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Speech Recognition under Multiple Noise Environment Based on
Multi-Mixture HMM and Weight Optimization by the Aspect
Model
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SUMMARY In this paper, we propose an acoustic model that is robust
to multiple noise environments, as well as a method for adapting the acous-
tic model to an environment to improve the model. The model is called “the
multi-mixture model,” which is based on a mixture of different HMMs each
of which is trained using speech under different noise conditions. Speech
recognition experiments showed that the proposed model performs better
than the conventional multi-condition model. The method for adaptation
is based on the aspect model, which is a “mixture-of-mixture” model. To
realize adaptation using extremely small amount of adaptation data (i.e., a
few seconds), we train a small number of mixture models, which can be in-
terpreted as models for “clusters” of noise environments. Then, the models
are mixed using weights, which are determined according to the adaptation
data. The experimental results showed that the adaptation based on the as-
pect model improved the word accuracy in a heavy noise environment and
showed no performance deterioration for all noise conditions, while the
conventional methods either did not improve the performance or showed
both improvement and degradation of recognition performance according
to noise conditions.
key words: multi-mixture HMM, noise-independent acoustic model, aspect
model, speech recognition in noisy environment

1. Introduction

Background noise has always posed a serious prob-
lem in speech recognition systems. Many methods
have been proposed for solving background noise prob-
lems [1]; these methods can be classified into three types:
recording-based [2]–[4], analysis-based [5]–[8], and model-
based methods [9]–[11]. The recording-based method uti-
lizes multiple input signals, such as signals from a micro-
phone array, to emphasize speech signals. These empha-
sized signals are used as the input for the hidden Markov
model (HMM). The analysis-based method utilizes a spe-
cial representation of speech signals that is robust against
additive noises. The spectral subtraction method [5] and the
perceptual linear predictive analysis [6] are the widely used
algorithms belonging to this category. The model-based
method utilizes the HMM that is not trained with clean
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speech, but is directly trained with a mixture of speech and
environmental noise signals. The recording-, analysis-, and
model-based methods for noise-robust speech recognition
are complementary; these three methods can be combined
together for improving the robustness in a noisy environ-
ment [12]–[14].

In this study, we focus on the model-based method for
noise-robust speech recognition in various noise environ-
ments. A multi-condition HMM (MC-HMM) can be used
in the model-based approach [11]. This method trains an
HMM using training data that contains speech signals cor-
rupted by various environmental noises. The trained HMM
is known to be robust against various types of noises used in
the training [11]. However, the recognition accuracy of the
MC-HMM is not as high as that of an HMM trained using
speech signals in the matched noise environment.

A noise adaptation technique, which tunes an HMM
to recognize speech in a specific noise environment using
small amount of data obtained in the target environment,
is effective in solving this problem. The maximum like-
lihood linear regression (MLLR) [16], a famous algorithm
used for speaker adaptation, can be easily applied for noise
adaptation. Although a combination of the MC-HMM and
the MLLR is effective for speech recognition in noisy en-
vironments, it requires a large amount of adaptation data
(more than 10 sentences) for achieving sufficient perfor-
mance [18]. Another noise adaptation approach is based on
tree-structured clustering method [21]. In this method, tree-
structured clustering [17] is performed on various noise and
signal-to-noise ratio (SNR) conditions. Then, based on the
ML criterion, the HMM that best matches the input speech
was selected by tracing the tree from top to bottom. Fur-
thermore, MLLR adaptation is performed using the selected
HMM to reduce mismatches with the input speech.

In this paper, we propose a new acoustic model called a
multi-mixture HMM (MM-HMM), and its adaptation tech-
nique, termed as an aspect model, for speech recognition in
noisy environments. These models have high recognition
accuracy even when a very small amount (around 1 s) of ob-
served data are used.

This paper is organized as follows. In Sect. 2, we intro-
duce the MM-HMM, which improves the performance of
MC-HMM. In Sect. 3, we provide an overview of the aspect
model approach and discuss the potential of the technique
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using the aspect model.

2. MM-HMM for Multi-Condition Training

In this section, we propose an MM-HMM, which is an im-
proved version of the MC-HMM. The problem with the
MC-HMM is that it is difficult to train a large number of
parameters for Gaussian mixtures of HMM states using the
EM algorithm. Using the proposed method, we can use a
large number of Gaussian mixture components without suf-
fering from parameter estimation.

