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Optimal Online and Offline Algorithms for Finding Longest and
Shortest Subsequences with Length and Sum Constraints∗
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SUMMARY In this paper, we address the following problems: Given a
sequence A of n real numbers, and four parameters I, J, X and Y with I ≤ J
and X ≤ Y , find the longest (or shortest) subsequence of A such that its
length is between I and J and its sum is between X and Y . We present
an online and an offline algorithm for the problems, both run in O(n log n)
time, which are optimal.
key words: length constraint, longest subsequence, offline algorithm, on-
line algorithm, shortest subsequence, sum constraint

1. Introduction

In a DNA sequence (a string of A, C, G, and T) it is often
required to find CG-rich subsequences, in which C and G
appear more than, say 55%, to locate CpG islands [5]. Since
the ratio of C and G is computed by dividing the sum of the
numbers of C and G by the length of the sequence, it is nec-
essary to find subsequences whose lengths are between two
bounds and whose sums satisfy a certain range condition.

Let A[1 . . n] be a sequence of n real numbers. For 1 ≤
i ≤ j ≤ n, A[i . . j] is called a subsequence of A. For A[i . . j],
its sum is A[i] + · · · + A[ j] and its length is j − i + 1. For
two positive integers I, J with I ≤ J and two real numbers
X,Y with X ≤ Y , a subsequence is feasible if its length is
between I and J and its sum is between X and Y .

Given the sequence A, and four parameters I, J, X and
Y , we are interested in the problems of locating the longest
feasible subsequence and the shortest feasible subsequence
in A. In the offline version of the problems the elements of
the sequence A are known before the start of the algorithms,
while in the online version the elements of A arrive one by
one from A[1] and we know only A[1 . . i] after A[i] arrives;
and for each 1 ≤ i ≤ n after A[i] arriving the algorithms
are to solve the subproblem on A[1 . . i]. Offline versions are
appropriate for cases where data necessary are all available
to be processed, while online versions are good for stream-
ing data which are generated one by one or for applications
which require responses in real time.

Chen and Chao [2] addressed the problems: Given a se-
quence A and a parameter X, locate the longest and shortest
subsequences whose sum is at least X. They presented linear
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time algorithms for both of the problems, and also raised a
question if linear time algorithms are possible for the prob-
lems: Given a sequence A and two parameters X ≤ Y , locate
the longest and shortest subsequences whose sums are be-
tween X and Y .

Hsieh, Yu and Wang [4] answered the question nega-
tively by showing that the problems have an Ω(n log n) time
lower bound. They also presented optimal online algorithms
for the following problems: Given a sequence A and four
parameters I, J, X and Y , locate the longest and shortest sub-
sequences such that their lengths are between I and J, and
their averages are between X and Y , where the average of
A[i . . j] is its sum divided by its length, i.e., A[i]+···+A[ j]

j−i+1 .
In this paper, we are dealing with the problem of find-

ing the longest feasible subsequence and the problem of
finding the shortest feasible subsequence. For each prob-
lem, we are presenting two algorithms, an online and an of-
fline algorithm. In Sect. 2, online algorithms for finding the
longest and shortest feasible subsequences are given, which
run in O(n log n) time. In Sect. 3, offline algorithms for find-
ing the longest and shortest feasible subsequences are given.
The algorithms also run in O(n log n) time, and, except one
sorting of n numbers, they run in O(nα(n)) time, which is
considered linear for all practical purposes, where α(n) is
the inverse of the Ackermann function [3], [6].

2. The Online Algorithms

In this section, we present online algorithms for the problem
of finding the longest and shortest feasible subsequences. In
Sect. 2.1, we transform the problem of finding the longest
feasible subsequence into a geometric one, and shows the
geometric problem can be solved in O(n log n) time. In
Sect. 2.2, the problem of finding the shortest feasible sub-
sequence is considered.

