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SUMMARY A (k, δ, ε)-locally decodable code C : Fn
q → FN

q is an
error-correcting code that encodes �x = (x1, x2, . . . , xn) ∈ Fn

q to C(�x) ∈ FN
q

and has the following property: For any �y ∈ FN
q such that d(�y,C(�x)) ≤ δN

and each 1 ≤ i ≤ n, the symbol xi of �x can be recovered with probability at
least 1 − ε by a randomized decoding algorithm looking at only k coordi-
nates of �y. The efficiency of a (k, δ, ε)-locally decodable code C : Fn

q → FN
q

is measured by the code length N and the number k of queries. For a k-query
locally decodable code C : Fn

q → FN
q , the code length N was conjectured

to be exponential of n, i.e., N = exp(nΩ(1)), however, this was disproved.
Yekhanin [In Proc. of STOC, 2007] showed that there exists a 3-query
locally decodable code C : Fn

2 → FN
2 such that N = exp(n1/ log log n) as-

suming that infinitely many Mersenne primes exist. For a 3-query locally
decodable code C : Fn

q → FN
q , Efremenko [ECCC Report No.69, 2008] fur-

ther reduced the code length to N = exp(nO((log log n/ log n)1/2)), and in gen-
eral showed that for any integer r > 1, there exists a 2r-query locally de-

codable code C : Fn
q → FN

q such that N = exp(nO((log log n/ log n)1−1/r )). In
this paper, we will present improved constructions for query-efficient lo-
cally decodable codes by introducing a technique of “composition of lo-
cally decodable codes,” and show that for any integer r > 5, there ex-
ists a 9 · 2r−4-query locally decodable code C : Fn

q → FN
q such that

N = exp(nO((log log n/ log n)1−1/r )).
key words: locally decodable codes, S -matching vectors, S -decoding
polynomials, perfectly smooth decoders, private information retrieval

1. Introduction

Conventional error-correcting codes C : Fn
q → FN

q allow
one to encode �x = (x1, x2, . . . , xn) ∈ Fn

q to C(�x) ∈ FN
q and

have the following property: For any �y ∈ FN
q such that

d(�y,C(�x)) ≤ δN, the original message �x can be recovered
by looking at entire coordinates of �y. If one is interested in
recovering a single symbol xi of �x, more efficient schemes
are possible. Such schemes are known as locally decod-
able codes C : Fn

q → FN
q that allow recovery of any single

symbol xi of �x ∈ Fn
q by looking at only k randomly chosen

coordinates of �y ∈ FN
q such that d(�y,C(�x)) ≤ δN. Infor-

mally, a (k, δ, ε)-locally decodable code C : Fn
q → FN

q is
an error-correcting code that encodes �x = (x1, x2, . . . , xn) ∈
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Fn
q to C(�x) ∈ FN

q and has the following property: For any
�y ∈ FN

q such that d(�y,C(�x)) ≤ δN and each 1 ≤ i ≤ n,
the symbol xi of �x can be recovered with probability at least
1− ε by a randomized decoding algorithm looking at only k
coordinates of �y.

1.1 Known Results

From theoretical and practical point of view, we are in-
terested in designing a (k, δ, ε)-locally decodable code C :
Fn

q → FN
q with as shorter N as possible and as smaller k as

possible. The notion of locally decodable codes was con-
sidered in several contexts [2], [17], [19], and Katz and Tre-
visan [15] were the first to provide a formal definition of lo-
cally decodable codes and prove lower bounds for the code
length. Gasarch [8] and Goldreich [9] conjectured that for a
k-query locally decodable code C : Fn

q → FN
q with k > 1,

the length N is unavoidable to be the exponential in n, i.e.,
N = exp(nΩ(1)). In Table 1, we summarize the known results
on the length for k-query locally decodable codes.

