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SUMMARY Intrusion Detection Systems (IDS) have been received
considerable attention among the network security researchers as one of
the most promising countermeasures to defend our crucial computer sys-
tems or networks against attackers on the Internet. Over the past few years,
many machine learning techniques have been applied to IDSs so as to im-
prove their performance and to construct them with low cost and effort.
Especially, unsupervised anomaly detection techniques have a significant
advantage in their capability to identify unforeseen attacks, i.e., 0-day at-
tacks, and to build intrusion detection models without any labeled (i.e.,
pre-classified) training data in an automated manner. In this paper, we con-
duct a set of experiments to evaluate and analyze performance of the major
unsupervised anomaly detection techniques using real traffic data which
are obtained at our honeypots deployed inside and outside of the campus
network of Kyoto University, and using various evaluation criteria, i.e.,
performance evaluation by similarity measurements and the size of train-
ing data, overall performance, detection ability for unknown attacks, and
time complexity. Our experimental results give some practical and useful
guidelines to IDS researchers and operators, so that they can acquire insight
to apply these techniques to the area of intrusion detection, and devise more
effective intrusion detection models.

key words: intrusion detection system, unsupervised machine learning
techniques, real traffic data, various evaluation criteria

1. Introduction

Due to the proliferation of high-speed Internet access and
local networks, more and more computer systems, networks
and organizations are becoming vulnerable to potential cy-
ber attacks, such as network intrusions. Intrusion detection
systems [1], [2] have played an important role as a tool for
effectively depending our crucial computer systems or net-
works against attackers on the Internet.

During the last decade, many machine learning and
data mining techniques have been applied to IDSs so as to
improve their performance and to construct them with low
cost and effort. Especially, unsupervised anomaly detection
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techniques [3]-[8] have a significant advantage in their ca-
pability to identify unforeseen attacks, i.e., 0-day attacks,
and to build intrusion detection models without any labeled
training data in an automated manner. This kind of IDS
builds normal patterns on the networks and then attempts
to detect deviations from normal patterns in observed data.
Since new intrusions will be different from normal patterns,
it has capability to detect new types of intrusions.

In order to provide useful guidelines for security re-
searchers and operators, several approaches have been per-
formed to evaluate unsupervised machine learning tech-
niques in intrusion detection [9]-[11]. However, they have
two fatal weaknesses which are unacceptable when they are
deployed on a real environment. One is that their experi-
ments were performed using KDD Cup 99 dataset, which
is a simulated benchmark data, and the types of simulated
attacks are too old. The main reason why they used KDD
Cup 99 dataset is that it is quite problematic to obtain high-
quality evaluation data due to privacy and competitive is-
sues, since many organizations are not willing to share their
data with other institutions. Even if real data were available,
labeling traffic data as normal or intrusion requires enor-
mous amount of time for many human experts. The other
problem is that their evaluation mainly focuses on mea-
surement of only performance, i.e., the detection accuracy
and the false positive rate. Since IDSs have to deal with a
tremendous traffic data containing many noise and their per-
formance heavily depends on not only algorithms, but also
many other factors such as similarity measurements, the size
of training data, these criteria also should be considered as
the significant evaluation indicator.

To the best of our knowledge, [11] is the most recent
and extensive comparative research of unsupervised ma-
chine learning techniques for intrusion detection. In this
paper, we expand its evaluation scheme, and the main con-
tributions of our approach are as follows. First, we evaluate
and analyze 3 outlier detection algorithms [13]-[15], 4 clus-
tering algorithms [3], [8], [16], [17] and one-class SVM [6].
Unlike [11], we evaluate two additional unsupervised ma-
chine learning techniques, i.e., LOF[15] and DBScan [17]
which are approaches based on the density between data in-
stances. Further, in case of the clustering techniques, we
consider only K-means and Single Linkage which are ba-
sic clustering methods and our clustering method [8] (in-
cluding DBScan), because [8] shows the best performance
compared with the others. Note that we do not consider to
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evaluate other machine learning techniques such as artificial
neural networks and bayesian network which have high time
complexity in general, because our experimental results for
time complexity in Sect. 3.5 definitely indicate that machine
learning techniques with high time complexity are unsuit-
able for intrusion detection where a tremendously large traf-
fic data should be inspected in real time. Second, in order
to perform the evaluation, we use real traffic data which are
obtained at our honeypots deployed inside and outside of the
campus network of Kyoto University. Third, we investigate
how similarity measurements (Appendix) used by each ma-
chine learning technique influence to its performance. Fi-
nally, we compare performance of each machine learning
technique by the size of training data, overall performance,
detection ability for unknown attacks with time complexity.
Our key findings are:

e Euclidean and Chebyshev distances are better choice
for intrusion detection.

