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A Novel Scheme for Encrypting Integer Value to Many Different
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SUMMARY Encryption can provide strong security for sensitive data
against inside and outside attacks. This is especially true in the “Database
as Service” model, where confidentiality and privacy are important is-
sues for the client. In fact, existing encryption approaches are vulnera-
ble to a statistical attack because each value is encrypted to another fixed
value. This paper presents a novel database encryption scheme called MV-
OPES (Multivalued—Order Preserving Encryption Scheme), which allows
privacy-preserving queries over encrypted databases with an improved se-
curity level. Our idea is to encrypt a value to different multiple values to
prevent statistical attacks. At the same time, MV-OPES preserves the order
of the integer values to allow comparison operations to be directly applied
on encrypted data. Using calculated distance (range), we propose a novel
method that allows a join query between relations based on inequality over
encrypted values. We also present techniques to offload query execution
load to a database server as much as possible, thereby making a better use
of server resources in a database outsourcing environment. Our scheme can
easily be integrated with current database systems as it is designed to work
with existing indexing structures. It is robust against statistical attack and
the estimation of true values. MV-OPES experiments show that security
for sensitive data can be achieved with reasonable overhead, establishing
the practicability of the scheme.
key words: encryption, order-preserving, database outsourcing, statistical
attack

1. Introduction

Critical and sensitive business data in databases is an obvi-
ous target for adversaries. Therefore, an appropriate level
of protection for database content must be provided. The
traditional solution for database security is to apply an ac-
cess control mechanism by assigning sorts of rights, logins,
roles and passwords to restrict queries and application us-
age. Those mechanisms, while important and necessary,
cannot ensure that a database is immune to intrusion and
unauthorized access.

Encryption can provide strong security for sensitive
data against inside and outside attacks. The primary interest
in database encryption results from the recently proposed
“database as service” (DAS) architecture [1]. In DAS or
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database outsourcing, a database owner outsources its man-
agement to a “database service provider”, which provides
online access mechanisms for querying and managing the
hosted database. At the same time, the service provider in-
curs most of the server management and query execution
load.

Clients would like to take advantage of the provider’s
robust storage, but in many cases clients would like to pro-
tect the database even from the service provider. Specifi-
cally, the provider should be prevented from observing any
of the outsourced database contents. Encryption is a com-
mon technique used to protect the confidentiality and pri-
vacy of stored data in the DAS model.

The encryption process in current known schemes that
provide privacy queries over encrypted databases is per-
formed at various levels [2]: page/block, columns, rows and
attributes. Usually, encrypting the whole page/block, col-
umn or row entails the decryption of the whole page/block,
column or row when a query is executed to retrieve a piece
of information, even if additional indices are stored within
the database such as in [3], [4]. Therefore, an implementa-
tion that encrypts the attributes individually provides flexi-
bility to decrypt only the data of interest [5]. However, the
traditional attribute level encryption approach for a database
encrypts each value to another fixed value: X1 = X2 =⇒
Ek(X1) = Ek(X2)

This approach is vulnerable to statistical attacks. A
statistical attack against an encrypted database seeks to use
some apparently anonymous statistical measures to infer in-
dividual data. Using such an approach, an attacker, espe-
cially an inside attacker, can infer some data by joining ta-
bles and using additional statistical information. This prob-
lem appears clearly in joining lookup tables with other ta-
bles. The lookup tables usually consist of a small and fixed
values scale or domain such as gender (male or female),
marital status (single, married, separated,...), and city.

Example 1: Consider the plaintext database shown
in Fig. 1 (a) with the traditional encrypted database in
Fig. 1 (b). In the encrypted employee table, the third col-
umn contains two distinct values (67653, 564564), which
are clearly gender data. When an attacker knows that there
are more male employees than female employees, then the
attacker can infer the encrypted values for numbers 1 and
2. Also, it is possible to infer information by joining a
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Fig. 1 Database encryption using two approaches.

project table with the (emp proj) table. Knowing that only
one employee works on project “projectAS”, the attacker
can recognize the encrypted value for that project from ta-
ble (emp proj). Also, the attacker can get the encrypted
(emp id) for the employee who works on that project. Us-
ing the same technique, the attacker can infer much more
information from the encrypted database, and then try to de-
termine the key used in the encryption process.

1.1 Traditional Solutions

A straightforward solution to solve the problem of statistical
attack is to use different encryption keys for different fields.
Actually, this solution is good to avoid direct joins between
tables in the encrypted database. However, within a field, a
particular plaintext is still encrypted to the same value. In
addition, using different keys leads to serious performance
degradation, because we need to decrypt all data to execute
queries, such as join.

Another naive solution is to add to the database a ran-
domly generated data value for each plaintext value and then
both values are encrypted together. This approach is used
by [6] to encrypt XML documents. Also, it is used with the
Cipher-Block Chaining (CBC) [7] as initial vector IV. This
approach leads to storage cost. In addition, it causes serious
performance degradation because the plaintext and the addi-
tional value associated to the plaintext should be decrypted
together before executing any query.

1.2 Our Contributions

This paper presents a new database encryption scheme
called MV-OPES (Multivalued-Order Preserving Encryp-
tion Scheme), which allows one integer to be encrypted
to many values using the same encryption key while pre-
serving the order of the integer values. Figure 1 (c) de-

scribes the new encryption technique applied on the em-
ployee plaintext database shown in Fig. 1 (a). The equal
plaintext values in Fig. 1 (a) are encrypted to different ci-
phertext values in Fig. 1 (c) as opposed to the ciphertext val-
ues in Fig. 1 (b). Here, EK(n)vi denotes ciphertext value of
n with encryption key K, and subscript vi means the varia-
tion of the ciphertext value. For instance, the emp id (222)
is encrypted to EK(222)v1 in the emp table and EK(222)v2 ,
EK(222)v3 in the emp proj table, with high probability that
(EK(222)v1 � EK(222)v2 � EK(222)v3 ). Also, the encrypted
values for the emp id (111) are always less than the en-
crypted values for the emp id (222). In this scheme, attack-
ers cannot infer individual information from the encrypted
database even if they have statistical knowledge about the
plaintext database. Using calculated distance (range), we
propose a novel method to join different encrypted values
between relations based on inequality.

Compared with previous solutions, the advantages of
our scheme (MV-OPES) are the following:
• MV-OPES is robust against statistical attack and the

estimation of true values compared with the traditional
order preserving encryption schemes like OPES [6] and
Anti-tamper database [8], [9].