2.1 MC-HMM

Lipmann et al. proposed a method for training an HMM that
is robust to various noise environments [11]. In this method,
various types of noises are used for training. First, corrupted
speech data are obtained for each background noise, and
then, all the data are used for training. The resulting model
contains all variations of speakers and environments; there-
fore, it is expected to be robust to variations in both speaker
and environment.

This type of trained HMM is called MC-HMM. While
the MC-HMM is quite simple, it is known to be robust
against various noises. Therefore, this method is regarded
as a “standard” for the noise-robust acoustic model [15].

The disadvantage of the MC-HMM is that it is difficult
to train models with a large number of parameters. Since
the variation in environmental noises is considerably wider
than that in speakers, a model for various speakers and noise
environments should have considerably larger number of pa-
rameters than an HMM in a single environment. However,
it is difficult to train a model with a large number of pa-
rameters because the solution of the EM algorithm tends to
converge a local maximum when the number of parameters
is large.

2.2 Meaning of Gaussian Mixture Distribution

In most of the continuous density HMMs, a Gaussian mix-
ture distribution is employed as a probability density func-
tion of a state. A Gaussian mixture distribution is expressed
as follows:

p(x) =
M∑

k=1

ηkN(x;µk,Σk), (1)

where

M∑
k=1

ηk = 1. (2)

Here, x is a feature vector, M is the number of mixture,
N(x;µ,Σ) is a multivariate Gaussian density function, µk is
a mean vector of the k-th distribution, and Σk is a covariance
matrix of the k-th distribution.

In HMMs used for speech recognition in a certain

noise environment (including the case of “clean” environ-
ment), using Gaussian mixture distributions is regarded as
a method of approximating the distributions of feature vec-
tors. Since the shape of the true distribution of feature vec-
tors is unknown, we employ a Gaussian mixture distribution
that can express various types of distributions and adjust the
parameters of the distribution using the EM algorithm so
that the mixture distribution approximates the true distribu-
tion of the feature vectors. We call this type of Gaussian
mixture distribution as the “mixture for approximation.”

The other interpretation of a mixture distribution is that
a feature vector is generated from a different information
source. Suppose a feature vector belongs to a distinct noise
environment, while we do not know which environment the
vector belongs to. If a distribution of vectors in a certain
environment is approximated by a Gaussian distribution, the
distribution of the observed vectors can be expressed as a
mixture of distributions of all environments.

p(x) =
N∑

j=1

γ jN(x;µ j,Σ j). (3)

In this case, N is the number of environments, N(x;µ j,Σ j) is
a distribution of the j-th environment, and γ j is a prior prob-
ability of the j-th environment. We call this type of mixture
distribution as the “mixture for alternatives.” The difference
between the “mixture for alternatives” and the “mixture for
approximation” is that each component of the mixture dis-
tribution for alternatives has a different meaning (i.e., a spe-
cific environment). In a mixture distribution for alternatives,
if we know the environment j0 to which the vectors belong,
we can adjust γ j as

γ j =

{
1 if j = j0
0 otherwise

(4)

for maximizing expectations of the probability p(x), but this
kind of adjustment does not make sense for a mixture for ap-
proximation because a Gaussian component of the mixture
distribution does not have any specific meaning.

2.3 MM-HMM

In an MC-HMM, all variations in feature vectors attributed
to phoneme environments, speaker variations and noise en-
vironments are jointly expressed as a Gaussian mixture dis-
tribution. Here, we assume that different noise environments
are “alternatives” explained above. Then, we can decom-
pose a Gaussian mixture distribution into “mixture for alter-
natives” and “mixture for approximation,” as follows:

p(x) =
N∑

j=1

γ jψ j(x) (5)

=

N∑
j=1

γ j

M∑
k=1

η j,kN(x;µ j,k,Σ j,k), (6)

where γ j is a prior probability of the j-th environment and
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ψ j(x) is a probability density of feature vectors in the j-th
environment, which is expressed as a mixture of M Gaussian
components.

If we have no prior knowledge of the noise environ-
ment, the distribution of γ j is assumed to be uniform. Thus,
the distribution becomes

p(x) =
N∑

j=1

1
N
ψ j(x) (7)

=

N∑
j=1

1
N

M∑
k=1

η j,kN(x;µ j,k,Σ j,k). (8)

The MM-HMM employs the above-mentioned mixture
distribution as probability density functions of all states.
The resulting model is quite simple: just train HMMs for
all noise environments individually, and then, combine all
HMMs by mixing all distribution functions state by state.