e In case of one-class SVM, it is obvious that RBF kernel
is superior to the others.

e Clustering is more suitable approach than the out-
lier detection approaches for intrusion detection, while
one-class SVM is intermediate.

e Most of the existing unsupervised anomaly detection
techniques (excluding LOF) have weakness for noisy
data.

e DBScan and LOF have long training time, while the
others show relatively short training time.

e The testing time of 3 outlier detection approaches is
inferior to the other 5 approaches.

The rest of the paper is organized as follows. In
Sect. 2, we describe unsupervised anomaly detection tech-
niques briefly. In Sect. 3, we show experimental results and
their analysis. Finally, Sect.4 gives some conclusion and
future work.

2. Unsupervised Anomaly Detection Techniques
2.1 Outlier Detection

Outlier detection techniques assign a score to each data in-
stance which reflects how anomalous it is. In intrusion de-
tection, high-scoring data instances are regarded as intru-
sion. Three main approaches for outlier detection have been
proposed in the literature.

2.1.1 k-Nearest Neighbor (or Kappa)

This approach [13] computes Dy(O) which represents the
distance of a data instance O to the k-th nearest neighbor.
The distance D;(O) is considered as a measure of the out-
lierness of data instance O. In other words, data instances
with larger values D;(O) represent higher possibility of in-
trusion than data instances with smaller values Dy (O).
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2.1.2 Gamma

In case of Kappa, Dy(O) considers the distance to only the
k-th nearest neighbor, but it ignores the distances to the
closer neighbors. Gamma [14] takes the distances to such
all neighbors into account: D,(0O) is data instance O’s aver-
age distance to its k nearest neighbors. Similar to Kappa, the
distance D, (O) of data instance O indicates its outlierness.

2.1.3 LOF

The key idea of this method [15] is to assign local outlier
factor (LOF) to each data instance which represents its out-
lierness. Unlike the above two outlier detection algorithms,
this algorithm considers the density between data instances.
In this algorithm, LOF of a point O is weighted according to
the density among other points around the point O. In other
words, if the density among other points around the point O
is higher, it lowers LOF of the point O.

2.2 Clustering

Clustering algorithms generate several clusters from a set
of data, and after the clustering process they are labeled as
either normal or attack according to a labeling heuristic. The
most generic labeling heuristic labels each cluster according
to its size, i.e., the number of its members. If the size of a
group is relatively larger, it is regarded as normal, otherwise
regarded as attack. This labeling method is based on the fact
that the ratio of normal data to attack data is extremely large
in general. 3 clustering algorithms (K-means[16], Single
Linkage [3], DBScan [17]) adopt this labeling method.

2.2.1 K-Means

K-means [16] is a typical clustering algorithm, and it par-
titions a set of data into k clusters through 3 steps. 1) It
randomly chooses k data instances from dataset and makes
them initial cluster centers. 2) It assigns each data instance
to the closest center, and replaces every cluster’s center with
the mean of its members. 3) It repeats the processes between
1) and 2) until there is no change for each cluster, or other
convergence criterion is met.

2.2.2 Song

Song [8] is a clustering method based on K-means. Its clus-
tering process is basically the same as that of K-means, but
it improves its performance by overcoming shortcomings of
K-means. Furthermore, this approach adopts different la-
beling heuristic from the other 3 clustering algorithms. In
this labeling process, it considers the maximum distance be-
tween a final cluster center and the initial cluster centers
whose majority of the members consist of normal data in-
stances. If the maximum distance between the final cluster
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centers and the initial cluster centers is larger than its aver-
age distance for all final cluster centers, the corresponding
cluster is labeled as attack. Otherwise it is labeled as nor-
mal.