2.1 Finding the Longest Feasible Subsequence

Our algorithm for finding the longest feasible subsequence
will compute λ j for all 1 ≤ j ≤ n, where λ j is the small-
est integer, if exists, such that A[λ j + 1 . . j] is feasible. In
other words, A[λ j+1 . . j] is the longest feasible subsequence
when the right boundaries of subsequences are fixed at j. If
no such integer exists, then λ j = ∞. If we have λ j for all
1 ≤ j ≤ n, then the longest feasible subsequence can be lo-
cated by computing k such that k − λk = max{ j − λ j | 1 ≤
j ≤ n}. A[λk + 1 . . k] is the longest feasible subsequence. If
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Fig. 1 (a) Point p j and points p j−J , . . . , p j−I are shown. (b) Segments
l j−J , . . . , l j−I are depicted and the ray starting at p′j hits one of the segments,
which is lλ j . The circles indicate where the points were.

k − λk = −∞, then there is no feasible subsequence and NIL
is output.

We transform the problem of finding the longest fea-
sible subsequence of A into a geometric problem. Define
the cumulative sums, c0 = 0 and ci = ci−1 + A[i] for
1 ≤ i ≤ n. For each 0 ≤ i ≤ n, define a vertical segment
li = (xi, yb

i , y
t
i) = (i, ci + X, ci + Y) in the plane. A vertical

segment l with its bottom point (x, yb) and its top point (x, yt)
is denoted by l = (x, yb, yt).

Let Q = {li | 0 ≤ i ≤ n}. Let Qj = {li | max{0, j − J} ≤
i ≤ j − I} for I ≤ j ≤ n. Define a point pj = (−∞, c j) for
I ≤ j ≤ n. From p j, we draw a horizontal rightward ray
toward Qj. Let lk, if exists, be the first segment in Qj that
is hit by the ray. Then, λ j = k. If the ray does not hit any
segment in Qj, then λ j = ∞. See Fig. 1.

Consider i < j. Then, c j − ci is the sum of A[i + 1 . . j].
For A[i + 1 . . j] to be feasible, it has to satisfy the sum con-
straint X ≤ c j − ci ≤ Y , or equivalently ci + X ≤ c j ≤ ci + Y;
and the length constraint I ≤ j − i ≤ J, or equivalently
j−J ≤ i ≤ j−I. The length constraint requires that lλ j should
be in Qj, and the sum constraint requires that lλ j should be
hit by the ray. The objective of finding the longest one re-
quires that lλ j should be the first one hit by the ray. Refer to
Fig. 1.

Two points are horizontally visible if the two points
have the same x-coordinate and the horizontal segment con-
necting them does not intersect any other inbetween object.
Let l−∞ (resp., l∞) be the vertical line whose x-coordinate is
−∞ (resp., ∞). For a set of vertical segments of the same
length, the left envelope (resp., right envelope) of the set
consists of the portions of the segments that are horizontally
visible from l−∞ (resp., l∞). See Fig. 2. As seen in the figure,
an envelope consists of fragments, each of which is a seg-
ment or a part of a segment in the set. Walking upwards an
envelope starting at its bottom point, we may meet several
discontinuities, where the envelope jumps from a fragment
to another, and arrive at its top point. An envelope may be
defined by giving its sequence of its fragments.

We shall describe data structures that dynamically

Fig. 2 The right and left envelopes of seven segments of the same length.
The right envelope consists of five fragments, and the left envelope consists
of six fragments. Fragments of the right (resp., left) envelope are shown
dashed lines on the right-hand (resp., left-hand) side of each segment.

maintain the left and right envelopes of a set of vertical seg-
ments of the same length with the restrictions that only the
leftmost segment can be deleted from the set and a segment
can be inserted into the set only as its rightmost segment.
Note that a red-black tree [3] is a binary search tree that can
implement operations such as insert, delete, search, prede-
cessor, and successor in O(log n) time, where n is the num-
ber of keys in the red-black tree. For a red-black tree T ,
max(T ) denotes the largest key in T , and for each key y ∈ T ,
pred(y) (resp., succ(y)) is the largest (resp., smallest) among
the keys that are less (resp., greater) than y.

Let T L (resp., T R) denote the data structure for main-
taining the left (resp., right) envelope. T L (resp., T R) will
be implemented with a red-black tree whose keys are the y-
coordinates of the bottom point, and the top point, and the
discontinuities of the left (resp., right) envelope.