Yekhanin [24], [25] improved the upper bound for
the length of 3-query locally decodable codes to N =

exp(n1/32582657) and disproved the conjecture [8], [9] on the
length of 3-query locally decodable codes, i.e., N =

exp(nO(1/ log log n)) for infinitely many n’s if there exist in-
finitely many Mersenne primes. Very recently, Efre-
menko [7, Theorem 3.8] improved much further the upper
bound for the length of 3-query locally decodable codes to

N = exp(nO((log log n/ log n)1/2
) by introducing the notions of S -

matching vectors [7, Definition 3.1] and S -decoding poly-
nomials [7, Definition 3.4] — this reduces the length of 3-
query locally decodable codes and removes the unproven
assumption that infinitely many Mersenne primes exist. For
any k > 2, Efremenko [7, Theorem 3.6] also disproved the
conjecture [8], [9] on the length of k-query locally decodable
codes (with no unproven assumption), and showed that for
any integer r > 1, there exists a 2r-query locally decodable

code of length N = exp(nO((log log n/ log n)1−1/r
)). For notational

simplicity, we use N(r) to denote the code length as a func-
tion of r > 1, i.e.,

N(r) = exp
(
nO((log log n/ log n)1−1/r

)
)
.

1.2 Main Result

In this paper, we present improved constructions for a query-
efficient locally decodable code, and show that for any r > 5,

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers
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Table 1 Known results on the code length.

Upper Bound Lower Bound

2-Query exp (O(n)) [14] exp (Ω(n)) [14]

3-Query exp
(
n1/2

)
[4] Ω̃

(
n2

)
[14], [22]

k-Query exp
(
nO(log log k)/k log k

)
[5] Ω̃

(
n1+1/(�k/2�−1)

)
[14], [22]

there exists a 9 ·2r−4-query locally decodable code C : Fn
q →

FN
q of length N(r). Our construction of 9 ·2r−4-query locally

decodable codes is partially based on the construction due
to Efremenko [7]. To reduce the number of queries, we in-
troduce a technique of “composition of locally decodable
codes.” In fact, we show that for a k1-query locally decod-
able code C1 of length N(r1) and a k2-query locally decod-
able code C2 of length N(r2), there exists a k1k2-query lo-
cally decodable code C of length N(r1 + r2).

In this paper, we find a 3-query locally decodable code
CIS of length N(2) by an exhaustive search. By applying
our technique of “composition of locally decodable codes”
to the 3-query locally decodable code CE [7, Theorem 3.8]
of length N(2), the 3-query locally decodable code CIS of
length N(2), and the 2r−4-query locally decodable code [7,
Theorem 3.6] of length N(r − 4) for any integer r > 5, we
can construct a 9 · 2r−4-query locally decodable code C of
length N(r).

1.3 Application of Locally Decodable Codes

Locally decodable codes have many applications in com-
plexity theory and cryptography (see, e.g., [8], [20]). In par-
ticular, locally decodable codes are closely related to de-
signing efficient private information retrieval. Informally,
a k-server private information retrieval is a protocol that
consists of k databases D1,D2, . . . ,Dk with identical data
�x = (x1, x2, . . . , xn) and a user U, where each database
D j does not communicate to any other database Dh, and
allows the user U to retrieve xi of �x, while any of the k
databasesD1,D2, . . . ,Dk learns nothing about i. Private in-
formation retrieval was introduced by Chor et al. [6], and the
efficiency of a k-server private information retrieval is mea-
sured by its communication complexity Ck(n), i.e., the total
amount of bits exchanged between U and D1,D2, . . . ,Dk.
Trevisan [20] observed that any k-query locally decodable
code with perfectly smooth decoders can be transformed
into a k-server private information retrieval. For further de-
tails on k-server private information retrieval, see, e.g., [1],
[3], [4], [10], [12]–[14], [16], [18], [23].

In Table 2, we summarize the known results on the
communication complexity Ck(n) for k-server private infor-
mation retrieval. In particular, Efremenko [7, Theorem 3.6]
recently showed that a communication-efficient k-server pri-
vate information retrieval exists for a specific k > 1, i.e.,
for any r > 1, there exists a 2r-server private information
retrieval such that C2r (n) = nO((log log n/ log n)1−1/r), and in par-
ticular, there exists a 3-server private information retrieval
such that C3(n) = nO((log log n/ log n)1/2).