2.2.3 Single Linkage

This algorithm [3] starts with an empty set of clusters. For
each new data instance, it computes the distance between
it and current all cluster centers, and the cluster with the
shortest distance is selected. If that distance is less than a
threshold W, then the data instance is assigned to that clus-
ter. Otherwise, the data instance is farther away than W from
all clusters, and then a new cluster is created with the data
instance as its center.

2.2.4 DBScan

Similar to LOF, DBScan [17] relies on a density-based no-
tion of clusters which is designed to discover clusters of ar-
bitrary shape in spatial databases with noise.

2.3 One-Class SVM

Given a training data, one-class SVM [6] finds out a hyper-
sphere where most of the data instances (i.e., majority) are
inside the hypersphere, and regards the inside of the hyper-
sphere as a normal area. In the testing phase, it labels a
data instance as intrusion if the data instance is outside the
hypersphere, otherwise, labels the data instance as normal.

3. Experimental Results and Analysis
3.1 Data Description

In [18], we have deployed several types of honeypots on the
5 different networks which are inside and outside of Kyoto
University: 1 class A and 4 class B networks. For exam-
ple, there are some Windows base honeypots with Windows
XP with SP2, full patched Window XP, Windows XP with-
out any patch, Windows Vista, and symantec honeypot with
Solaris, network printer, home appliance, e.g., TV, Video
Recorder and so on. In addition to traditional honeypots
which only receive attacks, we deployed proactive systems
which access to malicious web servers and join botnets to
receive various types of commands. We collected all traf-
fic data to/from the honeypots, and observed that most of
them are attack data. For the collected traffic data, we in-
vestigated each connection whether there was buffer over-
flow attack or not. If the attack existed, a shellcode and
an exploit code were identified by using the dedicated soft-
ware [19]. Since Aug. 4th, 2005, we have assigned ID to
each shellcode/exploit code. We also used IDS alerts ob-
tained by SNS7160 IDS system [20] and malware informa-
tion obtained by ClamAV [21] as extra information for the
inspection. By using these diverse information, we thor-
oughly inspected the collected traffic data, and identified

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.9 SEPTEMBER 2010

what happened on the networks.

In spite of this effort for identifying attacks over the
networks, there is a possibility that unidentified attacks are
being contained in the honeypot traffic data. However, in
our investigation, we observed that the almost all honeypot
traffic data used for our experiments were classified into at-
tack data and there were few unidentified traffic data. There-
fore, we regarded all the original honeypot traffic data as
attack data and used all of them for our evaluation data, be-
cause performance of each machine learning algorithm is
almost unaffected by a small amount of unidentified traffic
data or they can be treated as just noisy data. Furthermore, it
does not matter to keeping unidentified traffic data within the
evaluation dataset from viewpoint of that all machine learn-
ing algorithms are fairly evaluated under the same condition
(i.e., with the same unidentified traffic data) even if uniden-
tified traffic data are scattered in the evaluation dataset.

On the other hand, since the most of the honeypot traf-
fic data are attack data, we should prepare a lot of nor-
mal data in order to evaluate performance of each algorithm
fairly and effectively. To this end, we deployed a mail server
for generating the normal traffic data, and regarded the traf-
fic data recorded by it as normal data. The mail server was
also operated with several communication protocols, e.g.,
ssh, http and https, for its management and also received var-
ious attacks. Although all of these activities were included
with the traffic data, they do not affect to performance of
machine learning techniques considered in our experiments
due to their small amount.

3.2 Evaluation Process of Intrusion Detection Models

Figure 1 shows the evaluation process of each machine
learning algorithm for intrusion detection. The evaluation
process is composed of two phases: training phase and test-
ing phase. The training phase is summarized as follows.

1. Collecting: collect raw traffic data from the Internet.
In our experiments, we used two sets of the traffic data,

Training Phase
2. Summarizing 3. Conversion 4. Extracting
Traffic - Session . //// Connection > Traini
Data Data Record raining
P Data
74
1. Collecting
5. Training
Performance:
Internet Evaluation
6. Collecting 9. Testing
Traffic _, || [Session —,//// Connection
Data Data Record
77

7. Summarizing 8. Conversion

Testing Phase

Fig.1  Evaluation process of machine learning algorithms based on
unsupervised anomaly detection.
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a day (Nov. 2, 2007) and three days (Nov. 1-3, 2007)
as the training data.