For ease of explanation, we shall assume that the keys
in T L and T R are all distinct, i.e., that ci + X and ci + Y for
0 ≤ i ≤ n are distinct. Allowing multiple keys with a same
value does not increase time complexity of our algorithms,
but makes implementations more complicated. For exam-
ple, we may use the primary and secondary keys, where the
y-coordinates are the primary key and the x-coordinates are
the secondary key. If two primary keys are equal, then their
secondary key are compared.

In T R, every key y except max(T R) is associated with
an integer FR(y), which denotes the fragment of the y-range
(or simply, range) (y, succ(y)). FR(y) is the index of the
segment from which the fragment comes. In other words,
between y and succ(y), a part of lFR(y) is visible from l∞.
For ease of explanation, we assume that keys −∞ and ∞
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Fig. 3 The code for finding the longest feasible subsequence: this is ex-
ecuted whenever A[ j] arrives.

are in T R, and FR(−∞) = FR(y′) = −∞ for y′ such that
succ(y′) = ∞. The tuple 〈y, FR(y)〉 will be used to denote
both y and FR(y) at the same time, and 〈y, ∗〉 will be used to
denote a tuple whose FR(y) is not necessary to be specified.
Since y is the key field, the tuples can be identified without
the FR(y) fields.

In T L, every key y except max(T L) is associated with
an integer FL(y), which denotes the fragment of the range
(y, succ(y)). We assume that −∞ and ∞ are in T L, and
FL(−∞) = FL(y′) = ∞ for y′ such that succ(y′) = ∞. The
notations 〈y, FL(y)〉 and 〈y, ∗〉 will also be used.

Only one operation INSERT S(li) will be used on T R,
which inserts the segment li (actually, yb

i and yt
i) into T R,

while two operations DELETE S(li) and SEARCH L(c j)
will be used on T L. DELETE S(li) deletes the segment li
(actually, yb

i and yt
i) from T L and SEARCH L(c j) locates y

such that y < c j < succ(y) with the help of T L.
Our algorithm runs in an online manner. Initially,

maxlen = −∞, c0 = 0, both T L and T R have only two keys
−∞ and ∞. Whenever A[ j] for each 1 ≤ j ≤ n arrives, the
algorithm in Fig. 3 is executed.

When A[ j] arrives, we first compute the cumulative
sum c j. For 1 ≤ j ≤ I, we are done as Qj = ∅. For I ≤ j ≤ J,
we insert l j−I into T R as Qj = Qj−1 ∪ {l j−I}, and search c j in
T L to get λ j. For j > J, we insert l j−I into T R, delete l j−J−1

from T L as Qj = Qj−1 ∪ {l j−I} − {l j−J−1}, and search c j in T L

to get λ j.
We shall give detailed descriptions of the three oper-

ations INSERT S, DELETE S, and SEARCH L. Figure 4
shows INSERT S(li). Before explaining the operation, the
definition of Bi will be given. Bi, 1 ≤ i ≤ n, is the set of
tuples 〈y, FL′(y)〉. The y’s are the y-coordinates of the top
and bottom points of the segments li+1, · · · , li+J−I that are
visible from li. FL′(y) is similar to FL(y) with the restric-
tion that the visibility from li, instead of from l−∞, is con-
sidered. FL′(y) represents the fragment in Bi of the range
〈y, succ(y)〉. A queue will be employed to implement each
Bi.

If li is inserted, li immediately becomes a fragment of
the new right envelope as it is the rightmost segment, and
fragments or parts of fragments of the current envelope that
will be hided by li must be deleted from the envelope. We
first locate two ranges (y1, succ(y1)) and (y2, succ(y2)) in T R

satisfying yb
i ∈ (y1, succ(y1)) and yt

i ∈ (y2, succ(y2)) in (1).
Refer to Fig. 5.

In (2), we check if the bottom point of li is visible

Fig. 4 INSERT S(li).