2. Preliminaries

2.1 Locally Decodable Codes

Let Fq be a finite field of q elements and d(�x,�y) be the
Hamming distance of �x = (x1, x2, . . . , xn) ∈ Fn

q and �y =
(y1, y2, . . . , yn) ∈ Fn

q, i.e., the number of indices such that
xi � yi. For any pair of integers a ≤ b, we use [a, b] to de-
note the set {a, a + 1, . . . , b}, and for any integer m > 1, let
Zm = {0, 1, . . . ,m − 1} and Z∗m = {z ∈ Zm : gcd(z,m) = 1}.
Definition 2.1 [15]: We say that C : Fn

q → FN
q is a (k, δ, ε)-

locally decodable code if for each i ∈ [1, n], there exists a
randomized algorithm Di : FN

q → Fq such that (1) for any
�x = (x1, x2, . . . , xn) ∈ Fn

q and any �y ∈ FN
q , Pr[Di(�y) = xi] ≥

1 − ε if d(C(�x),�y) ≤ δN; (2) the algorithm Di makes at most
k queries to �y.

We say that a (k, δ, ε)-locally decodable code C : Fn
q → FN

q
is linear if C is linear over Fq and is nonadaptive if the de-
coding algorithm Di makes all its queries simultaneously. In
this paper, we deal with only linear and nonadaptive (k, δ, ε)-
locally decodable codes.

Definition 2.2 [20]: We say that C : Fn
q → FN

q has a per-
fectly smooth decoderD = {Di}i∈[1,n] if for each �x ∈ Fn

q and
each i ∈ [1, n], Pr[Di(C(�x)) = xi] = 1, and each query made
by the randomized decoding algorithm Di is uniformly dis-
tributed over [1,N].

Trevisan [20] observed that for a code C : Fn
q → FN

q , if C has
a perfectly smooth decoder and makes at most k queries,
then C is a (k, δ, kδ)-locally decodable code. In the rest of
this paper, we consider only locally decodable codes with
perfectly smooth decoders and we use a term “k-query lo-
cally decodable codes” instead of a term (k, δ, ε)-locally de-
codable codes.

2.2 S -Matching Vectors

For any pair of vectors �x = (x1, x2, . . . , xh) ∈ Zh
m and

�y = (y1, y2, . . . , yh) ∈ Zh
m, we use 〈�x,�y〉m to denote the in-

ner product of �x and �y modulo m, i.e.,

〈�x,�y〉m ≡
h∑

j=1

x jy j (mod m).

Definition 2.3 [7]: Let U = {�u1, �u2, . . . , �ut} be a family of
vectors, where �ui ∈ Zh

m, and let S ⊆ Zm \ {0}. We say that
a family U = {�u1, �u2, . . . , �ut} of vectors is S -matching if it
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Table 2 Known results on the communication complexity.

Upper Bound Lower Bound

1-Server n + 1 [6] n [6]

2-Server n1/3 [6], [11] 5 log n [21]

3-Server nO((log log n/ log n)1/2) [7] —

4-Server n1/7.87 [5] —

k-Server nO(log log k/k log k) [5] —

satisfies the following: (1) for each i ∈ [1, t], 〈�ui, �ui〉m = 0;
(2) for each i, j ∈ [1, t] such that i � j, 〈�ui, �u j〉m ∈ S .

Let m = p1 p2 · · · pr be a product of r > 1 distinct primes.
Define S m ⊆ Zm \ {0} as follows: For each s ∈ Zm \ {0}, if
either s ≡ 0 (mod pi) or s ≡ 1 (mod pi) for each i ∈ [1, r],
then s ∈ S m. We refer to S m as the canonical set of the
integer m = p1 p2 · · · pr.

For each integer t ∈ [1, 2r − 1], we use bin(t) =
(tr−1, tr−2, . . . , t0) ∈ {0, 1}r to denote the binary representa-
tion of t, i.e., t = tr−1 ·2r−1+ tr−2 ·2r−2+ · · ·+ t0 ·20, and define
st ∈ [1,m − 1] to be an integer such that st ≡ ti−1 (mod pi)
for each i ∈ [1, r]. From the definition of S m ⊆ Zm \ {0},
it follows that S m = {s1, s2. . . . , s2r−1}, where s0 = 0 and
s2r−1 = 1.