2. Summarizing: summarize collected raw traffic data in
session data in that each session consists of its start
time, duration, source address and port, destination ad-
dress and port, and so on. We used Bro[22] for this
summarizing process.

3. Conversion: convert summarized session data into
connection records, which consist of 14 statistical fea-
tures. These 14 statistical features were selected by the
evaluation results of Mukkamala, et al. where they ver-
ified that many of the original 41 features of KDD Cup
99 dataset are duplicate and redundant [23], and they
observed that only 14 features are most significant and
essential. In addition to 14 fundamental features, we
also appended 3 additional features to our benchmark
data for further analysis by anyone; shellcode ID, mal-
ware identification and IDS alerts. Our benchmark data
are opened to the public at [24], and visit our web site
for more detail.

4. Extracting: extract the training data from converted
connection records. The ratio of attack to normal in
the training data should be small, because most of the
traffic data observed on the networks are normal data
generally. However, we collected traffic data through
honeypot networks, so that the attack ratio was unnat-
urally high, i.e., 80% on average. Similar to KDD Cup
99 dataset, therefore, we adjusted the attack ratio to
1%. As a result, 58,294 and 209,467 data instances
were randomly and fairly selected from each set of the
training data.

5. Training: train each unsupervised machine learning
algorithm using the extracted training data, and thus
the corresponding IDS model is constructed.

As the testing data, we prepared the traffic data of 10
days: December 1st, 8th, 15th and 22nd 2007, January 10th,
17th and 23rd 2008, February 9th, 16th and 23rd 2008.
Also, in order to evaluate the detection capability for 0-day
attacks, we prepared the traffic data of 5 days in which un-
known attacks were observed: December 21st, 2007, Jan-
uary 30th 2008, February 7th, 10th and 11th 2008. In the
testing phase, we applied the two processes, i.e., 7 and 8 in
Fig. 1, which are the same to those of the training phase to
the traffic data of 15 days, and consequently obtained con-
nection records with 14 statistical features. After that, we
fed connection records of the testing data into IDS models
which are built in the training phase, and then we evaluated
each IDS model according to their detection mechanism.

In order to provide information regarding complexity
of generating the evaluation dataset, we examined the pro-
cessing time of the summarizing and conversion processes
with respect to the original training data and testing data,
and the results are shown in Table 1. This measurement
was performed on the machine with Intel Xeon Quad-core
3.8 GHz CPU and 2 GB RAM. From Table 1, we can see
easily that the size of raw traffic data used for generating our
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Table1 Time complexity of generating the evaluation dataset and the
size of raw traffic data.

Date Summarizing time | Conversion time | Size
(Sec.) (Sec.) (MB)
Nov. 1, 2007 372 42 576
Nov. 2, 2007 375 29 493
Nov. 3, 2007 381 63 571
Dec. 1, 2007 375 33 654
Dec. 8, 2007 84 18 555
Dec. 15, 2007 20 19 442
Dec. 22, 2007 30 27 431
Jan. 10, 2008 373 43 447
Jan. 17, 2008 52 34 524
Jan. 23, 2008 49 46 762
Feb. 9, 2008 376 32 708
Feb. 16, 2008 371 34 671
Feb. 23, 2008 28 34 434
Dec. 21, 2007 25 26 479
Jan. 30, 2008 26 35 475
Feb. 7, 2008 380 34 887
Feb. 10, 2008 377 30 669
Feb. 11, 2008 432 31 741

evaluation dataset is between 431 MB and 887 MB, and the
generating processes of session data and connection records
could be done within several minutes and tens of seconds,
respectively.