• It allows queries to be executed over an encrypted
database without decrypting the operands. It supports a
practical subset of relational operators. Although some
operators require post-processing to eliminate false-
positives, MV-OPES minimizes the amount of work
done on the decrypted data. We support long list of
relational operators over the encrypted database com-
pared with the schemes in [5], [10] that support just the
basic selection operation.

• Unlike the bucketing approach [3], [4], which generates
a superset of answers with false positive tuples in all
queries, our scheme does so only on some condition
types; the results contain false positive tuples.

• MV-OPES can make a better use of resources on
both server and client sides by splitting the query into
server-side and client-side queries, while [5] allows
queries only over the trusted server.

• MV-OPES can easily be integrated with current
database systems as it is designed to work with ex-
isting indexing structures such as B-trees. In previous
encryption schemes, a new metadata [10] or a new in-
dexing structure [5] is needed to perform queries over
encrypted database.

• Unlike the encryption schemes in [3]–[6], [10], MV-
OPES is efficient in insertions and updates. A new
value can be inserted, or an existing value can be mod-
ified without requiring changes to the encryption of
other values.

• The database user in our scheme does not need to man-
age large amount of confidential data (like the bucket-
ing approach [3], [4], the large keys in the OPES [6] or
many different secret keys in [6], [10]). In our scheme,
a user only needs to secure the secret key and a small
amount of secret variables used in the encryption pro-
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cess.
The results from an implementation of MV-OPES show that
security for sensitive data can be achieved with reasonable
overhead and false positives, establishing the practicability
of the scheme.

1.3 Organization of the Paper

The rest of paper is organized as follows. We first dis-
cuss related work in Sect. 2. Section 3 introduces our new
database encryption schema. Section 4 describes the condi-
tion translations. Section 5 discusses implementation of the
relational operators such as selection, join, and sort over en-
crypted relations. Then, Sect. 6 addresses the security issues
of MV-OPES. Section 7 reports the experimental results.
We conclude with a summary and directions for future work
in Sect. 8.

2. Related Work

Many database encryption techniques have been proposed,
but most are not intended for the one-to-many encryption
algorithm.

Order preserving encryption scheme (OPES): The
idea of OPES is to take as input a user-provided target distri-
bution and transform the plaintext values in such a way that
the transformation preserves the order while the transformed
values follow the target distribution [11]. Under OPES, it
is ideal from the viewpoint of query performance, because
comparisons can operate directly on ciphertext, thereby sav-
ing the cost of expensive decryptions. From a security point
of view, OPES is vulnerable to a tight estimation and statis-
tical attacks if an adversary has knowledge of the distribu-
tion. Also, OPES is vulnerable to chosen plaintext attacks if
the adversary can choose any number of unencrypted values
to his liking and encrypt them into their corresponding en-
crypted values. In OPES, most probably two columns of two
tables do not have the same distribution. That means they
are not directly comparable. When this is true, the join query
involves expensive decryptions and/or encryptions, because
one side must be converted to the other.

Order preserving encryption with splitting and
scaling (OPESS): The authors in [6] proposed a new en-
cryption scheme based on the OPES to index the encrypted
values in the outsourced XML databases. The idea in
OPESS is to map the same plaintext values to different ci-
phertext values to protect the data against frequency-based
or statistical attacks. OPESS consists of two stages splitting
and scaling. In splitting, each plaintext value is encrypted
into one or more ciphertext values by using different keys.
The number of keys used to encrypt a plaintext value is
based on the number of occurrence for the plaintext. In scal-
ing, the number of occurrences of encrypted values is mul-
tiplied by a scale factor. One of the limitations of OPESS
is that security achieved by scaling encrypted data causes
an increase in data size. Also, this approach is not efficient
in insertions and updates because the encryption method is

mainly based on the number of occurrences. OPESS pro-
posed mainly for XML database but it is not applicable for
relational database. The reason behind that is the different in
executing queries on the relational and the XML databases
such as the join operation between different encrypted val-
ues.

Anti-tamper database: In [8], [9], a sequence of poly-
nomial functions is used to encrypt integer values while pre-
serving the order. The decryption is made by solving the
inverses of each polynomial function in the sequence in re-
verse order. The degree of security in this approach depends
on the number of coefficients employed by the polynomial
function sequence and the set of constants in the encryption
function. Unfortunately, the cost of encrypting or decrypt-
ing in an anti-tamper database can be prohibitive for large
values. Also, in this scheme the shape of the distribution
of encrypted values follows the shape of the input distribu-
tion [11]. From a security perspective, this could reveal in-
formation about the input distribution, which can be broken.

Structure preserving database encryption scheme:
The authors in [5] proposed a new encryption scheme that
breaks the correlation between ciphertext and plaintext val-
ues by encrypting each database value with its unique cell
coordinates. There are two immediate advantages to this
scheme. First, it eliminates substitution attacks attempting
to switch encrypted values. Second, pattern matching at-
tacks attempting to gather statistics based on the encrypted
values will fail. However, this scheme can be used only on
a trusted server, where a DBA can manage the new index
structure in the encrypted database. The join operation is
not covered by this approach. We think that the only way it
can be used to join tables in this scheme is to decrypt tables
first, and then perform the join over the decrypted database,
which adds overhead. Moreover, if a database reorganiza-
tion process changes cell coordinates, all affected cells need
to be re-encrypted with their new coordinates.

Privacy-Preserving Queries on Encrypted Data:
The encryption algorithm proposed in [10] appends a ran-
dom string to the plaintext before encryption. Then both
values are encrypted together, so multiple occurrences of a
plaintext lead to different ciphertexts. This scheme is useful
to protect the encrypted databases against statistical attack.
While in this paper we cover many relational operations over
encrypted database including various conditions, the authors
in [10] analyze just the selection queries with a basic con-
dition (Attribute = value). The authors proposed two so-
lutions for basic selection queries. The experiments of the
first solution show that overhead is significant because there
is no index or metadata used to retrieve records. In the sec-
ond solution, they replace the sequential search in the first
solution with a binary search using a new encrypted meta-
data. The efficiency improved significantly in the second
solution but there is no security proof for the two-step map-
ping method used in the new encrypted metadata. We think
that an adversary can break the encrypted metadata with lit-
tle knowledge about the plaintext values. In addition, there
is no explanation about update on the encrypted database.
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Keyword search on encrypted data: Many re-
searchers have investigated the problem of keywords search-
ing on encrypted data using either symmetric encryp-
tion [12], [13], asymmetric encryption [14] or a combina-
tion of symmetric, asymmetric encryption and hash func-
tions [15]. In spite of security vulnerabilities (like statistical
attack in [12]) and significant overhead in [14], [15], these
encryption schemes are possibly useful in searching for key-
words in a file, document or email. However, these solu-
tions can not be applied to the problem of efficiently query-
ing encrypted relational databases. Especially, we discuss in
this paper the problem of encrypting integer data, executing
range queries and implementing relational operations over
encrypted database.

