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PAPER

Color Independent Components Based SIFT Descriptors for
Object/Scene Classification

Dan-ni AI†a), Student Member, Xian-hua HAN†, Xiang RUAN††, Nonmembers, and Yen-wei CHEN†, Member

SUMMARY In this paper, we present a novel color independent com-
ponents based SIFT descriptor (termed CIC-SIFT) for object/scene classi-
fication. We first learn an efficient color transformation matrix based on
independent component analysis (ICA), which is adaptive to each category
in a database. The ICA-based color transformation can enhance contrast
between the objects and the background in an image. Then we compute
CIC-SIFT descriptors over all three transformed color independent compo-
nents. Since the ICA-based color transformation can boost the objects and
suppress the background, the proposed CIC-SIFT can extract more effec-
tive and discriminative local features for object/scene classification. The
comparison is performed among seven SIFT descriptors, and the experi-
mental classification results show that our proposed CIC-SIFT is superior
to other conventional SIFT descriptors.
key words: CIC-SIFT descriptor, object/scene classification, ICA-based
transformation

1. Introduction

Object/scene classification, which is important for concept
detection or metadata annotation, is one of the most chal-
lenging problems in computer vision and pattern recogni-
tion.

Feature extraction, as one of the most important steps,
can capture a certain visual property of an image. There
are two types of image features: global features (color, tex-
ture, and shape) for the entire image and local features for
a small group of pixels [8]. Recently, local features have
been commonly employed in real-world applications. Typ-
ically, SIFT (Scale-Invariant Feature Transform) descriptor,
which is a local feature proposed by Lowe [2], has been
widely used for object/scene classification. The SIFT de-
scriptors can extract distinctive features from an image and
describe the local shape using edge gradient histograms.
The main drawback of the standard SIFT descriptor is that
light color changes are ignored [1], since only gray-scale
intensities are used for computation. Thus, several color
SIFT descriptors have been proposed recently by combining
color information with local SIFT descriptors, such as RGB-
SIFT, HSV-SIFT [3], HueSIFT [9], W-SIFT [1], rgSIFT [1],
Transformed color SIFT [1], CSIFT [18] and Opponent-
SIFT [1]. What they all have in common is that they
first transform an RGB color image into other color space
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with physical model-based transformations. Physical model
based transformations, such as opponent transformation, are
very useful color transformations for the representation of
some physical properties. Koen E.A. van de Sande et al.
presented a comparative study of several global and local
descriptors including histograms (RGB, Opponent, Hue, rg,
transformed color), color moments, moment invariants [20],
standard SIFT and the color SIFT represented previously.
Their experiments showed that the accuracy of ranked cate-
gory classification results of the color SIFT descriptors was
much better than those of other descriptors.

The existing color transformations, mentioned above,
can be considered as generic or physical model-based meth-
ods. They are defined uniquely and are not dependent on in-
put images. However, in some practical situations, training
set has been already given in advance. Therefore, it is much
better to take into account the object specific knowledge in-
cluded in the training set, and impose it to SIFT descriptors.

Interest is growing in developing image coding (spatial
and spectra) by statistical analysis. These approaches follow
the idea of Barlow that the goal of vision information pro-
cessing is to transform input signals to reduce redundancy
between inputs [16]. In an analysis of color information,
Buchsbaum et al. found that the use of opposing coding is
the most efficient way to encode human photoreceptor sig-
nals [13]. By analysing spectral distributions of natural im-
ages using principal component analysis (PCA), Rudernam
et al. [14] found that the principal components were close
to the opposing coding proposed by Buchsbaum et al. [13].
Rudernam also pointed out that principal components de-
pend on experimental data and are not uniquely defined.
Since PCA uses only second-order statistics for decorre-
lation solution, methods involving higher-order statistics
such as independent component analysis (ICA) are attract-
ing increased attention recently [4], [12], [15]. In ICA, trans-
formed independent components are non-correlated and as
statistically independent of each other as possible. In our
previous work, we have shown that among the three color
independent components obtained from RGB color space,
two are in an opposing-color model by which the responses
of R, G and B cones are combined in opposing fashions.
This coincides with the idea of contrasting reflected in many
color systems [10]. Meanwhile, it has been proven that in-
dependent component analysis can be applied to images for
enhancing the contrast of different objects [26].