3.3 Evaluation of Similarity Measurement

In case of the existing unsupervised machine learning ap-
proaches for intrusion detection, they mainly apply Eu-
clidean distance to measure similarity between the data in-
stances to be learned and tested. Euclidean distance can be
regarded as a general selection for that, but it does not be-
come the best choice in any situation. In our evaluation,
we compare Euclidean distance with other 3 similarity mea-
surements, i.e., Manhattan, Canberra and Chebyshev dis-
tances, with respect to 4 clustering algorithms and 3 out-
lier detection algorithms. Since one-class SVM uses a ker-
nel function for measuring similarity, we compare Polyno-
mial and Sigmoid kernel functions with RBF kernel func-
tion (Radical Basis Function or Gaussian Function) which
is adopted in the previous researches. See Appendixes A.1
and A.2 for more detail.

For this comparison, we used the training data of 1 day
and the testing data of 10 days, and the experimental re-
sults below are averaged on the results for 10 days. Fig-
ure 2 shows the comparison of ROC curves of 8 algorithms
by similarity measurement. We only show the portion of
the ROC curve between the false positive rates of 0—10%,
because higher rates are unacceptable for intrusion detec-
tion. From Fig. 2, we can observe that each algorithm has its
best similarity measurement. For example, in case of Song,
Chebyshev distance is better than the others at the false pos-
itive rate below 7%, whereas Euclidean distance is superior
at the higher false positive rate. It seems that Euclidean and
Chebyshev distances are better choice for intrusion detec-
tion from view point of overall performance. Furthermore,
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Fig.2 ROC curves for each algorithm according to similarity measurement.

it is easy to see that Canberra distance is not suitable for
similarity measurement. In case of one-class SVM, it is ob-
vious that RBF kernel is superior to the others. Note that the
following our experimental results focus on the evaluation
for only two similarity measurements; Chebyshev distance
and RBF kernel function. Due to space limitations, only the
results for Chebyshev distance are shown here, but similar
results were also observed for Euclidean distance.

These comparison results give us the following two
points. One is when we devising a new distance measure-
ment for intrusion detection, we should take account of the
notable feature. If two data instances have a highly different
value at a certain dimension, then their distance, i.e., sim-
ilarity should be dominated by that dimension. Euclidean

and Chebyshev distances weight to such a dimension, that
is, the squared value in Euclidean distance and the maxi-
mum value in Chebyshev distance are emphasized. The dis-
tance between two data instances, therefore, becomes quite
long. While in case of the rest, they regard the values of
all dimension as the same weight. The other is useful in-
formation provided by one-class SVM which transforms the
traffic data with many noise data to follow the normal dis-
tribution. Therefore, if one devises an intrusion detection
model based on machine learning techniques, particularly
probability theory, he/she should consider this characteristic
of the traffic data.
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3.4 Performance Evaluation

3.4.1 Performance by Data Size

Since the attack techniques are changing every day, and the
network situation is also always changing, these unstable
conditions may heavily influence performance of machine
learning techniques. In order to cope with these issues, it is
required to construct an intrusion detection model trained by
the training data as large as possible, and to update it period-
ically, so that it is able to cover a wide range of ongoing at-
tacks and normal patterns. However, there is also a problem
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that the noisy data also increase with the expansion of the
size of the training data. Therefore, it is worthwhile inves-
tigating whether each machine learning algorithm is robust
or not to the noisy data.

In this experiment, we evaluated performance of § al-
gorithms by the size of the training data, i.e., 1 day and 3
days, and obtained their ROC curves as shown in Fig.3.
From Fig. 3, we can see that performance of most of the al-
gorithms (excluding LOF) is decreased with the increase of
the training data. This is because the noisy data also grow
with the increase of the training data as mentioned above,
even though the range of the normal patterns and the attack
patterns which are covered by the training data is extended.
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Fig.3 ROC curves for 8 algorithms according to two training data (1 day and 3 days) under

Chebyshev distance.
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(a) training data of 1 day

(b) training data of 3 days

Fig.4 3 dimensional projection by PCA. Each black point indicates a
data instance.