Homomorphic Encryption: A homomorphic encryp-
tion [16]–[19] function allows performing arithmetic func-
tion on two (or more) ciphertexts to produce a new cipher-
text, without having any information about the plaintext or
encryption/decryption keys. The homomorphic encryption
is related to our work in sense of performing the arithmetic
function on the ciphertext. However, in this paper we fo-
cus on performing different queries over encrypted database
(Sect. 5) which are more used in real word than the arith-
metic functions.

Other Relevant work: In [20], [21], the authors pro-
posed the Chip-Secured Data Access (C-SDA) principle to
insulate data encryption, query evaluation and access right
management in a Secured Operating Environment (SOE).
C-SDA is a client-based security component acting as an
incorruptible mediator between a client and an encrypted
database. This component is embedded into a smartcard to
prevent tampering on the client side. However, C-SDA does
not support direct execution for a range query because it re-
quires a disjunction to be created for every possible value in
the range, which is not feasible for real data values [11].

Another variation to secure databases that has recently
been studied is that of “distributed architecture” [22]–[24]
for enabling privacy-preserving outsourced storage of data.
However, distributing the database content to many servers
is not the concern of this body of work. We focus on se-
curing the central database content stored in a trusted, un-
trusted, or semi-trusted [25] server. The encryption scheme
proposed in this paper (MV-OPES) is a novel technique to
encrypt an integer value to many different values, and in
the sense of performing queries over an encrypted database
based on inequality.

3. Proposed Multivalue Order Preserving Encryption
Scheme

The basic idea of MV-OPES is to take a user provided do-
main as the input and transform the plaintext domain values
in such a way that the transformation preserves the order and
the equal plaintext values are encrypted to different cipher-
text values. This section describes our encryption scheme in
detail.

3.1 An Overview of MV-OPES

Before the discussion, we need to look at two important con-
cepts:
• Order preservation: An encryption function E using

a key K is called order preserving, if for all X and Y
such that X < Y , EK(X) < EK(Y).

• Multivaluedness: Every input is associated with one
or more outputs. For given integers X1 and X2 such that
X1 = X2, the encrypted values using function E and key
K are EK(X1) and EK(X2), such that EK(X1) � EK(X2)
with high probability.
When encrypting plaintext values in a column having

values in the range [Dmin,Dmax], we generate boundaries
for all integers in the domain (BDmin , . . . , BDmax , BDmax+1 ) using
the increasing/decreasing function (order preservation). The
generated boundaries identify the intervals. For instance, in-
terval Ii is identified by [Bi, Bi+1). We then generate the en-
crypted values for integer i as random values from the inter-
val Ii (multivaluedness). Details regarding the random dis-
tribution used to choose the encrypted values are discussed
in Sect. 3.3.2.

3.2 Generation of Bucket Boundaries

Bucket boundaries are generated using two functions: initial
and increasing/decreasing. Details of these two functions
are discussed next.

3.2.1 Initial Function

We are given a domain [Dmin,Dmax], with (Dmax − Dmin + 1)
integers: {Dmin,Dmin+1, . . . ,Dmax}. Initially, we choose the
starting (initial) point from the domain. We then compute
the boundary for the initial point using the following func-
tion:

Binitial = EncK(initial)

where Enc is the function used to encrypt the (initial) value
using key K. Any block cipher algorithm such as DES [26],
TDES, Blowfish [27], AES [28], RSA [29], or a hashing
function can be used to encrypt the value.

3.2.2 Increasing/Decreasing Function

To preserve the order of the integers, we use two functions
to generate boundaries. First, boundaries for values greater
than the initial point are generated by an increasing function.
Second, a decreasing function is used to generate bound-
aries for values less than the initial point. The goal for the
increasing/decreasing function is to create encrypted inter-
val scales for all integers in the domain with different sizes.
Differences in intervals size are ensured by predefined per-
centage and a sequence of random numbers.

Given the initial point (initial), the interval size IS , and
the difference percentage on the encrypted interval size DP,
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the boundaries are derived by the following function:

Bi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Bi+1 − (EncK(IS ) + (EncK(IS ) ∗ DP) ∗ Ri),

Dmin ≤ i < initial
Bi−1 + (EncK(IS ) + (EncK(IS ) ∗ DP) ∗ Ri),

initial < i ≤ Dmax+1

where Ri is a sequence of random numbers in the range
[−1, 1]. There are many pseudorandom number generators
with useful security properties [30], [31]. The DP used in
the formula to control the differences between intervals size
that will be in the range [−EncK(IS ) ∗DP, EncK(IS ) ∗DP].
Figure 2 shows the differences between interval sizes in
[1, 100] domain, DP = 0.05%, and IS = 1000.

3.3 Encryption Functions

Here we discuss how to encrypt a plaintext relation R. For
each tuple t = (A1, A2, . . . , An) in R, the encrypted relation
RE stores a tuple:

(E(A1), E(A2), . . . , E(An))

where E is the function used to encrypt an attribute value
of the tuple in the relation. The encryption function E(i)
is applied by choosing a random number in the interval Ii,
which is identified by [Bi, Bi+1). As for the distribution of
random values, it should be carefully chosen by taking into
account the type of attribute being encrypted. If it is a pri-
mary key attribute, the occurrence of a value is at most one,
whereas there may be several occurrences for a value in for-
eign key attributes. We therefore classify database attributes
as “related” or “unrelated”. In the former, it has one-to-
many relationship with another attribute in another relation,
such as emp id. Other attributes, such as salary are called
unrelated.

In MV-OPES, the integer value is encrypted to many
values, so in some relational operators such as grouping or
in the case of a condition between two attributes, we need to
have a related value for all different encrypted values. Thus,
in some cases even for unrelated attributes we create an in-
dependent table as a primary key containing one value for
each interval in the domain. Many unrelated attributes can
have the same table as a primary key if they have the same
domain.