The construction procedure of the MM-HMM is as fol-
lows:

1. Training of each single-noise HMM for each noise:
For each noise used for training (ϕ1, ϕ2, · · ·ϕN), a
single-noise HMM M(ϕ j) is trained using the speech
data corrupted by the noise ϕ j. All single-noise HMMs
have the same topology (left-to-right HMM) with the
same number of states. Each state has a mixture Gaus-
sian distribution with the same number of Gaussian
components.

2. Combining all Gaussian components of every single-
noise HMM into unified HMM:
The HMMM(Φ) is constructed by combining all Gaus-
sian components of single-noise HMMs M(ϕ j), where
Φ denotes a set of noises (Φ = {ϕ1, ϕ2, · · · , ϕN}).
The output probability density distribution ps(x) at the
s-th state inM(Φ) is given by Eq. (9).

ps(x) =
1
N

N∑
j=1

ψ j,s(x), (9)

where ψ j,s(x) denotes an output probability density dis-
tribution at the s-th state inM(ϕ j).

The MM-HMM is expected to be robust to noise envi-
ronments included in the training data. Moreover, it is also
expected to be robust to an “unknown” environment that is
not included in the training data, as long as the distribution
of feature vectors in the unknown environment is approxi-
mated by a linear combination of distributions of the envi-
ronments used for training. Of course, it is not always true,
but we can expect this assumption to hold when many noisy
environments are used for the training.

2.4 Experiments

In order to confirm the effectiveness of the MM-HMMs, sev-
eral speech recognition experiments were carried out. The
recognition performance of MM-HMMs, clean HMMs and

Table 1 Noise data used in the experiments.

Purpose Tape No. Noise Types

Training (4) 1. Exhibition hall
(5) 2. Station (concourse)
(7) 3. Plant Machinery
(7) 4. Metal factory
(8) 5. Sorting field
(9) 6. Highway
(9) 7. Highway intersection
(10) 8. Crowded street
(12) 9. Train (local trains)
(13) 10. Computer Room

(medium)
(16) 11. Noise of the fan coil

air conditioning
(17) 12. Hall elevator

(department stores)
Testing & (3) 13. Exhibition hall
Adaptation (8) 14. Coating Room

(10) 15. Crowded street
(14) 16. Computer Room

(workstation)
(17) 17. Hall elevator (office)

MC-HMMs was compared.
Seventeen types of background noises shown in Table 1

were used for the experiments. Twelve noises were used as
training data, and the other five noises were used as test data.
Note that the noise “Exhibition hall” and “Crowded street”
are involved in both of the training and test data; however,
these noise signals were recorded at different places. There-
fore, we regard these noise signals as belonging to different
environments.

The training signals were generated by combining
clean speech signals and noise signals with four SNR, 5,
10, 15 and 20 dB. The test signals were generated similarly,
with SNR conditions of 0, 5, 10, 15, 20, 25 and 30 dB. The
clean speech signals were also used as test data.

All single-noise HMMs and MC-HMM consisted of
tied-state triphones. The structure of tied states was au-
tomatically determined by the decision tree method, and
the structures of all HMMs were determined separately. A
state in the MM-HMM is constructed by combining the
states in the single-noise HMMs. When combining the
Gaussian mixture, a uniform distribution is used (i.e., γ j =

1/N). 13-dimensional Mel-frequency cepstral coefficient
(MFCCs) feature vectors excluding the frame log power
were extracted from the pre-emphasized speech signal every
10 ms using a 25 ms Hamming window. The MFCCs and
ΔMFCCs were concatenated to form 25-dimensional fea-
ture vectors. Cepstral mean normalization was used. The
performance was evaluated using word accuracy. The other
experimental conditions are shown in Table 2.

The speech recognition experiments for various SNR
conditions were carried out. The MM-HMM was con-
structed from 48 single-noise HMMs (12 noise variations ×
4 SNR variations), with each state having 768 (16 × 12 × 4)
mixtures. The MC-HMMs were trained using all available
training samples. In the test data, SNR was set to 0, 5, 10,
15, 20, 25, 30, and∞ dB.
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Table 2 Experimental conditions.