Lemma 2.1 [7, Corollary 3.3]: Let m = p1 p2 · · · pr be a
product of r > 1 distinct primes and let S m be the canonical
set of m. Then there exists c = c(m) > 0 such that for any
integer h > 0, there exists a family U = {�u1, �u2, . . . , �ut} of
S m-matching vectors such that �ui ∈ {0, 1}h ⊆ Zh

m and

t ≥ exp

(
c

(log h)r

(log log h)r−1

)
.

Remark 2.1: Let m = p1 p2 · · · pr be a product of r > 1
distinct primes and S m be the canonical set of m. As in the
proof of [7, Theorem 3.6], it suffices to take

h = nO((log log n/ log n)1−1/r) (1)

to define a familyU = {�u1, �u2, . . . , �un} of S m-matching vec-
tors for any integer n > 1, where �ui ∈ Zh

m.

2.3 S -Decoding Polynomials

To construct a (k, δ, ε)-locally decodable codes of short
length, the following lemma is useful.

Lemma 2.2: For an odd integer m > 1, let t ∈ [1,m − 1] be
the minimum integer such that 2t ≡ 1 (mod m). Then there
exist an element γ ∈ F2t of order m, i.e., γm = 1 and γi � 1
for each i ∈ [1,m − 1].

The lemma above is a slightly stronger result of [7, Fact 2.4]
and can be shown in a way similar to [7, Fact 2.4].

Let m = p1 p2 · · · pr be a product of r > 1 distinct odd
primes and γ ∈ F2t be an element given by Lemma 2.2. Efre-
menko [7] introduced a notion of S -decoding polynomials,
which plays a crucial role to construct a query-efficient lo-
cally decodable code.

Definition 2.4 [7, Definition 3.4]: For any S ⊆ Zm \ {0}, we
say that P(x) ∈ F2t [x] is an S -decoding polynomial if it
satisfies the following: (1) P(γs) = 0 for each s ∈ S ; (2)
P(γ0) = 1.

Efremenko [7] showed that there exists an S -decoding poly-
nomial with a few monomials.

Lemma 2.3 [7, Claim 3.1]: For a product m of r > 1 dis-
tinct odd primes and a canonical set S m of m, there exists an
S m-decoding polynomial Pm(x) over F2t with at most |S m|+1
monomials.

Remark 2.2: The number of monomials of an S m-decoding
polynomial is closely related to the number of queries of
the corresponding locally decodable code. In fact, the num-
ber of monomials of an S m-decoding polynomial is k iff the
number of queries of the corresponding locally decodable
code is k.

From the definition of the canonical set S m of a product m =
p1 p2 · · · pr of r > 1 distinct odd primes, it is obvious that
|S m| = 2r − 1. Thus from Lemma 2.3, we immediately have
the following lemma:

Lemma 2.4 [7]: Let m = p1 p2 · · · pr be a product of r >
1 distinct odd primes. Then there exists an S m-decoding
polynomial Pm(x) with at most 2r monomials.

3. Known Construction

We describe the construction of (k, δ, ε)-locally decodable
codes given by Efremenko [7].

Let m = p1 p2 · · · pr be a product of r > 1 distinct odd
primes, γ ∈ F2t be an element determined by Lemma 2.2
and Pm(x) = a0 + a1xb1 + · · · + ak−1xbk−1 ∈ F2t [x] be an S m-
decoding polynomial, where S m is the canonical set of m.
For an integer n > 1, we take h = nO((log log n/ log n)1−1/r) as we
have mentioned in Remark 2.1, and we construct a family
U = {�u1, �u2, . . . , �un} of S m-matching vectors, where �ui ∈ Zh

m
for each i ∈ [1, n].

In the following, we present encoding and decoding
procedures by Efremenko [7], which are used in our con-
structions for query-efficient locally decodable codes.

3.1 Encoding

For each i ∈ [1, n], let �ei ∈ Fn
2t be the ith unit vector. Define
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Fig. 1 Decoding algorithm Di.

a code C : Fn
2t → FN

2t as follows: For any message �x =
(x1, x2, . . . , xn) ∈ Fn

2t , let C(�x) = x1C(�e1) + x2C(�e2) + · · · +
xnC(�en), where for each i ∈ [1, n],

C(�ei) =
(
γ〈�ui,�z〉m)

�z∈Zh
m
. (2)

Thus the code length of C is given by N = mh, i.e., N =

N(r) = exp(nO((log log n/ log n)1−1/r
)).