3.3.1 Comparing Ciphertext Using MaxDiff

Here, we explain the process of comparing two different at-

Fig. 2 Differences between intervals size.

tribute values. This explanation is required before the dis-
cussion of choosing the random distribution. When com-
paring two different attribute values in query processing, a
straightforward approach is to decrypt the ciphertext first,
then compare the plaintext values, which may lead to per-
formance degradation. Also, this approch is not applicable
for DAS model. Instead, we try to make it possible to com-
pare ciphertext without decryption.

In this work, we introduce a calculated distance
MaxDiff , which is the maximum distance (among all inter-
vals in the domain) between value P in the primary key table
and value F in the foreign key tables. The idea is to check
if a value being compared is contained within the range of
[P − MaxDiff , P + MaxDiff ] (in case of equality), instead
of comparing the value with P’s bucket boundaries. Notice
that it may result in a false positive, which should be elimi-
nated in a post-processing. Figure 4 shows how to calculate
MaxDiff .

3.3.2 Choosing the Random Distribution

The random function used to encrypt integers in the primary
key table (random primary) and a foreign key table (ran-
dom foreign) are different. Choosing random distribution
for both functions is based on the following perspectives:
• Security perspective: Hide the interval boundaries in

the primary key table because there is only one integer
that represents each interval. This goal is achieved by
maximizing the distance between primary key values
that represent two sequential intervals. Based on that
premise, the primary key should be as close as pos-
sible to the middle of the interval. This matches the
normal distribution. Many records in the foreign key
table represent the same interval. So to hide the in-
terval boundaries we need to distribute the values over
the whole interval so the attacker cannot differentiate
between intervals. This condition matches the uniform
distribution.

• Performance perspective (reduce the false posi-
tives): Reduce the overlap between intervals when
connecting (joining) the primary key table with the for-
eign key table. This goal is achieved by minimizing
the distance between the primary key and the foreign
keys in the same interval (reducing MaxDiff ). This is
achieved by using normal distribution to choose a ran-
dom number in both the primary key and foreign key
tables. However, we already decided that uniform dis-
tribution is the best distribution to hide interval bound-
aries in the foreign key table, not normal distribution.

3.3.3 Further Optimization

Using normal distribution in the primary key table, however,
presents the probability of an encrypted value appearing at
the end of the interval Iv, and another encrypted value at the
beginning of the interval Iv+1. This reduces the distance be-
tween the two encrypted values so the boundary becomes



KADHEM et al.: MV-OPES: MULTIVALUED-ORDER PRESERVING ENCRYPTION SCHEME
2525

Fig. 3 Encryption algorithms in MV-OPES.

Fig. 4 Calculating the MaxDiff in MV-OPES.

easy to guess. To solve this problem, we set left and right
margins in each interval. The encrypted value is then cho-
sen to be between those margins. The margin sizes affect
security and the percentage of false positives. We will in-
vestigate the optimal margin size in future work. In this pa-
per, for simplicity, we assume equi-width partitioning. The
interval is divided into three equal parts (left margin, middle
part, right margin). The primary key is then chosen based on
normal distribution within the middle part only. In this case,
the distance between two primary keys that represent two
sequential intervals will be (right margin of the first interval
+ the left margin of the second interval). Figure 4 shows the
random distributions used to choose a random number for
both primary key P and foreign key F. The algorithms for
encrypting integer values in a primary key table and foreign
key table are represented in Fig. 3 (a, b).

3.4 Decryption Functions

Given the operator E, which encrypts a plaintext value to
many ciphertext values, we define its inverse operator D,
which decrypts the ciphertext value to its corresponding
plaintext value. Simply, the decryption function D in MV-
OPES searches for the interval where the encrypted value
is located. Specifically, to decrypt an encrypted value C, the
decryption function searches for the closer boundary Bp that
is greater than C, then returns the plaintext value, which is
the left boundary p − 1.

Given the boundaries (BDmin , . . . , BDmax+1 ), which are
stored either in memory with a small domain, or using a sec-
ondary storage-based indexing structure such as B+ tree for
a large domain. The decryption function can be a sequential
search (Fig. 5 (a)) or binary search (Fig. 5 (b)). The sequen-
tial search is used when decrypting ciphertext values in a
sorted column; the binary search is used to decrypt cipher-

Fig. 5 Decryption algorithms in MV-OPES.

text values in an unsorted column. The D operator may also
be applied on query execution. The query execution may re-
quire that a super dataset be decrypted to perform advanced
relational operators (e.g., grouping and aggregation); this is
explained in Sect. 5.

4. Condition Translations in Query Processing

This section explains how to translate a query condition C
over a plaintext database in operations (such as selection and
join) to corresponding conditions over encrypted database
CE . We consider query conditions characterized by the fol-
lowing grammar rules:
• Condition← Attribute θ Value
• Condition← Attribute θ Attribute
• Condition ← (Condition ∨ Condition) | (Condition ∧

Condition) | (⇁ Condition)
where θ is a binary operation in the set {=, <,≤, >,≥}.

The conditions are divided into two groups according
to the type of result, that is, whether or not the result con-
tains false positives. The first group consists of conditions
that contain a binary operation between attribute and value
(Attribute θ Value). The result based on those conditions
contains neither false positives nor missed answer tuples.
The second group consists of conditions that contain a bi-
nary operation between two attributes (Attribute θ Attribute)
such as equi-join. The result based on those conditions con-
tains false positive tuples. The discussion below uses a run-
ning example (Fig. 1) to illustrate the translation.

4.1 Conditions without False Positives

Attribute = Value: such condition arises in selection oper-
ations. The translation is defined as follows:

A = v → AE BETWEEN Bv and (Bv+1 − 1)

As defined in Sect. 3.3, all encrypted values for value v are
located in the interval (Iv), which is identified by boundaries
Bv and Bv+1, [Bv, Bv+1). The BETWEEN condition allows
the retrieval of values within a range of two values (inclu-
sive). Since the right boundary Bv+1 is not included in the
interval (Iv), the second value in the BETWEEN condition
will be the right boundary minus 1 (Bv+1 − 1). For instance,
consider the employee table in Fig. 1. We have the condition
over the plaintext e id = 111, so the translation condition is:

e idE BETWEEN B111 and (B112 − 1)
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Since v = 111, all encryption values for this value are lo-
cated in the interval I111.

Attribute < Value: such condition arises in selection
operations. Since the MV-OPES is an order preserving en-
cryption scheme (vi < v j → EK(vi) < EK(v j)), the transla-
tion is as follows:

A < v → AE < Bv

The result contains all encrypted values that are less than the
left boundary (Bv) of the interval (Iv). For example, in an
employee table, the translation condition for the condition
C : (e id < 111) is: CE : e idE < B111. Here, all encrypted
values in the interval [BDmin , B111) will satisfy the translated
condition.