Speech database ATR speech dialogue
database for spontaneous
speech recognition [24]

Noise database JEIDA noise database [25]
Training data 1,500 sentences

uttered by 1,070 speakers
Test data 100 sentences

uttered by 20 speakers
(5 for each speaker,
10 males and 10 females)

No. of components in a state
clean HMM 16, 32, 64
MM-HMM 768 (16 × 12 × 4)
MC-HMM 16, 32, 64, 128

Language model Trigram trained by
transcription of speech
database except test
sentences

Vocabulary size 7,000
Decoder Julius [26]

Fig. 1 Word accuracy of MC model, clean speech model, and MM-
HMM.

Figure 1 shows the experimental results. In the fig-
ures, “MM” denotes “MM-HMM”; “clean”, “clean HMM”;
“MC”, “MC-HMM”, and the number after “m”, the num-
ber of mixtures. These results show that the MM-HMM has
the highest accuracy for all SNRs. Among the MC-HMMs,
the best result was obtained when the number of mixture
was 16, showing that it was difficult to train all variations
from noisy environments, speakers, and other fluctuations
altogether using the EM algorithm.

3. Adjustment of Prior Probabilities Using an Aspect
Model

3.1 Overview of Adjustment of Prior Probabilities

In Eq. (8), we assumed that we have no knowledge of the
noise environment. If we observe noise or noise-added
speech in the target environment, we can adjust the prior
probability γ j so that the overall probability increases. This
approach is similar to noise environment adaptation [18],
[19]. The basic idea is to change γ j using the EM algo-
rithm so that the likelihood of the adaptation data becomes

maximum. A straightforward method of adjusting the prior
probabilities is to adjust γi directly. However, if the amount
of adaptation data is extremely small (i.e., a few seconds),
the estimation of parameters become unstable.

A conventional approach of reducing the number of pa-
rameters to be adapted is to use the clustering technique for
noisy speech [20], [21]. In this type of approach, the noise
environments are classified (either strictly by using ordinary
clustering or softly using a fuzzy clustering) into a few clus-
ters, and the adaptation is performed on the basis of the
model for the nearest cluster.

A disadvantage of the conventional approaches is that
the adaptation result is not guaranteed to be optimum from
the maximum likelihood point of view, because clustering
and adaptation are performed independently. To obtain the
optimum result for both clustering and adaptation, we em-
ploy an aspect model [22] for reducing the number of pa-
rameters to be adjusted.

The probability distribution function for the sample x is
as follows. First, we consider the adaptation of a distribution
of a specific state. In this case, the probability distribution is
expressed as

p(x|Ξ,Λ) =
Z∑

z=1

ξz p(x|Λz) (10)

=

Z∑
z=1

ξz

N∑
n=1

λn,zψn(x) (11)

where

Ξ = {ξ1, . . . , ξZ}, (12)

Λz = {λ1,z, . . . , λN,z}. (13)

Λ = {Λ1, . . . ,ΛZ} (14)

ψn(x) =
M∑

k=0

ηkN(x;µn,k,Σn,k). (15)

The variable λn,z is the first-level weighting and ξz is the
second-level weighting of the z-th cluster.

This model is interpreted as follows. First, all noise
environments are “softly” classified into a few clusters (i.e.,
aspect model). Here, p(x|Λz) denotes a probability density
function of samples in the z-th aspect model. Then, the
probabilities from all aspect models are combined using the
weight ξz. Under this interpretation, λn,z denotes the degree
of belongingness of the n-th environment belongs to the z-th
cluster, and ξz denotes the probability that the current envi-
ronment belongs to the z-th cluster.

Comparing Eq. (10) with Eq. (6), we obtain

γ j =
∑

z

ξzλ j,z. (16)

When adjusting the probability γ j, we adjust only ξz instead
of adjusting γ j, because λ j,z (which denotes the probability
of the j-th environment belonging to the z-th aspect model)
is independent of the current environment. If Z < N, the
estimation of parameters from a small amount of adaptation
data becomes easier than simply adjusting all of γ j.
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3.2 Training Aspect Model

To estimate Ξ and Λ, we have to make some kind of as-
sumption regarding ξz and λ j,z so that each p(x|Λz) becomes
a “basis distribution” for expressing distributions of various
noise environments. The basic idea of training of the aspect
models is to estimate Λ so that mixture of p(x|Λz) can be
used to approximate each of the single-noise models ψ j(x).
Since the number of the aspect models Z is smaller than that
of the single-noise models N, we can expect that the trained
aspect models are trained to express any distribution. The
optimization of basis distributions is based on the maximum
likelihood criterion, which is the advantage of the proposed
method.