This paper describes a novel color independent com-
ponents based SIFT descriptor (termed CIC-SIFT). Our
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proposed CIC-SIFT can be divided into two steps. We
first find an adaptive transformation using independent com-
ponent analysis based on the learning rule of Bell and
Sejnowski [12]. Then we compute CIC-SIFT descriptors
over all three transformed color independent components
(channels. Compared to conventional physical model-based
color transformations, our proposed ICA-based transforma-
tion can be considered as an object-specific method which
needs training set. It can enhance contrast between object
and background in an image. Consequently, the proposed
CIC-SIFT can extract more effective and discriminative lo-
cal features for object/scene classification. On the other
hand, CIC-SIFT is a learning based object-specific method,
so it needs an extra learning phase to obtain the transforma-
tion matrix. However, all the learning phase is carried out
offline, and once the transformation matrix is obtained, there
are no significant differences between our proposed method
and the conventional physical model-based methods for ob-
ject/scene classification.

ICA or SKICA is applied to SIFT features for dimen-
sion reduction. [24], [25]. While, in our paper, ICA is used
to find an efficient color space for each category. And then,
the SIFT features are extracted in this new transformed color
space.

This paper is organized as follows. In Sect. 2, six
conventional SIFT descriptors are summarized briefly. In
Sect. 3, we review the theory of independent component
analysis and present a novel color independent components
based SIFT descriptor (CIC-SIFT). The detailed experimen-
tal results are shown in Sect. 4. Finally, we conclude the
paper in Sect. 5.

2. Conventional Color SIFT Descriptors

To date, SIFT descriptors are improved by combining the
color information for object/scene classification. Several
color SIFT descriptors have been proposed by researchers
based on conventional color space transformations, such as
RGB-SIFT, Transformed color SIFT, HSV-SIFT, CSIFT and
Opponent-SIFT.

2.1 SIFT

The SIFT descriptor, proposed by Lowe, extracts the local
features that are invariant to the image scale, rotation, and
viewpoint [2], and describes the local shape using orienta-
tion histograms. The traditional SIFT descriptor is only used
for gray-scale image. A color image is first transformed into
a gray-scale image and then SIFT descriptors are calculated
over the obtained gray-scale image. Usually, a 4×4 array of
histograms with 8 orientation bins is used to form the SIFT
descriptor for one key point. Therefore, a typical dimension-
ality of conventional SIFT feature vectors is 128 (4× 4× 8).

2.2 RGB-SIFT

A pixel of a color image is usually given as three intensities

in R, G and B channels. RGB-SIFT descriptors are pro-
posed by combining RGB color information with conven-
tional local SIFT descriptors. 384-dimensional RGB-SIFT
descriptors can be obtained by arranging three SIFT descrip-
tors together, which is shown in Eq. (1).

D =
[
hR1 hR2 · · ·hR128 hG1 hG2 · · ·hG128 hB1 hB2 · · ·hB128

]T (1)

where D denotes the RGB-SIFT descriptor of a key point,
and hRn , hGn , hBn (n = 1, 2, . . . 128) denote orientation bins
of a key point for each channel, respectively.

2.3 Transformed Color SIFT

A transformed color SIFT is proposed by van de Sande
et al. [1], in which the pixel value distributions are normal-
ized independently as Eq. (2) shows.

[
Rt Gt Bt

]T
=

[
R − μR

σR

G − μG

σG

B − μB

σB

]T
(2)

Transformed color SIFT descriptors are scale-invariant,
shift-invariant and invariant to light color changes and shift.
It is calculated in the transformed color space. Three 128-
dimensional descriptors in each channel of the same position
are combined to represent a feature vector with a dimension
of 384 like RGB-SIFT (3 channels × 128-dimensional ori-
entation bins).

2.4 HSV-SIFT

HSV-SIFT is given by Bosch et al. [3] to calculate the de-
scriptors over three channels in HSV color space. Since the
three channels of HSV color space are not correlated and
HSV color space is similar to the human cognitive system,
HSV color space could give more information than RGB
color space. The transformation of HSV is shown in the
following equations.