Fig. 5 To insert li, y1 and y2 are located. li hides a part of the right
envelope, which forms two “stairways,” one starting from succ(y1) and the
other from y2. The bottom (resp., top) point of li is visible from lFR(y1).
(resp., lFR(y2).)

from l−∞ through the range (y1, succ(y1)). If so, yb
i with

FL(yb
i ) = i is inserted into T L in (3) to be a part of the

left envelope. This is shown in Fig. 6 (a). If not, 〈yb
i , i〉 is

inserted into BFR(y1) in (4) as the bottom point of li is visible
from lFR(y1).

In (5), we check if the top point of li is visible from l−∞
through the range (y2, succ(y2)). If so, yt

i with FL(yt
i) = ∞

is inserted into T L in (6) to be a part of the left envelope. In
(7), we change FL(y2) from∞ to i, depicted in Fig. 6 (b). If
not, 〈yt

i,∞〉 is inserted into BFR(y2) in (8) as the top point of
li is visible from lFR(y2).

In (9)–(18), we delete these part of the right envelope
that is hided by li. Those 〈y, ∗〉 ∈ T R satisfying yb

i < y < yt
i

are to be deleted. As shown in Fig. 5, the part of the right
envelope that will be deleted forms two “stairways,” one of
which starts from succ(y1) and goes upward, and the other
starts from y2 and goes downward. This is obvious from the
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Fig. 6 (a) l−∞ is visible from yb
i . (b) l−∞ is visible from yt

i . The dashed
part of li is now on the left envelope.

Fig. 7 If li is deleted, the part hided by li newly appears on the left enve-
lope. The four dots indicate the tuples from Bi, which means that from li,
the four top or bottom points corresponding to the circles are visible.

fact that the segments are all of the same length. In (9)–(11)
and (13), we remove the “upward stairway” one “step” at a
time.

In (12), we insert 〈y, i〉 into BFR(y). For each y of the
“upward stairway” the tuple 〈y,∞〉 is already in BFR(y) as
the tuple was inserted in (8) when INSERT S(segment with
yt = y) was called. At that time, L(y) was ∞, but it has to
change to i as li is now visible from lFR(y) through the range
(y, succ(y)). Instead of changing L(y), we insert the tuple
〈y, i〉 into BFR(y) as this is easy to implement, which will be
explained later when BFR(y) is used in DELETE S(li). BFR(y)

has both 〈y,∞〉 and 〈y, i〉, which have the same key y.
In (15)–(18), we remove the “downward stairway” one

“step” at a time, starting from y2.
Finally, in (19) two tuples 〈yb

i , i〉 and 〈yt
i, f 〉 are inserted

into T R.
The operation DELETE S(li) is shown at the top side

of Fig. 8. We first find y1 = yb
i in (1) and delete both 〈y1, ∗〉

and 〈succ(y1), ∗〉 from T L in (2). After li is removed, the left
envelope has to be updated as the area that was hided by li
is now visible from l−∞. See Fig. 7. In (3)–(6), this update
of the left envelope is performed by inserting the tuples in
Bi. Each Bi is a queue containing the tuples whose y’s are
y-coordinates of the top and bottom points of the segments
li+1, · · · , li+J−I that are visible from li. As mentioned in the
description of (12) of INSERT S(li), Bi may have two tuples
with the same key y, i.e., 〈y,∞〉 and 〈y, k〉 for some k. Since
〈y,∞〉 was inserted into Bi before 〈y, k〉, 〈y,∞〉 is considered

Fig. 8 DELETE S(li) at the upper side, and SEARCH L(c j)at the lower
side.

in (3) before 〈y, k〉 as Bi is a queue. When 〈y,∞〉 is consid-
ered, it is inserted into T L in (6). When 〈y, k〉 is considered,
since 〈y,∞〉 is already in T L, 〈y, k〉 replaces it in (5).

The operation SERACH S(c j), shown at the bottom
side of Fig. 8, finds the range 〈y1, succ(y1)〉 containing c j and
returns λ j = FL(y1).