We define the probability distribution function for the
noise j and sample x as

p(x|Ξ j,Λ) =
Z∑

z=1

ξz, j

N∑
n=1

λn,zψn(x), (17)

where

Ξ j =
{
ξ1, j, . . . , ξZ, j

}
. (18)

Let X j be a set of samples that belong to the j-th noise
environment:

X j = {xi, j} (19)

Then, the objective function of the training of the aspect
models is the total likelihood of the samples, given by

L(Ξ1, . . . ,ΞN ,Λ) =
N∑

j=1

∑
i

log p(xi, j|Ξ j,Λ). (20)

The EM algorithm for maximizing Eq. (20) is as fol-
lows. First, we randomly initialize ξz, j and λn,z. Next, we
define αi, j,z and βi, j,n as

αi, j,z =
ξz, j
∑

n λn,zψn(xi, j)∑
z ξz, j
∑

n λn,zψn(xi, j)
(21)

βi, j,n =

∑
z ξz, jλn,zψn(xi, j)∑

n
∑

z ξz, jλn,zψn(xi, j)
. (22)

Then, we re-estimate λn,z and ξz, j as

λ′n,z =
∑

j
∑

i αi, j,zβi, j,n∑
n
∑

j
∑

i αi, j,zβi, j,n
, (23)

ξ′z, j =
∑

i αi, j,z∑
z
∑

i αi, j,z
. (24)

After training λn,z and ξz, j, only λn,z are remaining for
the calculation of the aspect models. ξz, j are not used for
the adaptation. The average of ξz, j over j are used as initial
values of the adaptation.

ξ̄(0)
z =

1
N

N∑
j=1

ξz, j. (25)

When using the aspect model for the HMM, we have
to apply the above-mentioned method to distributions in
many states. In this case, we use state-dependent λn,z (i.e.,
λn,z,s) and state-independent ξz, j. The reason behind using
state-dependent λn,z,s is that effect of environmental noise
on speech differs from phoneme to phoneme. For exam-
ple, when the noise level is not high, vowels are not affected
by the noise strongly because they have large power, while
plosive consonants are affected by the noise more strongly.
The state-dependent λn,z,s can express this kind of differ-
ence. Note that the state-dependency of λn,z,s is independent
of the parameters to be adapted for environment adaptation,
because we adjust only ξz for the adaptation. To estimate
these parameters, αi, j,z and βi, j,n are also made state depen-
dent (i.e., αi, j,z,s and βi, j,n,s). Therefore, Eq. (11) is rewritten
as follows:

p(x|Ξ,Λs) =
∑

z

ξz

∑
n

λn,z,sψn,s(x), (26)

where

Λs = {Λ1,s, . . . ,ΛZ,s} (27)

Λz,s = {λ1,z,s, . . . , λN,z,s} (28)

ψn,s(x) =
M∑

k=0

ηs,kN(x;µn,s,k,Σn,s,k) (29)

In this case, λn,z,s is a state-dependent weight from n to the
aspect model z at the state s, whereas ξz is still independent
of states. The mixture weights λn,z,s from the training sam-
ples are trained using the EM algorithm.

3.3 Online Adaptation Using Aspect Model

For the adaptation of the aspect model, the EM algorithm is
applied for estimating ξ̄z, which is the updated ξz. When the
adaptation data y1, y2, . . . , yn are given, ξ̄z is calculated as

ξ̄(k+1)
z =

∑
s
∑

i ξ̄
(k)
z
∑

n λn,z,sψn,s(y
(s)
i )∑

z
∑

s
∑

i ξ̄
(k)
z
∑

n λn,z,sψn,s(y
(s)
i )

, (30)

where k is the number of iterations and

ψn,s(y
(s)
i ) =

{
ψn,s(yi) if yi belongs to state s
0 otherwise.