H=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if max = min(
60◦× G−B

max−min+360◦
)

mod 360◦, if max=R

60◦ × B−R
max−min + 120◦, if max = G

60◦ × R−G
max−min + 240◦, if max = B

S =

{
0, if max = 0
max−min

max = 1 − min
max , otherwise

V=max

(3)

Each key point of HSV-SIFT has 384 dimensions.

2.5 CSIFT

Colored SIFT (CSIFT), proposed by Abdel-Hakim et al.,
does not only embed the color information in the descrip-
tors, but also in respect to the geometrical invariance and
color invariance [18]. The Gaussian color model is used to
calculate geometrical invariance and color invariance from
the RGB color space. It can be shown as Eq. (4) [19]
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⎡⎢⎢⎢⎢⎢⎢⎢⎣
GC1
GC2
GC3

⎤⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.06 0.63 0.27
0.3 0.04 − 0.35
0.34 − 0.6 0.17

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

R
G
B

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (4)

CSIFT descriptors are calculated from this working
space as RGB-SIFT descriptors are.

2.6 Opponent-SIFT

In the Opponent-SIFT, an input color image is converted
from RGB color space to opponent color space by using
Eq. (5) [1]:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
O1
O2
O3

⎤⎥⎥⎥⎥⎥⎥⎥⎦=
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
/√

2 − 1
/√

2 0

1
/√

6 1
/√

6 − √6
/
3

1
/√

3 1
/√

3 1
/√

3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

R
G
B

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (5)

The third component O3 is a summation of RGB repre-
senting intensity, while the first and second components O1
and O2 are opposing coding, which represent color infor-
mation. The opposing coding is considered as the most effi-
cient way to encode human photoreceptor signals [13]. The
Opponent-SIFT descriptor is a combination of three 128-
dimension descriptors calculated from each channel of the
opponent color space. Consequently, the dimension of the
Opponent SIFT descriptor is also 384 similar to RGB-SIFT.
As Eq. (5) shows, the transformation matrix of opponent-
transform is defined uniquely and doesn’t depend on the in-
put images. Thus, it is not adaptive for each category. It
motivates us to learn an efficient and suitable transforma-
tion matrix (color coding) for each category in the following
section.

3. Color Independent Components Based SIFT De-
scriptors (CIC-SIFT)

3.1 Independent Component Analysis

Independent Component Analysis (ICA) is a linear transfor-
mation that transforms a set of random data to be statisti-
cally independent of each other [4]. The application of ICA
for object/scene classification in our study can be briefly de-
scribed as follows.

Let us assume that components in RGB color space are
represented as a vector xRGB = [xR, xG, xB]T . For simplic-
ity‘s sake, it is also assumed that both the mixture vari-
ables and the independent components have a zero mean.
Therefore, we can do some pre-processing before perform-
ing ICA. We calculate the mean value of all pixels in
each component: mean(xR), mean(xG), mean(xB). After
pre-processing, the mean value of every element of xRGB

is subtracted, which can be represented as a vector x =
[x1, x2, x3]T = [(xR − mean(xR)), (xG − mean(xG)), (xB −
mean(xB))]T .Here, x is considered a combination of three
independent source components s = [s1, s2, s3]T with the
3 × 3 mixing matrix A:

x = As (6)

The goal of ICA is to find the transformation matrix
W, so that each element of the resulting vector y becomes
as independent as possible.

y =
[
y1, y2, y3

]T
=Wx (7)

Bell and Sejnowski have proposed a neural learning al-
gorithm for ICA [12]. The approach is to maximize joint
entropy by utilizing the stochastic gradient ascent. The up-
dating formula for W is:

W(t+1) =W(t) + μ
[
I − φ

(
y(t)
) (

y(t)
)T ]

W (8)

where μ is a learning coefficient, and t is an iteration number,
and ϕ (y) = 1 − 2/ (1 + e−y) is calculated for each compo-
nent of y. A whitening technique was used to accelerate this
computation [17]. If the iteration converges, y is considered
to be equivalent to s except in scale and permutation.