3.2 Decoding

For each i ∈ [1, n], a randomized decoding algorithm Di :
FN

2t → F2t is described in Fig. 1.

Lemma 3.1 [7, Lemma 3.5]: The decoding algorithm D =
{Di}i∈[1,n] is a perfectly smooth decoder.

From Lemmas 2.1 and 2.4, we have the following result:

Theorem 3.1 [7, Theorem 3.6]: For any integer n > 1 and
any integer r > 1, there exists a 2r-query locally decodable
code C : Fn

2t → FN
2t of length N(r).

4. Query-Efficient Locally Decodable Codes

In this section, we present constructions for query-efficient
locally decodable codes of short length. A key idea of our
construction is to generate a k1k2-locally decodable code by
composing a k1-locally decodable code and a k2-locally de-
codable code (see Theorem 4.1).

4.1 How to Reduce the Number of Queries

By setting r = 2 in Theorem 3.1, it is immediate to see
that for any integer n > 1, there exists a 4-query locally
decodable code C : Fn

2t → FN
2t of length N(2).

Efremenko [7] found a surprising example: Let m =
511 = 29 − 1 = 7 · 73 and S 511 = {147, 365, 1}. For the
integer m = 511, determine a finite field F2t and an element
γ ∈ F2t of order m = 511 by Lemma 2.2. Indeed, the fi-
nite field F2t is F29 = F2[γ]/(γ9 + γ4 + 1) and γ ∈ F29 is an
element of order 511.

Fact 4.1 [7, Example 3.7]: For the integer m = 511, there
exists an S 511-decoding polynomial P511(x) = γ423 ·
x65 + γ257 · x12 + γ342 with 3 monomials, which implies
that for any n > 1, there exists a 3-query locally decod-
able code CE : Fn

29 → FN
29 of length N = N(2).

The result above for the integer m = 511 is special.
For an odd integer m = 15 = 24 − 1 = 3 · 5, let S 15 =

{6, 10, 1} and by Lemma 2.2, take the finite field F2t to be
F24 = F2[γ]/(γ4 + γ + 1) and the element γ ∈ F24 of order
15. By an exhaustive search, we verify that for the integer
m = 15, there does not exist an S 15-decoding polynomial
with less than 4 monomials. On the other hand, it is not
the case for an odd integer m = 2047 = 211 − 1 = 23 · 89.
Let S 2047 = {713, 1335, 1} be the canonical set of the integer
m = 2047 and by Lemma 2.2, take the finite field F2t to be
F211 = F2[γ]/(γ11+γ2+1) and the element γ ∈ F211 of order
2047.

Fact 4.2: For the integer m = 2047 = 211−1 = 23·89, there
exists an S 2047-decoding polynomial P2047(x) = γ1485 · x29 +

γ694 ·x27+γ118 with 3 monomials, which implies that for any
n > 1, there exists a 3-query locally decodable code CIS :
Fn

211 → FN
211 of length N = N(2).

From these observations, we see that it is impossible
for every odd integer m = p1 p2 to have an S m-decoding
polynomial with less than 4 monomials. Thus for an odd
integer m = p1 p2 · · · pr, we need to find structural proper-
ties of S m-decoding polynomials to reduce the number of
queries to less than 2r.

4.2 Technical Lemmas

Let m1 = p1 p2 · · · pr be a product of r > 1 distinct odd
primes and m2 = q1q2 · · · q� be a product of � > 1 dis-
tinct odd primes. In the rest of this paper, assume that
gcd(m1,m2) = 1, and let m = m1m2 be a product of r+ � > 2
distinct odd primes. From Lemma 2.2, we know that (1)
for the odd integer m1, there exist a finite field F2t1 with
t1 ∈ [1,m1 − 1] and an element γ1 ∈ F2t1 of order m1; (2)
for the odd integer m2, there exist a finite field F2t2 with
t2 ∈ [1,m2 − 1] and an element γ2 ∈ F2t2 of order m2;
(3) for the odd integer m = m1m2, there exist a finite field
F2t with t ∈ [1,m − 1] and an element γ ∈ F2t of order m.
The following lemmas are crucial for our construction.