Attribute ≤ Value: The difference between this condi-
tion and the previous one is that this condition includes all
the encrypted values for v, in addition to those values that
are less than the left boundary (Bv). The translation for the
less than or equal condition is defined as follows:

A ≤ v → AE < Bv+1

The result contains all encrypted values that are less than
the left boundary of the next value (Bv+1). For instance, the
translation condition for C : (e id ≤ 111) is: CE : e idE <
B112. Based on the translated condition, all returned tuples
will be encrypted employee ids in the interval [BDmin , B112).

For conditions Attribute > Value and Attribute ≥
Value, translation is the same as the translation of A < v
and A ≤ v, as described above but in the opposite direction.

4.2 Conditions with False Positives

The conditions containing a binary operation between two
attributes (Attribute1 θ Attribute2) might arise in join or se-
lection operations. With a join operation, the two attributes
can be from two different tables or from two instances of the
same table; in the selection operation; however, the two at-
tributes should be from the same table. Because each integer
is encrypted to many values, the translation for these condi-
tions becomes a bit involved. Basically, we use parameter
MaxDiff to make it possible to filter out unqualified values.
However, the result may contain false positives by nature.

There are two constraints in performing these condi-
tions. First, the two attributes should have the same domain.
Second, the condition is performed between two primary
keys or between a primary key and the related foreign key.
Given a condition (P θ F), such that P and F have same do-
main, P is the primary key and F is a foreign or primary key.
The translation for this condition is discussed next.

P = F: This condition is translated using the MaxDiff
to:

FE BETWEEN (PE −MaxDiff ) and (PE +MaxDiff )

MaxDiff is used to ensure that all foreign key values located
in same interval are connected to the related primary key. In-
tervals differ, so some foreign key values from neighbor in-
tervals might connect to false primary keys (false positive).

Fig. 6 Overlap in connecting primary key with foreign key values based
on equality condition.

Figure 6 shows the process for connecting equal values be-
tween a primary key and foreign key. The total number of
false positives (TFP) can be expressed as:

Dmin∑
i=Dmax

|{ f | f ∈ F ∧ (Pi −MaxDiff ≤ f < Bi ∨ Bi+1 ≤ f

< Pi +MaxDiff )}|
P < F: The translation for this condition can be performed
directly, just as with a plaintext database:

PE < FE

The translated condition, however, will contain false posi-
tives. These false positives result from foreign key values
that are greater than the primary key but are located in the
same interval. The total number of false positives returned
can be written as:

Dmin∑
i=Dmax

|{ f | f ∈ F ∧ (Pi ≤ f < Bi+1}| ≈ 50%

To reduce the number of false positives, we can use a dis-
tance range value from the primary key to the boundaries
(left and right). Another solution is to derive benefit from
the left and right margins on each interval. So, given the
minimum margin (MinMarg) among all intervals in the do-
main, the translation for P < F is as follows:

(PE +MinMarg) < FE

Here the total number of false positives is reduced by
MinMarg for each interval and can be written as:

Dmin∑
i=Dmax

|{ f | f ∈ F ∧ (Pi +MinMarg ≤ f < Bi+1}|

P ≤ F: This condition should be translated in such a way
that all foreign key values that are greater than or equal to
the primary key can be connected to the related primary key.
Using MaxDiff , the translation is as follows:

(PE +MaxDiff ) ≤ FE

The false positive results in this condition will be all foreign
key values that are greater than the right boundary. The total
number of false positives returned can be expressed as:

Dmin∑
i=Dmax

|{ f | f ∈ F ∧ (Bi+1 ≤ f ≤ Pi +MaxDiff }|

The translation for P > F and P ≥ F is the same as the trans-
lation of P < F and P ≤ F as described above, but in the
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reverse direction.
(Condition1 ∨ Condition2), (Condition1 ∧ Condi-

tion2), (⇁ Condition): Two composite conditions are
translated directly over the encrypted domain by translat-
ing each condition individually. The translation is given as
follows:

C1 ∨C2→ C1E ∨C2E , C1 ∧C2→ C1E ∧C2E

The result based on two composite conditions might
contain false positives when at least one condition is from
(Attribute θ Attribute). When both conditions are from (At-
tribute θ Value) the result will be exact. Translation of (⇁
Condition) depends on the condition type. When the condi-
tion is in the form of (Attribute θ Value), the translation is
straightforward: ⇁ C → ⇁ CE

The result based on this condition will be exact (with-
out any false positives). However, when C is in the form
of (Attribute θ Attribute), this condition (⇁ C) cannot be
translated directly because of the false positive result. This
paper does not discuss this translation. Neither are condi-
tions that involve more than one attribute and operator dis-
cussed.

5. Implementing Relational Operators over Encrypted
Relations

This section describes the process of implementing rela-
tional operators (such as selection, projection, and sorting)
in the proposed scheme. The relational operators are imple-
mented, as much as possible, to be executed over the en-
crypted database. However, when a condition of the form
(Attribute θ Attribute) is attached to the operator, the re-
turned answers might contain false positives. These answers
are then filtered (in client-side when client/server approach
or DAS model used) after decryption to generate the exact
result. Beyond that, some operators cannot be performed
directly on the encrypted relations. When that happens, a
post process operation is performed on the result after de-
cryption. We attempt to minimize the amount of work done
in post process operations. To explain implementation of
the operators, we use the running example, which is the em-
ployee database shown in Fig. 1.

