 500, 800 and
1300. The value k was set to 3 in all experiments. Moreover,
the value n of n-detection for FSOD was set to 5. We also
changed the value of n to see the effect and the trend was the
same as the case of n = 5 in the experiments.

Table 5 shows the experimental results of the proposed
method when specified fault models are set to stuck-at fault
and transition fault, and test length constraint was set to
3000. The circuits indicated by the “*” symbol in the table
are ones for which stuck-at fault and transition fault could

Table 3 Experimental results. (With 1b test length constraint)



30
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Table 4 Experimental results. (Test length constraint)

Table 5 Experimental results. (Two specified fault model)

not be detected completely by the test lengths of 3000.
In Tables 2, 3, 4, and 5, Circuit, TL, and CPU time

denote the circuit name of the FSM, the test length, and
the time for the test generation, respectively. SFC, BFC,
TFC, W1STC, W2STC, and SDQL denote the stuck-at fault
coverage, the bridging fault coverage, the transition fault
coverage, the weighted one-state transition coverage, the
weighted two-state transition coverage, and the statistical
delay quality level [14] that evaluated with statistical delay
quality model, respectively. Each logical fault testing tar-

gets only faults that can be detected on valid states [7]. Each
timing fault testing targets only faults that can be detected on
the transition between valid states [7], [8]. We assumed that
in non-feedback bridging faults between two signal lines in
circuit, U model [12] is used as the condition for detection.
Using this, the bridging fault is recognized only when both
the AND-type bridging fault and the OR-type bridging fault
between two signal lines are detected.

First, the experimental results of the proposed method
are considered when the test length constraint was set to
same test length as 1b. Stuck-at faults can be completely
tested. The weighted one-state transition coverage increased
by an average of 16.69%, and the weighted two-state tran-
sition coverage increased by an average of 19.89% with
the same test length compared to the fault-dependent one-
pattern test generation method for the stuck-at fault model.
Bridging fault coverage increased by an average of 0.12%,
transition fault coverage increased by an average of 10.30%,
and SDQL decreased by an average of 329 ppm. In partic-
ular, for kirkman, the weighted one-state transition cover-
age increased by 30.04%, bridging fault coverage increased
by 0.56%. For styr, the weighted two-state transition cov-
erage increased by 16.76%, transition fault coverage in-
creased by 31.90%, SDQL decreased by 1100 ppm, and
the quality of the timing fault testing was improved. As
observed, the proposed test generation method resulted to



INOUE et al.: A FAULT DEPENDENT TEST GENERATION METHOD
31

an increase in the weighted state transition coverage and
fault coverage for each fault models as compared with the
fault-dependent one-pattern test generation method, using
the same test length. The proposed method is also effective
in detecting delay faults of small size because the values of
SDQL are smaller compared to those of the fault-dependent
one-pattern test generation method. Therefore, we conclude
that the proposed method is better than the fault-dependent
one-pattern test generation method.

Next, the experimental results are considered for the
proposed test generation with test length constraints. Stuck-
at fault can be completely tested and the test length is greatly
reduced compared with the fault-independent one-pattern
test generation method. Moreover, high fault coverage for
bridging fault and transition fault can be obtained. In par-
ticular, for s386, when test length constraint was set to
500, the weighted two-state transition coverage increased by
10.99%, the transition coverage increased by 5.17%, SDQL
decreased by 85 ppm, and the quality of the timing fault
testing was improved. With these, we can see the compar-
ison between the proposed test generation method and the
fault-independent one-pattern test generation. The proposed
method drastically reduced the test length and it is effective
in detecting delay faults of small sizes because the values of
SDQL are smaller than those of the fault-independent one-
pattern test generation method. As for a transition fault, the
proposed method increased fault coverage using a realistic
test length.

Next, the experimental results are considered for the
proposed method when specified fault models are set to
stuck-at-fault and transition fault. Stuck-at fault and tran-
sition fault can be completely tested and the test length
was greatly reduced as compared with the fault-independent
one-pattern test generation method. Moreover, high fault
coverage for a bridging fault can be obtained. In particular,
for pma, when test length constraint was set to 3000, the
weighted two-state transition coverage increased by 1.88%,
the transition coverage increased by 11.53%, SDQL de-
creased by 339 ppm, and the quality of the timing fault test-
ing improved.

6. Conclusion

This paper proposed a test generation method to detect spec-
ified fault models completely and to increase defect cov-
erage as much as possible under the test length constraint.
Weighted state transition coverage as a measure of test qual-
ity is also presented. The proposed test generation method
was evaluated for MCNC ’91 benchmark circuit and the fol-
lowing conclusions were obtained.

(1) The proposed test generation method increased the test
quality of logical fault testing and the timing fault test-
ing compared with the fault-dependent one-pattern test
generation method.

(2) The proposed test generation method greatly reduced
the test length compared with the fault-independent

one-pattern test generation method and the quality of
both the logical fault testing and the timing fault test-
ing were comparatively high.

Acknowledgment

This work was supported in part by the scholarship of
Futaba Electronics Memorial Foundations in 2008 and
in part by Japan Society for the Promotion of Science
(JSPS) under Grants-in-Aid for Scientific Research B
(No. 20300018).

References

[1] H. Fujiwara, Logic Testing and Design for Testability, MIT Press,
1985.

[2] M. Abramovici, M.A. Breuer, and A.D. Friedman, Digital Systems
Testing and Testable Design, IEEE Press, 1995.