Time complexity will be analyzed. Since both T R and
T L have at most J − I keys, operations on T R and T L such
as search, insert, delete, predecessor, and successor can be
executed in O(log(J−I)) time per operation. Since each Bi is
a queue, insertion and deletion takes constant time. During
the execution of the algorithm on A[1], · · · , A[n], each of
the keys that are the y-coordinates of the top and bottom
points of the segments in Q is inserted into T R (resp., T L)
at most once and deleted from T R (resp., T L) at most once.
Each of the keys is inserted into one of the queues Bi at
most twice in INSERT S(·) and is considered at most twice
in DELETE S(·). The algorithm runs in O(n log(J − I)) =
O(n log n) time.

We have proved the following theorem:

Theorem 1: The longest feasible subsequence can be
found by an online algorithm in O(n log n) time.

2.2 Finding the Shortest Feasible Subsequence

To find the shortest feasible subsequence we compute σ j, in
stead of λ j, for all I ≤ j ≤ n, where σ j is the largest integer,
if exists, A[σ j + 1 . . j] is feasible. If no such integer exists,
σ j = −∞. The shortest feasible subsequence of A can be
located by computing k such that k − σk = min{ j − σ j | 1 ≤
j ≤ n}. A[σk + 1 . . k] is the shortest feasible subsequence. If
k − σk = ∞, then there is no feasible subsequence and NIL
is output.

Let p′j = (∞, c j) for I ≤ j ≤ n be a point. Draw a
horizontal leftward ray from p′j and find the first segment lk,
if exists, in Qj that is hit by the ray. Then, σ j = k. If no
segment in Qj is hit by the ray, then σ j = −∞.

T L and T R in Sect. 2.1 will be used to compute σ j

for I ≤ j ≤ n. Here, T L will have only one op-
eration DELETE S(li), and T R will have two operations
INSERT S(li) and SEARCH R(c j). Both INSERT S(li)
and DELETE S(li) are the same as in Sect. 2.1, and
SEARCH R(c j) locates y1 such that y1 < c j < succ(y1) in
T R and computes σ j = FR(y1).
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Fig. 9 The code for finding the shortest feasible subsequence: this is
executed whenever A[ j] arrives.

Initially, minlen = ∞. Whenever A[ j] for each 1 ≤ j ≤
n arrives, the algorithm in Fig. 9 is executed.

The following theorem can be proved in a similar man-
ner as Theorem 1.

Theorem 2: The shortest feasible subsequence can be
found by an online algorithm in O(n log n) time.

3. The Offline Algorithms

In this section, we present offline algorithms for the prob-
lems of finding the longest and shortest feasible subse-
quences. In Sect. 3.1, we present the nearest friend finding
problem and provides a solution for it, which will be used in
solving the longest and shortest subsequence problems. In
Sect. 3.2, the problem of finding the longest feasible subse-
quence is addressed, and in Sect. 3.3, the problem of finding
the shortest feasible subsequence is considered.

3.1 The Nearest Friend Finding Problem

The nearest friend finding problem is: Given a set of blue
points, B, and a set of red points, R, in the plane, find, for
each red point, its nearest blue friend (for short, friend) such
that the x-coordinate (resp., y-coordinate) of the friend is
less than the x-coordinate (resp., y-coordinate) of the red
point and the x-distance between them is minimum. See
Fig. 10. We shall show that the problem can be solved in
O(nα(n)) if both a x-sorted list and a y-sorted list of the
points are given, where n = |B ∪ R|.

Let G = {gi = (xi, yi) | 1 ≤ i ≤ n} be a list of the points
in B ∪ R such that x1 ≤ · · · ≤ xn. Let (ga1 , . . . , gan ) be the
y-sorted list of G such that ya1 ≤ · · · ≤ yan . An integer i is
blue (resp., red) if gi is blue (resp., red).

Consider the sequence (a1, . . . , an). For each i such that
ai is red, find fi = max{ak | k < i, ak < ai, and ak is blue}.
Then, g fi is the friend of gai . The condition k < i implies that
yak < yai , and the condition ak < ai implies that xak < xai .
Computing the fi’s can be done by the algorithm in Fig. 11.