The Selection Operator (σ): consider a selection op-
erator σC(R) on a relation R, where C is a condition in the
form (Attribute θ Value). A straightforward implementation
of such an operator in our scheme is to translate the condi-
tion C to condition CE over encrypted relation RE . Because
the answers returned by this condition do not contain false
positives, no extra operation is needed after decryption oper-
ator D. Specifically, the operator can be rewritten as follows:

σC(R) = D(σE
CE (RE))

In the above notation, we change the σ operator that is exe-
cuted as a plaintext relation to σE to highlight the fact that
the select operator is executed on an encrypted database. All
operators that do not contain E are assumed to be executed

over a plaintext relation. Let us take an example from the
employee database. This example σgender=1∧salary>200(emp)
selects all male employees with salary greater than 200. The
above selection operator is translated into D(σE

CE (empE))
where the condition CE is:

CE = (genderE BETWEEN B1 and B2 − 1)

and (salaryE ≥ B201)

The Join Operator (��): consider a join operation
R ��C T . The join condition C is always in the form (Attribute
θ Attribute). Where θ can be either equality (in this case the
join corresponds to a natural join or equijoin), or can be in-
equality (resulting in a theta join). The above join operation
can be implemented as follows:

R
��

C
T = σC

(
D

(
RE ��

E

CE
T E

))

As before, the E on the join operator emphasizes the fact that
the join is to be executed over the encrypted database. The
result from executing the join operator over an encrypted
database will contain false positives. The result after de-
cryption operator D, therefore, needs to be filtered using
the σ operator with the same condition C. For instance,
the join operation between emp table and emp pro j table
(emp ��

emp.e id=emp pro j.e id emp pro j) is translated to:

σemp.e id=emp pro j.e id

(
D

(
empE ��

E

CE
emp pro jE

))

Given MaxDiff for the e id domain, the condition CE on the
encrypted database is:

emp pro j.e idE BETWEEN (emp.e idE −MaxDiff )

and (emp.e idE +MaxDiff )

The Sorting Operator (τ): The sorting operator can
be implemented directly on the encrypted database because
MV-OPES preserves the order of the integer values. In MV-
OPES, given encrypted values (E1 < E2 < · · · < En−1 <
En), the plaintext values (P1 ≤ P2 ≤ · · · ≤ Pn−1 ≤ Pn).

Consider a sorting operation τA(R), on a relation R,
where A refers to an attribute on which the sorting is per-
formed. The implementation of the above sorting operator
can be achieved directly as follows:

τA(R) = D(τE
AE (RE))

For instance, the sorting operation τe id(emp) is translated
to D(τE

e idE (empE)). There are several contexts in which we
want to sort the tuples of a relation by more than one of its
attributes. This sorting operation is denoted by τL(R), where
L is a list of some of R’s attributes (A1, A2, · · · , An) on which
the sorting is performed. Here, the sort operation on the en-
crypted database might yield an incorrect order when par-
ticular attributes with higher priority have tuples with the
same value. For example, given a set of plaintext tuples
(1, 1) and (1, 2), we would like to sort them according to
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the two attributes. The encrypted value may be (110, 100)
and (101, 201), when we apply an ordinary sort operator on
these tuples; the resulting tuples order is incorrect. So when
many attributes are used in the sorting operation, another
implementation should be applied after the decryption oper-
ator. The implementation of such a sorting operation is as
follows:

τL(R) = τ′L
(
D(τE

LE (RE))
)

That is, we first sort on the encrypted attributes LE . Then, af-
ter data decryption, another sorting operation (τ′) applied on
the partly sorted data of attributes L. Note that the amount of
work done after decryption is less than the process of sorting
on the encrypted data. This is so because sorting the results
will be a simple operation as it will be performed only over
records that have equal values. For example, the sorting op-
eration τe id,salary(emp) can be implemented as follows:

τ′e id,salary

(
D(τE

e idE ,salaryE (empE))
)

The Projection Operator (π): Because each attribute
A in a relation R is encrypted individually into a ciphertext
attribute AE of encrypted relation RE , a projection opera-
tion π is implemented directly on RE . The projection op-
eration can be (with duplicate elimination) or (without du-
plicate elimination). Since the integer value is encrypted to
many values in our scheme, the implementation for the two
types of projection differ. Consider a projection operation
without duplicate elimination πL(R), where L is a set of at-
tributes of relation R. The operator can be implemented on
the encrypted relation RE as follows:

πL(R) = D(πE
LE (RE))

where LE is a set of encrypted attributes. This operation is
used also for a projection with duplicate elimination on a
unique set of records such as primary key attributes. For
instance, the projection operation πe id(emp) is translated to
D(πE

e idE (empE)).
The projection operation with duplicate elimination

can be implemented as follows:

πL(R) = δ
(
D(πE

LE (RE))
)

That is, we first perform a projection operation πE
LE on the

encrypted relation RE . We then apply duplicate elimination
operation δ on the decrypted data.

The Grouping and Aggregation Operator (γ): Con-
sider a grouping operation γF,L(T ) on a relation T , where
F is a foreign key attribute. As described above, MV-OPES
encrypts integer values to many different values. To perform
a grouping operation on a foreign key attribute, therefore,
we need to first apply a join operation between the primary
key and the foreign key. This will ensure that all records for
a particular plaintext value have the same encrypted value.
We can then apply a grouping operation on the encrypted re-
lation. Given P as primary key for F in relation R, the above
grouping operation can be implemented as follows:

γF,L(T ) = πP,L

(
σJC

(
D

(
γE

(
RE ��

E

JCE
T E

))))

where JCE is the condition for the joint operation ��E on the
encrypted relations. Because this join operation will gen-
erate false positives, a selection operation σJC on the de-
crypted data is applied to remove these false positives. The
projection operation with duplicate elimination πP,L on the
decrypted data is performed after the selection operation to
project the primary key attribute instead of the foreign key.

When applying the grouping operation on many for-
eign key attributes in a relation, the translation will be more
complicated and expensive because many join operations
need to be performed. Here the grouping might be per-
formed after data decryption to avoid a join operation on the
encrypted database. Also, aggregation operators are applied
on decrypted data because our scheme does not support the
aggregation operation over an encrypted relation. To mini-
mize the work after data decryption, we can apply a sorting
operation τ on the encrypted relation, so the grouping opera-
tion will be faster. Efficient implementation of the grouping
operation is as follows:

γL(R) = γL

(
D(τE

LGE (RE))
)

where L refers to a list of attributes on which the grouping
and aggregation operations are performed, and LGE is a list
of encrypted attributes on which the grouping operation is
applied on the encrypted relation. For instance, if we want
to find the number of male and female employees in the emp
table, the translation is as follows:

γgender,COUNT (e id)→M(R)

= γgender,COUNT (e id)→M

(
D(τE

genderE (empE))
)

That is, we first sort on the genderE attribute on the en-
crypted relation empE . After data decryption, we perform
the grouping operator. This step can be done efficiently,
since all records have already been sorted on the encrypted
relation based on the gender value. Finally, we perform the
aggregation COUNT (e id) → M to count the number of
employees for each gender value.