In fact, Fig. 4 shows the results that our training data of 1 day
and 3 days are projected into 3 dimensional space by PCA
(Principle Components Analysis). From Fig. 4, we can ob-
serve that the training data of 3 days are more complex (i.e.,
more noisy) than that of 1 day. In other words, in case of
the training data of 3 days, more data points do not exist
on the line of coordinates than those of the training data of
1 day. Therefore, it needs to devise unsupervised anomaly
detection techniques that are robust to the noisy data, and
make the best use of the extended normal patterns. Because
long-term training data enable one to construct more stabile
intrusion detection model. Note that although performance
of LOF becomes better with respect to the expansion of the
training data, its performance is still low.

3.4.2 Overall Performance

Figure 5 shows the overall performance of each machine
learning algorithm by utilizing 10-day testing data. Com-
paring (a) and (b) of Fig.5, we can see that the cluster-
ing base approaches outperform the outlier detection base
approaches, whereas one-class SVM is intermediate. This
can be analyzed as follows. In case of the outlier detec-
tion base approaches, their performance heavily depends on
false positives and false negatives which are misclassified
during the training phase. If a data instance is classified as
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(a) Training data of 1 day
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Fig.5  Overall performance for each algorithm.

false positive during the training phase, all data instances of
the testing data which are closest to the data instance are
also misclassified as false positive. On the other hand, the
clustering base approaches classify each data instance of the
testing data by comparing with the clusters’ centers which
are labeled as attack or normal during the training phase.
Therefore, they become robust to a small amount of false
positives and false negatives, because the clusters’ centers
are averaged by their members.

Now, we have to give an attention to the existing
researches which show quite different evaluation results
from our ones. Eskin et al.[4] present three algorithms,
a fix-width clustering technique, K-nearest neighbor and
one-class SVM, and evaluate them by performing experi-
ments on KDD Cup 99 dataset [12]. This evaluation shows
that all three algorithms perform relatively close to each
other. Lazarevic et al. [9] compare several distance-based
and density-based outlier detection schemes as well as one-
class SVM. Their evaluation results demonstrate that the
most promising technique for detecting intrusions is the Lo-
cal Outlier Factor (LOF) approach. In [11], they provide
the comparative results of several clustering methods, K-
nearest neighbor [13] and one-class SVM [6]. This compar-
ative study shows that one-class SVM [6] and Y-means [5]
clustering method have better performance than the others
on average. As a summary, it can be considered that perfor-
mance of the outlier detection approaches is comparable to
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Fig.6 3 dimensional PCA projection for KDD Cup 99 dataset. Each
black point indicates a data instance.

others.

In order to clarify the reason of these different evalua-
tion results, we obtained the PCA results from KDD Cup 99
dataset which was used in the existing approaches as shown
in Fig. 6. KDD Cup 99 dataset has the almost same size of
our training data as 1-day dataset. Therefore, comparing (a)
of Figs. 4 and 6, it is easy to see that KDD Cup 99 dataset
can be projected by only 3 principle components, and the
noisy data within KDD Cup 99 dataset are extremely small
compared with the real data. Therefore, it can be consid-
ered that the outlier detection algorithms show better per-
formance when they were applied to KDD Cup 99 dataset
than the real data, because KDD Cup 99 dataset consists of
almost pure data instances, and consequently there was lit-
tle influence by false positives to performance of the outlier
detection algorithms.

3.4.3 Performance for Unknown Attacks

Figure 7 shows ROC curves of 8 algorithms for unknown
attacks. For this evaluation, we used the training data of 3
days and the testing data of 5 days where unknown attacks
were observed by our analysis. From Fig. 7, we can observe
that similar results with Fig. 5 are obtained.

3.5 Evaluation of Time Complexity

Time complexity of each technique is one of the most
significant indicators to determine whether IDS can adopt
the technique in a real environment. The following mea-
surement was performed on the machine with Intel Xeon
3.8GHz CPU and 3.5GB RAM. Figure 8 (a) shows the
training time of each approach where 1 day (58,294 in-
stances) and 3 days (209,467 instances) training data are
used, and we can easily observe that DBScan and LOF con-
sume long training time, i.e., around 3 hours and 18 hours
for 1 day and 3 days training data, respectively. Meanwhile
the others show relatively short training time. Figure 8 (b)
shows the testing time of each algorithm, and we can see
that 3 outlier detection algorithms have long testing time.
This is because they compare the distance between all data
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instances within the training data and the testing data one by
one. While the others have relatively short detection time. In
case of one-class SVM, its short detection time is obtained
from the fact that it only uses several support vectors during
the testing phase.