In the algorithm, D is a sorted list of blue and red in-
tegers, initially D = (1, . . . , n). In (1), we set D to include
the integers 1, · · · , n. In (2)–(5), while scanning (a1, . . . , an)
backward, we compute fi in (4) if ai is red, and delete ai in
(5), otherwise.

For each red integer in D, its neighbor is the largest one
among the blue integers that are less than the red integer. If

Fig. 10 Three blue points (◦) and five red points (•). Point 2 is the nearest
friend of points 3, 4, and 7, and point 5 is the nearest friend of points 6 and
8. (a1, . . . , a8) = (2, 3, 7, 1, 5, 6, 4, 8), where the red integers are underlined.

Fig. 11 Computing the nearest blue neighbors.

Fig. 12 (a) The data structure for D = (1, 2, 3, 4, 5, 6, 7, 8) of Fig. 10,
which has two blocks. The blue integers (�) are stored in a doubly linked
list and the red integers (©) are stored into sets (or rooted trees). Each root
points to its current blue neighbor. (b) The data structure after deleting 5 is
shown. The trees with root 3 and with root 6 are merged into one.

no such blue integer exists, then the neighbor is −∞. A max-
imal subsequence of (1, . . . , n) that consists of red integers
only is called a block.

To implement D, a doubly linked list combined with
a data structure for disjoint sets will be used. The dou-
bly linked list stores the blue integers of D, while the red
integers are stored in the disjoint set data structure. We
build a set for each block, which contains the integers of
the block. The sets, as in the UNION-FIND problem of dis-
joint sets [1], [3], [6], are implemented with disjoint rooted
trees. In each tree, one of the integers in the block becomes
the root and every non-root integer points to its parent only.
Each root points to a blue integer in the doubly linked list,
which is the neighbor of every integer in the block. Fig-
ure 12 shows our data structure for the points in Fig. 10.

In (4) in Fig. 11, fi can be found by calling FIND(ai),
which locates the root of the tree containing ai, which in
turn points to the neighbor of ai, i.e., fi. In (5), we delete ai,
which is blue, from the doubly linked list. If ai is pointed
to by a root as its neighbor, the neighbor of the root and its
tree must be changed to the predecessor of ai in the doubly
linked list. This can be accomplished by UNIONing two
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Fig. 13 Point p j and points p j−J , . . . , p j−I are shown. The segment v j is
moving rightward and hits one of the points, which is pλ j .

trees: one whose root points to ai and the other whose root
points to the predecessor of ai.

With (a1, . . . , a8) = (2, 3, 7, 1, 5, 6, 4, 8), and the data
structure in Fig. 12 (a), a partial result of the execution of
the algorithm is as follows:

i ai

8 8: FIND(8) = 6 6 points to 5 f = 5
7 4: FIND(4) = 3 3 points to 2 f = 2
6 6: FIND(6) = 6 6 points to 5 f = 5
5 5: delete 5 UNION(3,6)

The data structure after UNION(3,6) is in Fig. 12 (b).

Lemma 1: The nearest friend finding problem can be
solved in O(nα(n)) time if both a x-sorted list and a y-sorted
list of the points are given.

Proof: Construction of the data structure for D = (1, . . . , n)
can be done in linear time. A sequence of FINDs and
UNIONs of length n is applied to D, which can be accom-
plished in O(nα(n)) time [1], [3], [6]. �

3.2 Finding the Longest Feasible Subsequence

This problem is also transformed into a geometric one. Let
P = {pi = (xi, yi) = (i, ci) | 0 ≤ i ≤ n}. Let Pj = {pi |
max{0, j − J} ≤ i ≤ j − I} for I ≤ j ≤ n. Define a vertical
segment v j = (max{−0.5, j − J − 0.5}, c j − Y, c j − X) for
I ≤ j ≤ n. Note that x-coordinate of v j is less than those
of pi’s in Pj. We move v j horizontally rightward toward Pj.
Let pk, if exists, be the first point in Pj hit by the moving
segment. Then, λ j = k. If no such point in Pj is hit by the
moving segment, then λ j = ∞. See Fig. 13.