(31)

After estimating ξ̄z, we obtain a mixture model adapted
to the data as

p(x|Ξ̄,Λs) =
Z∑

z=1

ξ̄z

N∑
n=1

λn,z,sψn,s(x). (32)

Figure 2 shows a block diagram of the noise-adaptive
speech recognition system based on the aspect model. In
the training phase, single-noise HMMs are trained using the
training data. MM-HMMs can be obtained by combining
all single-noise HMMs. Using the MM-HMMs and train-
ing data, the aspect models are computed. In the adaptation
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Fig. 2 Environment adaptation system using an aspect model.

phase, the original aspect model is adjusted using the adap-
tation data. Here, the second-level weightings of each latent
reference model, ξz, are the unit for adaptation instead of the
single-noise model set.

Since we adjust only Z parameters in the adaptation
phase, we can estimate the parameters without suffering
from the complexity of the original model. Therefore, we
can employ HMMs with a large number of mixture compo-
nents without degrading the performance of adaptation.

3.4 Experiments

3.4.1 Experimental Conditions

Speech recognition experiments were conducted for inves-
tigating the performance of environment adaptation using
the aspect model. In these experiments, the SNR of the test
data was set from 0 to 20 dB. The speech for adaptation
were generated by connecting sentences spoken by the same
speaker of the test data. Then, noise signals of the same type
as the test data were added to the adaptation speech signals
with the same SNR as the test data. The speech and noise
signals of the adaptation data were not included in either
the training or the test data. One adaptation speech signal
was used for a speaker and an environment for recognizing
five sentences uttered by the same speaker in the same en-
vironment. Adaptation experiments were conducted for 20
speakers (10 males, 10 females) in five environments, yield-
ing 500 sentences in total. The other experimental condi-

tions were same as the experiments described in Sect. 2.4.

3.4.2 MM and Conventional Noise Adaptation Methods

First, we confirmed that the plain MM-model was better
than a simple noise-reduction method such as SS to com-
pare the proposed method with methods that use informa-
tion regarding the noise signals. In addition, we tried to ap-
ply MLLR adaptation to confirm whether MLLR adaptation
works when a few seconds of adaptation data is used.

Among various extended versions of SS, we used
multi-band SS (MBSS) [27] in this study. The spectral floor
parameter was set to β = 0.03, which gave the best results in
the preliminary experiment. For estimating the noise spec-
trum, 0.1 s of noise data was used. For the MLLR, a global
transformation matrix was used for adaptation because the
length of the speech for adaptation was not quite long (5 s).

Figure 3 shows the experimental results. The perfor-
mance of the MLLR degraded as compared to the original
MM models. This could be because the adaptation data are
not sufficient for MLLR adaptation. Further, the word accu-
racy of MBSS did not improve and was not as effective as
that of the MM-HMMs.

3.4.3 MM and the Proposed Noise Adaptation Method

Next, we carried out experiments to investigate the effect
of noise adaptation (i.e., weight optimization) of the MM-
model using the aspect model. In this experiment, we com-
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Fig. 3 Word accuracy of SS, MLLR, and MM-HMM.

pared the word accuracy of the model for SNR of 0, 10, and
20 dB. We used five types of adaptation data: 0.1 s and 0.5 s
signals that contained only noise, 1 s, 2 s, and 5 s signals
that contained speech with noise. When the noise-only sig-
nals were used, we used only silence models of the HMM
for adaptation.

In this experiment, we used 2, 5 and 10 aspect models.
As the number of noise environments of the training data
was 48 (12 noises × 4 SNRs), the aspect model reduced the
number of adaptation parameters to 4%, 10% and 21%, re-
spectively.

The results for different numbers of aspect models are
shown in Fig. 4. First, as compared to the MM-HMM, the
weight optimization did improve word accuracy in most of
the conditions, but the degree of improvement was differ-
ent for different conditions. When the environmental noise
was heavy (i.e., 0 dB), the improvement was at the most 4.1
points using 10 aspect models and 5 s of adaptation speech.
Using noisy speech was effective in the 0 dB condition as
compared to using only noise signals, but the length of the
adaptation speech had no significant effect. In the better
noise cases (i.e., 10 and 20 dB), the effect of adaptation de-
creased (0.52 point for 10 dB, and 0.62 point for 20 dB).

Figure 5 shows the result for 0, 10, and 20 dB SNR
conditions when 1 s of adaptation data and 10 aspect mod-
els were used. We can see that the improvement was the
highest for the 0 dB condition. The reason why there was no
significant improvement may be that the effect of noise on
the variation of speech signals was smaller than the effect of
other factors such as the speaker.