3.2 Color Independent Components Based SIFT Descrip-
tors (CIC-SIFT)

Color independent components based SIFT descriptors
(termed CIC-SIFT) are proposed to extract image features
in the ICA-based color space. It is a two-step feature ex-
traction method (see Fig. 1). In the first learning step, we
learn a transformation matrix for each category using ICA.
The second step is the color transformation step. We trans-
form original images components (xR, xG, xB) into three in-
dependent components using the ICA-based transformation
matrix. And then, the transformed color independent com-
ponents are utilized to extract color SIFT features for ob-
ject/scene classification (CIC-SIFT descriptor).

Assuming that there are N categories in a database
and the information of each image is carried by RGB com-
ponents. For ICA transformation matrix learning, M im-
ages are chosen randomly as training samples from each
category. The size of the sample image is h × w. Since
each pixel of an image is represented by a 3 × 1 vector
xRGB = [xR, xG, xB]T , all the sample images can be concate-
nated together into a 3×(h × w × M) matrix x. With the sam-
ple matrix x, a 3 × 3 transformation matrix W can be calcu-
lated by using the learning algorithm proposed by Bell and
Sejnowski [12]. Therefore, from categories in the database,
N adaptive transformation matrices Wi (i ∈ [1, 2, · · · ,N])
corresponding to each category can be learned. Then, we
transform the original components (R, G, B) of training im-
ages into three independent components using the corre-
sponding adaptive transformation matrix Wi, which can be
shown in the following equation

[xIC1, xIC2, xIC3]T =Wi × [xR, xG, xB]T (9)

where vector [xIC1, xIC2, xIC3]T represents color indepen-
dent components which can be used as the new color rep-
resentation for the color SIFT descriptors.

The CIC-SIFT descriptor is calculated in color in-
dependent components space. We combine three 128-
dimension descriptors in each component with the same
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Fig. 1 Flowchart of object/scene classification by using CIC-SIFT descriptors.

key point to represent a 384 dimension feature vector (3
components × 128-dimensional orientation bins).

4. Object/Scene Classification Experiments

The effectiveness of our proposed CIC-SIFT descriptor is
discussed by comparative experiments with several other
SIFT descriptors which are commonly used in object/scene
classification. These comparative experiments can be car-
ried out in terms of the behaviour of the transformation and
the classification results.

4.1 Experimental Setup

In this section, three diverse databases are used in our
experiments to evaluate the performance of six SIFT de-
scriptors (mentioned previously): a SIMPLICITY image
database [5], an object database composed of ten categories
(nine categories were collected from the website† and the
other one was used by R. Fergus et al. [21]) and our own
scene database with data collected from internet. Since
gray-scale images are included in the object database and
the scene database, we transformed a single channel of each
gray-scale image into three channels of color images. The
values of three channels are the same (xR = xG = xB).
The classification process is summarized in Fig. 1. By us-
ing the ICA method, an adaptive transformation matrix is
first learned from training datasets of each category. Then,
the transformation matrix is utilized to transform the origi-
nal color component (xR, xG, xB) into three color indepen-
dent components for all images in the database. We detect
the key points by a regular grid. In each independent com-
ponent image, 32 × 32 pixels overlapping grid is used as a
key point. Each key point in each channel is represented by
a 128-dimension SIFT descriptor. We combine the SIFT de-
scriptors of the corresponding key point in each channel into
a 384 dimension feature vector (128 × 3).

After SIFT descriptors have been calculated, the or-
derless bag-of-feature [6] is used as a feature representa-
tion. We build a visual vocabulary by clustering the fea-

ture vectors (descriptors) from the training set and then rep-
resent each image in the data set as a histogram of visual
words drawn from the vocabulary. In our experiments, k-
means [23] is used as a clustering method and the number of
clusters (visual words) is 100 for the SIMPLICITY database
and 300 for the object database and the scene database.
We employed SVMs as a classifier, which has been widely
used and shown to be efficient for object/scene classifica-
tion [7]. In our experiments, LIBSVM package has been
employed [11]. For fair comparison, we assign the optimum
parameter (the value of gamma is set to 0.3–0.8) of radial
basis function kernel in SVMs for each SIFT descriptor.