For a subsequence A(i + 1 . . j), i < j, to be feasible,
it has to satisfy X ≤ c j − ci ≤ Y and I ≤ j − i ≤ J; or
equivalently, c j − Y ≤ ci ≤ c j − X and j− J ≤ i ≤ j− I. The
points in Pj satisfy the length constraint j − J ≤ i ≤ j − I
and the points hit by the moving segment satisfy the sum
constraint c j − Y ≤ ci ≤ c j − X. The first point hit by
the moving segment gives the longest feasible subsequence.
Refer to Fig. 13.

Notice that the roles of points and segments in Sect. 2.1
are reversed here. In Sect. 2.1 the segments are fixed and the
points are moving, while here the points are fixed and the
segments are moving.

A strip of width Y − X is a region in the plane bounded

Fig. 14 Finding strips that cover P.

by two horizontal lines that are Y − X apart. A strip is as-
sumed to include its bottom boundary (or its bottom hori-
zontal line), but not its top boundary (or its top horizontal
line). A strip covers points if the points are in the strip.

To compute strips that are needed to cover P, we first
sort the points in P in increasing order of the y-coordinates,
i.e., the ci values†. Let P′ = (pa1 , . . . , pan ) be the sorted list.
The algorithm in Fig. 14 is a greedy one, which finds disjoint
strips that cover P (or equivalently P′). The algorithm scans
P′, opens a new j-th strip whose bottom boundary is at y-
coordinate b j in (5), and, in (7)–(10), adds pai into P′j as long
as its y-coordinate is less than bj+Y −X, which corresponds
to the y-coordinate of the top boundary of the strip.

Let b1, . . . , bm be the list of b j computed by the algo-
rithm. Let S i, 1 ≤ i ≤ m, be the strip whose bottom bound-
ary is at y-coordinate bi. Obviously, S 1, . . . , S m are disjoint.
Then, P′i = P′ ∩ S i for 1 ≤ i ≤ m.

Consider a segment v j for some 1 ≤ j ≤ n. Since v j is
Y − X long, it can intersect at most two consecutive strips.
Suppose that v j intersects two strips S α and S α+1 for some
α. The bottom point of v j is in S α, and its top point is in
S α+1. Let vb

j = v j ∩ S α and vt
j = v j ∩ S α+1. Move the

segment vb
j horizontally rightward and let pλb

j
, if exists, be

the first point in P′α hit by the segment. If no point in P′α
is hit by the segment, then λb

j = ∞. Similarly, move the
segment vt

j horizontally rightward and let pλt
j
, if exists, be

the first point in P′α+1 hit by the segment. If no point in P′α+1

is hit by the segment, then λt
j = ∞. Let λ̂ j = min{λb

j , λ
t
j}. If

max{0, j− J} ≤ λ̂ j ≤ j− I, then λ j = λ̂ j. Otherwise, λ j = ∞.
For 1 ≤ i ≤ m, let Vb

i = {vb
j | v j has its bottom point in

S i}, and Vt
i = {vt

j | v j has its top point in S i}. With Vb
i and

P′i , compute λb
j for each j such that vb

j is in Vb
i , and with Vt

i

and P′i , compute λt
j for each j such that vt

j is in Vt
i .

For 1 ≤ j ≤ n, compute λ̂ j = min{λb
j , λ

t
j}, and set

λ j = λ̂ j if max{0, j− J} ≤ λ̂ j ≤ j− I, and λ j = ∞, otherwise.
Computing λt

j for all j such that vt
j is in Vt

i is an instance
of the nearest friend finding problem in Sect. 3.1. If we let
B = {(−x, y) | (x, y) ∈ P′i} and R = {(−x, y) | (x, y) is the top
point of a segment in Vt

i }, and solve the problem, we have
λt

j for all j such that vt
j is in Vt

i . Similarly, λb
j for all j such

†This is the only step where our algorithm for finding the
longest feasible subsequence requires O(n log n) time. The remain-
ing part will take only O(nα(n)) time.
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that vb
j is in Vb

i can be computed.

Theorem 3: The longest feasible subsequence can be
found by an offline algorithm in O(n log n) time. Except one
sorting of n numbers, the algorithm runs in O(nα(n)) time.