The Duplicate Elimination Operator (δ): The imple-
mentation of a duplicate elimination operator δ on the en-
crypted relation is similar to the grouping operator γ. That
is, we first need to perform a join operation and grouping
operation on the encrypted relations. After the results are
decrypted, we apply selection to remove false positives gen-
erated by the join operation. Finally, we apply a projection
operation with duplicate elimination also on the decrypted
data. As discussed above, this implementation might be
expensive, especially with many attributes. Thus, the effi-
cient way to perform a duplicate elimination operation is to
sort on the encrypted relation. Then after the results are de-
crypted, we apply the duplicate elimination operation:

δ(R) = δ
(
D(τE

LE (RE))
)

where LE is a list of attributes in the encrypted relation RE .
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The amount of work to perform the duplicate elimination
operation δ after decryption operator D is small because the
data is already sorted. For example, the operation δ(emp) is
translated to:

δ
(
D(τE

e idE ,salaryE ,genderE (empE))
)

The Union Operator (∪): consider two relations R and T
that have schemas with identical sets of attributes, and the
domains for each attribute are the same in R and T . The
union operation can be based on bag (does not eliminate
duplicates) or set (with duplicate elimination). The union
operator based on bag can be implemented directly on the
encrypted relation as follows:

R ∪ T = D(RE ∪E T E)

The implementation of the union operator based on set is
performed as follows:

R ∪ T = δ
(
D(τE

L (RE ∪E T E))
)

where LE refers to the encrypted attributes in relation R,
and ∪E is the union operation on the encrypted database.
The sorting operation τE

L on the encrypted result will help to
speed the process of eliminating the duplication δ on the de-
crypted data. The decryption operator D is performed with
no trouble because we assume that the domains for each at-
tribute are the same in both relations. When a union operator
is performed between different domains, special care should
be taken to apply the decryption operator on the result. Im-
plementing a union operator on different attribute domains
is not discussed in this paper.

The Set Difference Operator (−): Performing the set
difference operation R−T on the encrypted relations is com-
plicated and expensive. This is especially true when the dif-
ference operation is applied on a relation that holds many
foreign key attributes. That is because many equi-join oper-
ations and outer join operations need to be performed on the
encrypted relations. In addition, for each join operation, we
need to apply a selection operation on the decrypted data to
remove false positives generated by the join operator. The
strategy to perform set difference, therefore, is to decrypt
data for both relations and then apply the set difference op-
erator on the decrypted data. We can get benefits from the
order preserving concept in our scheme to reduce the work
needed to perform set difference after data decryption. That
is, we first sort on both encrypted relations. Then, after data
decryption, we perform the set difference. The implementa-
tion for set difference can be expressed as follows:

R − T = D(τE
LRE (RE)) − D(τE

LT E (T E))

where LRE refers to a list of attributes in the encrypted rela-
tion RE , and LT E is a list of attributes in T E . For example, to
find all eid for employees who do not work on any project,
the set difference operator is:

πe id(emp)−πe id(emp pro j)=D
(
τE

e idE

(
πE

e idE (empE)
))

−D
(
τE

e idE

(
πE

e idE (emp pro jE)
))

Query Splitting: In the client/server or DAS model, we
split the computation of a query Q across the server and the
client. The client will use the implementation of the rela-
tional operators to send part of the query Qs to the server
to be executed on the encrypted database. The second part,
which is client query part Qc, is performed on the decrypted
data. Query splitting is as follows:

op (R)︸�︷︷�︸
Q

= opc D︸︷︷︸
Qc

(opE (RE)︸����︷︷����︸
Qs

)

where opc refers to operations performed on the client side,
and opE is operations performed on encrypted relations RE

on the server side.

6. Security Analysis

The security of our scheme derives from the security of
pseudorandom permutation function and block cipher used
to generate boundaries. First, we assume that the key used
in the encryption process is secure, and that the pseudo-
random number generator Ri used to generate boundaries is
also secure. In our scheme, we have different interval sizes
based on Ri, an encrypted interval size EncK(IS ) and the
difference percentage DP. An adversary with no informa-
tion about the plaintext domain, therefore, cannot deduce
any information about the encrypted domain. The success
probability of an adversary A in decryption ciphertext val-
ues for a particular domain can be expressed as follows:

AdvA = Pr[R] · Pr[EIS ] · Pr[DP] · Pr[IP]

where Pr[R] is the probability breaking the pseudorandom
function, Pr[EIS ], Pr[DP], Pr[IP] are the probability to get
the encrypted interval size, the difference percentage and the
initial point. The value AdvA is sufficiently small. Thus,
our encryption scheme is secure enough in many practical
situations even if an adversary has access to all ciphertext
values. Notice that the security analysis discussion here is
slightly different from that in the cryptography field, that is,
the probability of information leakage is not 0 in all cases. In
some cases, the adversary can infer a very small amount of
information about the ciphertext values when she has deep
knowledge about the plaintext domain. However, we can
avoid even those small vulnerabilities with some small im-
provements. The following is the security analysis of our
scheme for different attack scenarios.

In our scheme, it is clear that the adversary cannot infer
information by applying a traditional join operation on the
encrypted relation. Here the number of possible mappings
between m distinct ciphertext values in the primary key ta-
ble and n distinct ciphertext values in the foreign key table
(in an order-preserving way) is

(
n−1
m−1

)†, where n > m. Out
†The possible combinations between ciphertext values and

plaintext values in the one to many encryption schemes in an order-
preserving way is discussed in [6].
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of those possible mappings, only one mapping combination
correctly determines the joining between the ciphertext val-
ues. The adversary can join the primary key with the closest
encrypted values in the foreign key, but not all values. Using
a shifting distance (right or left) in either the primary or for-
eign key, the adversary will not even be able to make a join
based on the closest distance. That is not possible because
the primary and foreign key values will be in completely dif-
ferent ranges. Using shifting distance, the number of map-
pings is (s

(
n−1
m−1

)
), where s is the number of tries till get the

shifting distance. A change might occur in the implemen-
tation of MV-OPES using shifting distance, so we merely
consider this distance in the condition translation process.

Now, we assume an adversary A knows the plaintext
domain and has access to the ciphertext values. The adver-
sary tries to map p distinct plaintext values and c distinct ci-
phertext values in an order-preserving way. The number of
possible mappings in this case is

(
c−1
p−1

)
, where c > p. The ad-

versary can estimate at most the first and last intervals in the
encrypted scale. That is possible because the intervals are
ordered the same as the plaintext values. We can improve
our scheme to avoid this attack by generating boundaries in
a circle mode. That means we generate boundaries normally
until reaching a particular point, then we continue generat-
ing the rest of the boundaries starting from a point that is less
than the boundary for the first integer in the domain BDmin .
Here we will have order preserved in two super intervals.
The number of mappings in this case is (c

(
c−1
p−1

)
). The only

change needed to apply this technique is translation for the
inequality operator, which will be in two directions instead
of one.