All the experiments are implemented on a standard PC
(Intel(R) Core (TM) 2, 1.86 GHZ and 3.00 GB RAM), and
the learning phase for getting the transformation matrix is
carried out with Matlab 2007.

What we should mention is that the test images need to
be transformed by all learned transformation matrices since
we do not really know which category they belong to in ad-
vance. Therefore, for each test image (A), we can obtain N2

classification probabilities (N categories × N transformation
matrices). The test image (A) is allocated to the category
(C) that has the highest value of probabilities, as shown in
Eq. (10):

C(A)=arg max
i

(PW1 (A,i), PW2 (A,i),· · ·, PWN (A,i)) (10)

where i = 1, 2, . . . ,N is the category label; W j ( j =
1, 2, . . . ,N) are transformation matrices learned from each
category; P (x) denotes classification probabilities of a test
image allocated into each different categories.

4.2 Experimental Results

4.2.1 Color Space Transformation

Compared with the conventional color transformations,
which are uniquely defined, ICA can learn adaptive trans-
formation (color coding) from samples statistically.

†http://www.robots.ox.ac.uk/˜vgg/data/data-cats.html
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Fig. 2 Examples of the flower and horse categories and their transformed images.
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In order to discuss the effectiveness of ICA-based color
transformation, we transformed original images into seven
different color spaces (Gray space, RGB color space, Trans-
formed color space, HSV color space, Color Invariant space,
Opponent color space and ICA-based color space).

Two sample images in the flower category and the
horse category are shown in Fig. 2, which includes seven
different transformed images. As we can see from Fig. 2 (c)
and Fig. 2 (n)), both object (flower/horse) and background
(leaves/prairie) appear in original R, G and B channels
clearly. They seem to be similar compared to those ob-
tained by transformed color transformation (Fig. 2 (d) and
Fig. 2 (o)) which is normalized from RGB color space
(Eq. (2)). The object of the hue-channel in HSV color
space is difficult to distinguish and the saturation and value
channel do not significantly enhance the contrast (Fig. 2 (e)
and Fig. 2 (p)). We can not distinguish the object from the
background in Color Invariant space clearly (Fig. 2 (f) and
Fig. 2 (q)), which is an approximation for the human vision
system [19]. In opponent color space, the summation com-
ponent O3 that corresponds to illumination can not enhance
the contrast between the object and the background, while
the contrast can be enhanced in opponent components O1
and O2 (Fig. 2 (g) and Fig. 2 (r)). However, since the trans-
formation matrix, which is defined uniquely, is not a suitable
one for the flower or horse, the boundary between the object
and the background is not clear.

Images transformed by ICA-based transformation ma-
trices are shown in Fig. 2 (h), Fig. 2 (s), Fig. 2 (k) and
Fig. 2 (v). For the flower and horse categories, the trans-
formation matrix in Eq. (9) can be denoted using WICAf lower

and WICAhorse , respectively. They are shown in Eq. (11) and
Eq. (12):

WICAf lower =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.0446 0.8608 −0.7229
0.0214 −1.1898 0.9565
−0.2962 −0.4821 1.3432

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (11)

WICAhorse =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−0.0250 0.0086 −0.1445
−0.1057 −0.1061 0.1843
0.4650 −0.3021 − 0.1404

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (12)

Two rows of the transformation reflect an opposing-
color model by combining R, G and B into opposing color
components. This is similar to the idea in many color trans-
formations. The interesting point is that there is no summa-
tion component, which usually appears in many transforma-
tions.