Our testing data were extracted from the original traffic
data without any adjustment. Each day, we observed from
14.1 to 60.1 pps (packet per second) on average. Maximum
and minimum ppses were 1,078 (2007-12-01 03:01:08) and



2552

0 (many times), respectively. On the other hand, our train-
ing data were modified for adjusting the ratio of attack and
normal data. Although we could not calculate accurate pps
of them, they shown similar trend of our testing data.

These pps values of our training and testing data
demonstrate that machine learning techniques with high
time complexity are unpractical for intrusion detection. In
general, traffic data to be inspected in the network of orga-
nizations such as enterprises and universities are extremely
larger than our experimental data. In this paper, therefore,
we focus only on light weight algorithms to evaluate their
performance.

4. Conclusion and Future Work

In this study, we have conducted a set of blind experiments
of unsupervised anomaly detection techniques using honey-
pot data. Our main goal is to provide practical and useful
guidelines to security researchers and operators. Our exper-
imental results show that

e Each algorithm has its best similarity measurement.
Users have to choice an optimized method for simi-
larity measurement with respect to the corresponding
algorithm. It seems that Euclidean and Chebyshev dis-
tances are better choice for intrusion detection from
view point of overall performance. Canberra distance
is not suitable for comparing similarity between the
data instances. In case of one-class SVM, it is obvi-
ous that RBF kernel is superior to the others.

e The clustering base approaches are more suitable than
the outlier detection base approaches for intrusion de-
tection from viewpoint of overall performance, detec-
tion capability for unknown attacks and time complex-
ity, whereas one-class SVM is intermediate.

e Most of the existing unsupervised anomaly detection
techniques (excluding LOF) have weakness for noisy
data. Although performance of LOF becomes better
with respect to the expansion of the training data, its
performance is still low.

e Outlier detection base approaches are not suitable for
intrusion detection. Because their performance heav-
ily depends on the structural complexity of benchmark
data.

e DBScan and LOF have long training time, while the
others show relatively short training time.

e The testing time of 3 outlier detection approaches is
inferior to the other 5 approaches.

For future work, first of all, we need to verify perfor-
mance of each machine learning technique over more var-
ious and larger real data, so that we can find out the suit-
able updating interval and the optimized size of the training
data. However, such experiments are time-consuming, and
this should be treated as an individual research topic. Sec-
ondly, in case of unsupervised techniques, they require sev-
eral parameters during the training and the testing phases.
For example, K-means has to set the number of clusters, &,
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to be created finally before it starts the clustering process. In
many cases, their performance heavily depends on the val-
ues of parameters used. Therefore, it needs to investigate
whether they are sensitive or not to parameters. Finally, we
would like to expand our evaluation with respect to more
various attack ratio of the training data, e.g., the attack ratio
of 0.5%, 2%, 5%. even though the situation where the ra-
tio of attack data to normal data is actually extremely small
makes our evaluation to reasonable. Because in a real world,
there may exist some organizations where the ratio of the at-
tack data is unpredictable, i.e., higher than 1% or lower than
1%.
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Appendix: Similarity Measurement
A.1 Distance Measurement
Given a pair of objects, a =

{b1,ba, ...
follows.

{a1,as,...,a,}, b =
, by}, the distance between a and b, d(a,b), is a

e Euclidean distance:

d(a,b) = (A-1)

e Manhattan distance:
d@a,b) = > la; - by (A-2)
i=1

e Canberra distance:

O lai — bil
d(a,b) = 2 a1l (A-3)
e Chebyshev distance:
d(a,b) = mlax la; — byl. (A-4)
A.2 Kernel Function
Given a pair of objects, a = {aj,az,...,a,}, b =
{b1,b,,...,b,}, K(a,b) between a and b is as follows.
e Polynomial kernel:
K(a,b) = (a"b + 1) (A-5)
e RBF kernel:
K(a,b) = exp (_”%zb”z) (A-6)
e Sigmoid kernel:
K(a,b) = tanh(ka” b + 0). (A-7)
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