Lemma 4.1: For the finite fields F2t1 , F2t2 , and F2t , the fol-
lowing holds: (1) F2t1 is a subfield of F2t ; (2) F2t2 is a sub-
field of F2t ; (3) t = lcm(t1, t2).

Proof: For the statement (1), it is easy to see that F2t1 is
a subfield of F2t iff t is divisible by t1. From Lemma 2.2,
we note that t1 ∈ [1,m1 − 1] is the minimum integer with
2t1 ≡ 1 (mod m1) and t ∈ [1,m − 1] is the minimum integer
with 2t ≡ 1 (mod m). Assume that t is not divisible by t1,
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i.e., there exist Q ≥ 0 and 0 < ρ < t1 such that t = Qt1 + ρ.
Since m = m1m2, we have that 2t ≡ 1 (mod m1). From the
fact that 2t1 ≡ 1 (mod m1), it follows that

1 ≡ 2t ≡ 2Qt1+ρ ≡ (2t1 )Q · 2ρ ≡ 2ρ (mod m1).

This contradicts the fact that t1 ∈ [1,m1−1] is the minimum
integer with 2t1 ≡ 1 (mod m1). So t is divisible by t1, which
completes the proof of the statement (1). The proof of the
statement (2) is analogous to that of the statement (1). The
statement (3) follows from the statements (1) and (2) and
the fact that t ∈ [1,m − 1] is the minimum integer with 2t ≡
1 (mod m).

For the finite field F2t1 and the element γ ∈ F2t deter-
mined by Lemma 4.1, the following claims hold:

Claim 4.1: For every d ∈ Z∗m1
, γdm2 ∈ F2t1 is an element of

order m1.

Proof: Since 2t1 ≡ 1 (mod m1), there exists Q ≥ 1 such that
2t1 − 1 = Qm1. From the fact that the order of γ ∈ F2t is
m = m1m2, we have that for every d ∈ Z∗m1

,

(
γdm2

)2t1−1
=

(
γdm2

)Qm1
= (γm)Qd

= 1,

which implies that γdm2 ∈ F2t1 . Assume by contradiction
that there exists a d ∈ Z∗m1

such that the order of γdm2 is
0 < � < m1, i.e., (γdm2 )� = γd�m2 = 1. Since the order of
γ ∈ F2t is m, we have that d�m2 is divisible by m = m1m2,
which implies that d� is divisible by m1. From the fact that
d ∈ Z∗m1

, i.e., gcd(d,m1) = 1, it follows that � is divisible by
m1, which contradicts the assumption that 0 < � < m1.

Claim 4.2: In the finite field F2t1 , there exist exactly |Z∗m1
|

elements of order m1.

Proof: For an element g ∈ F2t1 of order 2t1 − 1, we have
that α = g(2t1−1)/m1 ∈ F2t1 is an element of order m1. So
the m1 elements α0, α1, . . . , αm1−1 are the set of all elements
that satisfies xm1 = 1. It is immediate to see that for each
j ∈ Zm1 , the order of α j is m1/ gcd( j,m1). This implies that
in the finite field F2t1 , there exist exactly |Z∗m1

| elements of
order m1.

In a way similar to the proofs of Claims 4.1 and 4.2, we
can show the following claims for the finite field F2t2 and the
element γ ∈ F2t determined by Lemma 2.2.

Claim 4.3: For every d ∈ Z∗m2
, γdm1 ∈ F2t2 is an element of

order m2.

Claim 4.4: In the finite field F2t2 , there exist exactly |Z∗m2
|

elements of order m2.

From Claims 4.1, 4.2, 4.3, and 4.4, we can immediately
show the following lemma:

Lemma 4.2: For the elements γ1 ∈ F2t1 , γ2 ∈ F2t2 , and γ ∈
F2t , the following holds: (1) there exists d1 ∈ Z∗m1

such that
γ1 = γ

d1m2 ; (2) there exists d2 ∈ Z∗m2
such that γ2 = γ

d2m1 .