Proof: Computing (a1, . . . , an) takes O(n log n) time. Find-
ing S i and P′i , 1 ≤ i ≤ m, by the algorithm in 14 can be
done in O(n) time. Computing Vb

i and Vt
i , 1 ≤ i ≤ m,

can be accomplished in O(n) time. Computing λt
j for all

j such that vt
j is in Vt

i can be done in O(niα(ni)) time using
the algorithm in Sect. 3.1, where ni = |Vt

i ∪ P′i |, 1 ≤ i ≤ m.
Thus, λt

j for 1 ≤ j ≤ n can be obtained in O(nα(n)) time

as n1 + · · · + nm ≤ 2n. Thus, λb
j for 1 ≤ j ≤ n also can be

found in O(nα(n)) time. Excluding the sorting for obtaining
(a1, . . . , an), the algorithm takes O(nα(n)) time. �

3.3 Finding the Shortest Feasible Subsequence

Define a vertical segment v′j = ( j− I + 0.5, c j −Y, c j − X) for
I ≤ j ≤ n. Note that x-coordinate of v′j is larger than those
of pi’s in Pj. We move v′j horizontally leftward toward Pj.
Let pk, if exists, be the first point in Pj hit by the moving
segment. Then, σ j = k. If no such point in Pj is hit by the
moving segment, then σ j = −∞.

Let b1, . . . , bm be the list of b j computed by the algo-
rithm in Fig. 14. S i and P′i for 1 ≤ i ≤ m are the same as in
Sect. 3.2. Compute vb

j = v′j ∩ S α and vt
j = v′j ∩ S α+1 for all

j, as in Sect. 3.2. Move the segment vb
j horizontally leftward

and let pσb
j
, if exists, be the first point in P′α hit by the seg-

ment. If no point in P′α is hit by the segment, then σb
j = −∞.

Similarly, move the segment vt
j horizontally leftward and let

pσt
j
, if exists, be the first point in P′α+1 hit by the segment.

If no point in P′α+1 is hit by the segment, then σt
j = −∞.

Let σ̂ j = max{σb
j , σ

t
j}. If max{0, j − J} ≤ σ̂ j ≤ j − I, then

σ j = σ̂ j. Otherwise, σ j = −∞.
Vb

i and Vt
i for 1 ≤ i ≤ m are the same as in Sect. 3.2.

With Vb
i and P′i , compute σb

j for each j such that vb
j is in Vb

i ,
and with Vt

i and P′i , compute σt
j for each j such that vt

j is in
Vt

i .
For 1 ≤ j ≤ n, compute σ̂ j = max{σb

j , σ
t
j}, and set

σ j = σ̂ j if max{0, j − J} ≤ σ̂ j ≤ j − I, and σ j = −∞,
otherwise.

Computing σt
j for all j such that vt

j is in Vt
i is an in-

stance of the nearest friend finding problem in Sect. 3.1. If
we let B = P′i and R = {the top points of the segments in
Vt

i }, and solve the problem, we have σt
j for all j such that vt

j

is in Vt
i . Similarly, σb

j for all j such that vb
j is in Vb

i can be
computed.

The proof of Theorem 3 can be applied to prove the
following theorem.

Theorem 4: The shortest feasible subsequence can be
found by an offline algorithm in O(n log n) time. Except one
sorting of n numbers, the algorithm runs in O(nα(n)) time.

4. Conclusions

We have addressed the following problems: Given a se-
quence A of n real numbers, and four parameters I, J, X and
Y with I ≤ J and X ≤ Y , find the longest (or shortest) sub-
sequence of A such that its length is between I and J and
its sum is between X and Y . We have presented online and
offline algorithms for the problems, both run in O(n log n)
time, which are optimal. A lower bound proof is in [4],
which proved that in the comparison model an Ω(n log n)
time is necessary to determine whether there is a subse-
quence of A whose sum is zero. Solving any one of the
two problems with I = 1, J = n, and X = Y = 0 will check
whether there is a subsequence of A whose sum is zero.
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