Our basic idea is to enhance the contrast between the
object and background by extracting independent compo-
nents. Toshiharu Nakai has shown that independent compo-
nent analysis (ICA) can be applied to images for enhancing
the contrast of different objects [26]. The keypoint of ICA
is that we need use similar images (the flower), which have
similar statistical properties, as training samples to learn the
transformation matrix (the basis). While if we use different
category images, such as horse images, to extract the basis,
we just obtain the adaptive transformation matrix of horse

images rather than that of flower images. Therefore, when
we project the flower images on such basis, we could not get
exact independent components for the flower images. Con-
sequently, the boundary is clear and distinct when project-
ing the flower image on the base of the flower (shown in
Fig. 2 (k)) but blurry when projecting the flower image on
the base of the horse (shown in Fig. 2 (h)). We have tested
the projection of the flower with other category spaces, such
as the elephant and building, and shown the results in the
Fig. 2 (i) and Fig. 2 (j), respectively. It is obvious that the
boundaries are blurred, or the objects can not be enhanced or
specifically distinguished. To state our points more clearly,
we have shown another example of the horse image. We can
see that the boundary is clear and the object can be specifi-
cally distinguished when projecting the horse image on the
base of the horse (Fig. 2 (v)), while the boundary is blurry or
the object can not be distinguished when projecting it on the
base of the flower, elephant or building (Fig. 2 (s), Fig. 2 (t)
and Fig. 2 (u)).

4.2.2 Classification Results

In this subsection, the advantage of ICA as a preprocessing
tool for extracting SIFT descriptors was evaluated by com-
parison of the overall categorization accuracy and average
classification rates among six different color SIFT and stan-
dard SIFT descriptors.

(1) The SIMPLICITY Image Database
In the SIMPLICITY database (see Fig. 3), 1000 object

and scene images including ten different categories (peo-
ple, beaches, buildings, buses, dinosaurs, elephants, flow-
ers, horses, mountains and food) are divided into two parts:
600 color images for training (60 for each category) and 400
color images for testing (40 for each category).

As shown in Fig. 6, the results for the people, bus,
flower and mountain categories using CIC-SIFT descriptors
are the best ones among those using other SIFT descriptors.
Furthermore, we can see obviously from Fig. 4 that the aver-
age classification rate of our proposed CIC-SIFT descriptor
is estimated as 82%, which is the highest among all other
SIFT descriptors. It denotes that CIC-SIFT descriptors can

Fig. 3 The SIMIPLICITY image database.
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improve object/scene classification.
(2) Object Database
The object database (see Fig. 5) is composed of ten ob-

ject categories summarized in Table 1. Since the image sizes
vary from 16,000 up to 530,432 pixels, we resized all images
referring to aspect ratio to about 120,000 pixels.

Figure 7 shows the results of overall categories’ classi-
fication experiments using 40 images per category for train-
ing and the rest for testing. The highest categorization rate
(97.7%) is obtained in car brad with CIC-SIFT descriptors.
Meanwhile, the results using CIC-SIFT descriptors for leop-
ards, cars-brad, faces, house and leaves categories outper-
form those using other SIFT descriptors. As shown in Fig. 8,
our proposed CIC-SIFT based average classification rate is

Fig. 4 Average classification rate of the SIMPLICITY using seven SIFT
descriptors.

Fig. 6 Classification rate of ten categories in the SIMPLICITY database.

Fig. 7 Classification rate of ten categories in the object database.

62.3%, which is the highest one among all other SIFT de-
scriptors. Thus, we can see that CIC-SIFT descriptors are
effective and discriminative for object/scene classification.

Fig. 5 The object database.

Table 1 Image number of each category.

Category leopards airplanes bottles camel cars brad
Number 200 1074 247 356 1155
Category faces guitars house leaves motorbikes
Number 450 1030 1000 186 826
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(3) Scene Database
The final experiment was implemented with the Scene

database, which is composed of eight scene categories (see
Fig. 9). Each category has 400 images, and resized images
are 500 × 375 pixels. 40 images per category are used as
training data, and the rest are test data.

Figure 10 displays the categorization results over all
eight scene categories constituting the entire database. Most
categories, such as beach, closeup flower, cooking, party

Fig. 8 Average classification rate of the object database using seven
SIFT descriptors.

Fig. 9 The scene database.

Fig. 10 Classification rate of eight categories in the scene database.

and sunset, can get the best categorization rates using CIC-
SIFT descriptors. We now take a closer look at the clas-
sification results from the confusion matrices of Opponent-
SIFT (Table 2) and CIC-SIFT (Table 3).