We now formally analyze the security of our scheme in
the chosen plaintext attack. The idea is to give the adversary
advantage and freedom to encrypt a set of plaintext to dis-
cover the starting and ending points for the integer i in the
encrypted scale. To achieve this, the adversary needs to get
at least four encrypted integers (X,Y,Z,U), such that X is a
ciphertext for i − 1, Y and Z are ciphertext for i, U is a ci-
phertext for i+1, where Y = X+1, and U = Z+1. Given the
interval sizes for i− 1, i, i+ 1 as S i−1, S i, S i+1 the probability
to get the four integers is: 1

S i−1 2S i S i+1
. This means that se-

curity here depends on the interval size. In a small domain,
the scheme will be more secure than a large domain where
we can use larger encrypted intervals.

7. Experiments

This section evaluates the performance of our encryption
scheme. We have conducted many experiments to examine
the validity and effectiveness of the architecture proposed in
this paper.

7.1 Experimental Setup

The experiments were conducted by implementing MV-
OPES on MS SQL Server 2008. The algorithms were im-
plemented in VB.NET as a client side application. The ex-

periments were run using version 3.0 of the Microsoft.Net
framework and on a Microsoft XP workstation with a
2.6 GHz Intel Core 2 processor and 3 GB of memory. The
results sketched in this section are the average for at least 10
executions.

7.2 Performance for Generating Boundaries

The first set of evaluations was performed on different do-
mains to examine the time needed to generate boundaries.
The graph in Fig. 7 shows the execution time for generating
boundaries using different initial points. The results show
that we have better performance when the initial point is
chosen in the middle of the domain. That is because we
have two directions to compute the boundaries compared
with one increasing function when we use Dmin as initial
point.

7.3 Performance for Encryption and Equijoin

The second set of evaluations studied the encryption perfor-
mance and equijoin operation in our scheme using different
domains and various difference percentages (DP). Also, we
compare the performance of our scheme with a database en-
crypted using AES. Two tables were used to perform this
evaluation. The first table is the primary key table, which
contains all integers in the domain. The second table is the
foreign key table, which holds 100,000 records picked ran-
domly from a uniform distribution between Dmin and Dmax.
Figure 8 shows the times for encryption and inserting val-
ues in the primary key and foreign key tables for different
domains. The results show that AES takes the longest time
to insert tuple in both tables since the encryption time is
much more than in MV-OPES. The small difference in time
shown in the figure between plaintext and our scheme is the
cost of encryption. The figure shows that this overhead is
negligible.

In the equijoin operation, we studied the percentage of
false positives returned by performing a join operation over

Fig. 7 Time per boundary (in ms) required to generate boundaries.

Fig. 8 Time per tuple (in ms) required to insert tuples.
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Fig. 9 Equijoin cost.

encrypted relations. Also, we studied the overhead on both
the server and client sides. The percentage of false posi-
tives shown in Fig. 9 (a) increases with the domain size and
DP. That results due to the increase in the overlap between
intervals in the encrypted scale when performing a join op-
eration based on MaxDiff . From Fig. 9 (b), we can easily
see that the time required to perform a join operation on the
server side in our scheme increases according to the size of
domain and takes approximately the same shape as the join
operation on the plaintext database. While the cost of join
operation using AES is much more than our scheme. This is
especially when using large domains (> 103) since the index
is essentially unusable for many operations (including join)
which turn into full table scans [32].

Figure 9 (c) shows the client side performance to de-
crypt and filter the result returned by performing a join op-
eration on the server side. The figure shows that our scheme
has only small overhead on the client side. We also observe
that the time slightly increases as the domain and DP in-
crease, because of increased false positives. On the other
hand, we can see the performance degradation when using
AES compared with our scheme.

7.4 Selection and Grouping Operations

In the third set of experiments, we studied queries that in-
clude selection, grouping and aggregation operations. Ex-
periments are based on the emp table (100,000 records)
shown in Fig. 1 and queries shown in Fig. 10. Figure 11
shows the plaintext, client-side, server-side, and total query
execution times for both queries. The figure illustrates that

Fig. 10 Queries used for the third set of experiments.

Fig. 11 Selection, grouping and aggregation cost.

Fig. 12 Input (a) and output (b) distributions in MV-OPES.

Q1 response time is approximately the same in both ap-
proaches. The reason is due to the small cost of decryp-
tion performed at the client site. Beyond that, this selection
query can be fully performed on the encrypted relation and
the result is exact. On the other hand, total query execution
time for Q2 in MV-OPES is greater than the execution time
in the plaintext. That is because the grouping and aggre-
gation are performed at the client site after the decryption
process. However, query execution time on the client side is
less than the query execution time on the server side because
the data is already sorted on the encrypted relation.

7.5 Distribution of Encrypted Domains

In this experiment, we studied the distribution of plain-
text and encrypted values. Here, we generated 100,000
records using [1, 100] as an input domain, DP = 0.05%,
and IS = 1000. We tested whether it is possible to dis-
tinguish or match between the output distributions of MV-
OPES and different input distributions. Figure 12 shows
the result of running MV-OPES with different input distri-
butions (Uniform, Normal, and Zipf). We can see that the
encrypted values always followed a uniform distribution re-
gardless the distribution of the plaintext domain. Notice that
the frequency for all encrypted values is 1. These results re-
flect the robustness of our scheme against attacks that try to
match between input and output distributions.

8. Conclusion and Future Work

Encryption can be used to provide confidentiality and pri-
vacy for sensitive databases, which are important issues, es-
pecially in the DAS model. Unfortunately, traditional at-
tribute level encryption is vulnerable to statistical attacks
because each value is encrypted to another fixed value. We
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propose a novel encryption scheme (MV-OPES) that is ro-
bust against statistical attack and estimation of the true value
because it allows one integer to be encrypted to many differ-
ent values using the same encryption key. It also preserves
the order of the integer values to allow any comparison op-
eration to be directly applied to the encrypted data. We have
developed techniques so that most processes in executing
SQL queries can be done on encrypted databases. In some
cases, a small amount of work to filter false positives or per-
form relational operations is needed on the decrypted data.
Experiments on MV-OPES showed that security for sensi-
tive data can be achieved with reasonable overhead, con-
firming the feasibility of the scheme. In the future, we will
study the encryption of non-integer data such as strings. We
also plan to investigate security improvement issues, such as
circle encrypted domain and shifting distance.
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