3.4.4 Comparison of Parameter Initialization

As shown in Eq. (25), the initial values of ξ̄z are calculated
by averaging ξz, j with respect to j. We compared the initial-
ization of parameters with simply using the uniform value
(i.e., ξ̄(0)

z = 1/Z). Figure 6 shows the experimental result
when number of aspect models were 10 and SNR were 0 dB.
As this result indicates, parameter initialization using ξz, j is
slightly better than just using the uniform value, but the dif-

(a) SNR = 0 dB

(b) SNR = 10 dB

(c) SNR = 20 dB

Fig. 4 Effect of noise adaptation for different number of aspect models.

Fig. 5 Effect of noise adaptation for various SNR (1 s adaptation data, 10
aspect models).
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Fig. 6 Effect of initial value of ξ̄z (0 dB SNR, 10 aspect models).

ference is not large.

3.4.5 Comparison with Other Noise Adaptation Methods

We conducted experiments for comparing the proposed
method with two adaptation methods. First, we considered
a method that optimizes γ j directly based on EM algorithm.
On optimizing γ j, we used uniform values as initial values
of γ j.

Next, we carried out experiments to compare the per-
formance between the cluster-based noise adaptation and
proposed methods [21]. In this experiment, we used a
top-down clustering method based on Bhattacharyya dis-
tance [17], [23]. Of the constructed tree-structure, the root
node is identical to MC-HMMs and the leaf node is the same
as single-noise HMMs. The depth of levels is 8 and the to-
tal number of node is 94. After constructing tree-structure,
each node model is expressed as a tied-state left-to-right 16-
mixture context-dependent triphone model.

As for the computational complexity of the selection
method, it requires calculation of likelihood of the adapta-
tion data for almost half of clusters when tree-based pruning
is employed. In our experiment, as we used 94 clusters, we
need to calculate likelihood nearly 50 times (the actual num-
ber of calculation depends on the situation). On the other
hand, the proposed method need to calculate Eq. (30) for
adaptation. The computational complexity of calculation of
likelihood in Eq. (30) is in proportion to number of environ-
ments for training. Note that re-calculation of likelihood is
not needed for each iteration because only ξ̄z are changed
in the iteration. For we used 48 noises, number of likeli-
hood calculation of our method is comparable to the selec-
tion method.

Figure 7 shows the recognition results for the aspect
models, EM training and model selection methods. The
EM-based optimization could not improve the recognition
performance, which seems to be caused by the number of
adaptation parameters (48), which was too many to estimate
from only 5 s of adaptation data. The method based on the
model selection gave the best results when SNR was 0 dB
and length of the adaptation speech was 1 s or 5 s. However,

Fig. 7 Comparison between aspect models and other optimization meth-
ods.

the model selection method could not improve the word ac-
curacy in 10 dB and 20 dB case, showing that the generated
clusters were mainly determined by the speech with heavy
noises. Conversely, the proposed method showed stable im-
provement under all SNR conditions. The stable improve-
ment of the proposed method is caused by the training pro-
cedure of the aspect models; since the aspect models are
trained so that the aspect models reproduce a probability
distribution of any specific noise and SNR in the training
data, the aspect models can express speech under any noise
environment regardless of its SNR condition.
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4. Conclusions

In this paper, we proposed an acoustic model that is robust
to various environmental noises. The MM-HMM was ob-
tained by combining HMMs that are trained using corrupted
speech data each containing different types of background
noises. Experimental results showed that the MM-HMM
exhibited the best recognition performance for any type of
noise and any variation in SNRs. On the basis of the MM-
HMM, we investigated the noise-robust speech recognition
method using an adaptation approach. The aspect model is
a two-level mixture model, which can reduce the number of
free parameters for adaptation.

We evaluated the performance of the proposed method
through an experiment. Although we used noisy speech
data of very short length, the performance of the proposed
method was higher than that of MM-HMMs under heavy
noise condition. In addition, we compared the proposed
method with the EM-based weight optimization and the
model selection method based on a tree-structured model
clusters. As a result, the proposed method outperformed
the existing adaptation methods except the model selection
method at 0 dB SNR condition. Moreover, the proposed
method improved the recognition performance constantly
regardless of the SNR conditions.
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