The confusion matrices show that the precision of the
CIC-SIFT descriptors is higher than those of the Opponent-
SIFT descriptors. As shown in Table 2, beach, cooking and
snow can obtain the top three classification rates. In compar-
ison with Opponent-SIFT, CIC-SIFT utilizes both specific
color information and a clearer boundary for classification,
which can extract more adaptive and discriminative features
from each category. Take beach category for example, ma-
jor confusion appears between beach and sunset, when the

Table 2 Confusion matrix of the Opponent-SIFT based classification.

Average Classification rates in (%)
(62.1%) be cl co fi ni pa sn su

True class
beach 77.5 0.0 0.0 3.3 0.0 0.8 8.1 10.3
flower 0.3 43.1 42.2 3.1 0.8 6.4 3.9 0.3
cooking 3.3 7.8 66.4 3.6 0.3 1.4 16.4 0.8
firework 2.5 0.0 0.6 66.7 22.2 0.8 4.2 3.1
night 3.9 0.6 0.3 30.0 50.0 7.8 3.1 4.4
party 0.4 6.7 25.6 2.1 5.5 58.8 0.8 0.0
snow 14.7 0.0 10.6 3.1 0.8 0.8 63.1 6.9
sunset 20.0 0.0 0.0 1.7 2.2 0.8 4.7 70.6

Precision 63.3 77.1 48.5 59.1 62.5 67.3 60.7 73.2

Table 3 Confusion matrix of the CIC-SIFT based classification.

Average Classification rates in (%)
(69.1%) be cl co fi ni pa sn su

True class
beach 84.4 0.0 0.3 0.8 0.3 0.6 8.6 5.0
flower 0.0 56.4 35.3 1.9 0.3 4.7 1.4 0.0
cooking 3.9 2.8 82.8 1.1 1.4 2.2 5.3 0.6
firework 0.6 0.6 4.2 63.1 19.7 0.8 6.7 4.4
night 5.0 0.0 1.9 20.6 56.7 9.2 4.2 2.5
party 0.0 2.1 24.4 2.9 4.2 65.1 1.3 0.0
snow 8.6 0.0 3.6 1.1 1.4 0.8 79.2 5.3
sunset 20.6 0.0 1.1 3.3 2.8 1.4 5.6 65.3

Precision 68.6 92.3 57.0 67.2 66.4 68.6 70.9 78.6
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Fig. 11 Average classification rate of the scene database using seven
SIFT descriptors.

Opponent-SIFT is used. This results mainly from the fact
that except for a darker quality, the sunset images are sim-
ilar to beach images. Since our proposed CIC-SIFT learns
transformation matrix from each category, unlike Opponent-
SIFT, specific color information can be extracted. There-
fore, the negative classification rate to sunset is reduced
by using CIC-SIFT. Another major confusion appears be-
tween cooking and snow when the Opponent-SIFT is used.
However, most of boundaries between different objects are
blurry. Consequently, by using CIC-SIFT, the negative clas-
sification rates to cooking and snow are both reduced re-
markably.

As shown in Fig. 11, we can see clearly that the aver-
age classification rate is 69.1% using CIC-SIFT as descrip-
tors, which is much higher than other best results of 62.1%,
achieved using Opponent-SIFT.

Thus, we can conclude that our proposed CIC-SIFT
descriptors can not only increase the classification rate of
object-based images, but also improve that of scene images.

Since only SIFT descriptors are utilized as the local
feature of images, the classification rate is not high enough.
However, the motivation of our work in this paper is to prove
the efficiency of the CIC-SIFT descriptor. The experimen-
tal results show that our proposed CIC-SIFT is superior to
other SIFT descriptors in object/scene classification.

5. Conclusion

In this paper, we proposed a novel color independent com-
ponents based SIFT descriptor (CIC-SIFT) for object/scene
classification. The proposed color transformation based on
independent component analysis (ICA) is adaptive and suit-
able to each category, which can be used for enhancing the
contrast between the object and its background. The pro-
posed CIC-SIFT can extract more effective and discrimina-
tive local features for object/scene classification. The exper-
imental results show that our proposed CIC-SIFT is superior
to other conventional color SIFT descriptors for both object
and scene images.
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