[3] P.C. Maxwell, R.C. Aitken, R. Kollitz, and A.C. Brown, “IDDQ and
AC scan: The war against unmodelled defects,” Proc. IEEE Int. Test
Conf., pp.250–258, Oct. 1996.

[4] A. Krstic and K.-T. Cheng, Delay Fault Testing for VLSI Circuits,
Kluwer Academic Publishers, 1998.

[5] S. Ohtake, T. Masuzawa, and H. Fujiwara, “A non-scan approach
to DFT for controllers achieving 100% fault efficiency,” J. Elec-
tronic Testing: Theory and Applications (JETTA), vol.16, no.5,
pp.553–566, Oct. 2000.

[6] H. Wada, T. Masuzawa, K.K. Saluja, and H. Fujiwara, “Design for
strong testability of RTL data paths to provide complete fault effi-
ciency,” Proc. 13th Int. Conf. on VLSI Design, pp.300–305, 2000.

[7] T. Hosokawa and H. Fujiwara, “A functional test method for state
observable FSMs,” IEEE 6th Workshop on RTL and High Level
Testing (WRTLT’05), pp.123–130, July 2005.

[8] T. Hosokawa, R. Inoue, and H. Fujiwara, “Fault-dependent/indepen-
dent test generation methods for state observable FSMs,” IEEE 16th
Asian Test Symposium (ATS’07), pp.275–278, Oct. 2007.

[9] T. Hosokawa and K. Yamazaki, “An n-detection test generation
method to increase fault sensitization coverage,” IEICE Trans. Inf. &
Syst. (Japanese Edition), vol.J90-D, no.6, pp.1474–1482, June 2007.

[10] S. Yang, “Logic synthesis and optimization benchmarks user guide,”
Technical Report 1991-IWLS-UG-Saeyang, Microelectronics Cen-
ter of North Carolina, 1999.

[11] S. Ohtake, H. Wada, T. Masuzawa, and H. Fujiwara, “A non-scan
DFT method at register-transfer level to achieve complete fault ef-
ficiency,” IEEE Proc. Asian South Pacific Design Automation Con-
ference, pp.599–604, 2000.

[12] Y. Takamatsu, T. Shiosaka, T. Yamada, and K. Yamazaki, “A fault
model and test generation for bridging faults in CMOS circuit,”
IEICE Trans. Inf. & Syst. (Japanese Edition), vol.J81-D, no.6,
pp.872–879, June 1998.

[13] S. Kajihara, K. Ishida, and K. Miyase, “Average power reduction in
scan testing by test vector modification,” IEICE Trans. Inf. & Syst.,
vol.E85-D, no.10, pp.1483–1489, Oct. 2002.

[14] T. Sasao, Switching Theory for Logic Synthesis, Kluwer Academic
Publishers, 1999.

[15] Y. Sato, S. Hamada, T. Maeda, A. Takatori, Y. Nozuyama, and
S. Kajihara, “Feasibility evaluation of the statistical delay qual-
ity model (SDQM),” IEICE Trans. Inf. & Syst. (Japanese Edition),
vol.J89-D, no.8, pp.1717–1728, Aug. 2006.



32
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.1 JANUARY 2010

Ryoichi Inoue received the M.E. degree
in Mathematical information engineering, Col-
lege of industrial technology, Nihon University,
in 2008. He is graduate student of D.E. in Nihon
University. His research interest includes design
for testability and high level testing.

Toshinori Hosokawa received the B.E. de-
gree in Electronics and Communication Engi-
neering from Meiji University, Kawasaki, Japan,
in 1987. He also received the Ph.D. degree
from Meiji University in 2001. He was with
Matsushita Electric Industrial Co., Ltd from
1987 to 2003. He was temporarily with Semi-
conductor Technology Academic Research Cen-
ter (STARC) from 2000 to 2003. He was also
a lecturer at Meiji University in 2001 and 2002.
Presently he is a Professor at Department of

Mathematical Information Engineering, College of Industrial Technology,
Nihon University, Chiba, Japan. His research interests are automatic
test pattern generation, fault simulation, design for testability, Synthe-
sis for Testability, high level testing, logic simulation engine, and hard-
ware/software co-verification. He is a member of IEEE (Institute of Elec-
trical & Electronics Engineers) and IPSJ (Information Processing Society
of Japan).

Hideo Fujiwara received the B.E., M.E.,
and Ph.D. degrees in electronic engineering
from Osaka University, Osaka, Japan, in 1969,
1971, and 1974, respectively. He was with
Osaka University from 1974 to 1985 and Meiji
University from 1985 to 1993, and joined Nara
Institute of Science and Technology in 1993.
Presently he is a Professor at the Graduate
School of Information Science, Nara Institute
of Science and Technology, Nara, Japan. His
research interests are logic design, digital sys-

tems design and test, VLSI CAD and fault tolerant computing, including
high-level/logic synthesis for testability, test synthesis, design for testabil-
ity, built-in self-test, test pattern generation, parallel processing, and com-
putational complexity. He is the author of Logic Testing and Design for
Testability (MIT Press, 1985). He received many awards including Okawa
Prize for Publication, IEEE CS (Computer Society) Meritorious Service
Awards, IEEE CS Continuing Service Award, and IEEE CS Outstanding
Contribution Awards. He served as an Editor and Associate Editors of sev-
eral journals, including the IEEE Trans. on Computers, and Journal of Elec-
tronic Testing: Theory and Application, and several guest editors of special
issues of IEICE Transactions of Information and Systems. Dr. Fujiwara
is a fellow of the IEEE, a Golden Core member of the IEEE Computer
Society, and a fellow of the IPSJ.