Proof: The statement (1) immediately follows from Claims
4.1 and 4.2 and the statement (2) immediately follows from
Claims 4.3 and 4.4.

Let S m1 = {s1
1, s

1
2, . . . , s

1
2r−1} be the canonical set of m1,

S m2 = {s2
1, s

2
2, . . . , s

2
2�−1
} be the canonical set of m2, and S m =

{s1, s2, . . . , s2r+�−1} be the canonical set of m = m1m2. Let
s1

0 = s2
0 = s0 = 0.

Lemma 4.3: For the sets S m1 , S m2 , and S m, the following
holds: For any s ∈ S m ∪ {0}, (1) s ∈ S m iff there exist s1

i1
∈

S m1 ∪ {0} and s2
i2
∈ S m2 ∪ {0} such that s ≡ s1

i1
(mod m1),

s ≡ s2
i2

(mod m2), and either s1
i1
� 0 or s2

i2
� 0; (2) s = 0 iff

s ≡ 0 (mod m1) and s ≡ 0 (mod m2).

Proof: It follows from the definitions of S m1 , S m2 , and S m

and the Chinese Remainder Theorem.

4.3 Composition of Locally Decodable Codes

The following lemma is essential to construct query-efficient
locally decodable codes.

Lemma 4.4 (Composition Lemma): For a product m1 of
r > 1 distinct odd primes, let Pm1 (x) ∈ F2t1 [x] be an S m1 -
decoding polynomial with k1 monomials, and for a prod-
uct m2 of � > 1 distinct odd primes, let Pm2 (x) ∈ F2t2 [x]
be an S m2 -decoding polynomial with k2 monomials. If
gcd(m1,m2) = 1, then we can construct an S m-decoding
polynomial Pm(x) ∈ F2t [x] with k1k2 monomials from
Pm1 (x) and Pm2 (x).

Proof: For d1 ∈ Z∗m1
given by Lemma 4.2-(1) and d2 ∈ Z∗m2

given by Lemma 4.2-(2), let

Pm(x) = Pm1 (xd1m2 ) · Pm2 (xd2m1 ) ∈ F2t [x],

which is a polynomial with k = k1k2 monomials. From Def-
inition 2.4, we have that Pm(1) = Pm1 (1) · Pm2 (1) = 1. From
Lemma 4.2, it is immediate that

Pm(γs) = Pm1

(
γd1m2 s

)
· Pm2

(
γd2m1 s

)
= Pm1 (γs

1) · Pm2 (γs
2).

From Lemma 4.3, it follows that for any s ∈ S m, there exist
s1

i1
∈ S m1∪{0} and s2

i2
∈ S m2∪{0} such that s ≡ s1

i1
(mod m1),

s ≡ s2
i2

(mod m2), and either s1
i1
� 0 or s2

i2
� 0. Recall that

the order of γ1 ∈ F2t1 is m1; the order of γ2 ∈ F2t2 is m2;
Pm1 (x) is an S m1 -decoding polynomial; Pm2 (x) is an S m2 -
decoding polynomial. Then

Pm1

(
γs

1

)
= Pm1

(
γ

s1
i1

1

)
= 0

∨
Pm2

(
γs

2

)
= Pm2

(
γ

s2
i2

1

)
= 0,

which implies that Pm(γs) = 0 for any s ∈ S m.

From Lemma 4.4, we have the following theorem on the
constructions of locally decodable codes:
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Theorem 4.1: For a product m1 of r > 1 distinct odd
primes, let C1 : Fn

2t1
→ FN1

2t1
be a locally decodable code

of length N1 = N(r) that has an S m1 -decoding polynomial
Pm1 (x) ∈ F2t1 [x] with k1 monomials, and for a product m2

of � > 1 distinct odd primes, let C2 : Fn
2t2
→ FN2

2t2
be a

locally decodable code of length N2 = N(�) that has an S m2 -
decoding polynomial Pm2 (x) ∈ F2t2 [x] with k2 monomials.
If gcd(m1,m2) = 1, then we can construct a locally decod-
able code C : Fn

2t → FN
2t of length N = N(r + �) that has an

S m-decoding polynomial Pm(x) ∈ F2t [x] with k1k2 monomi-
als.

Proof: For m = m1m2 and h > 0 given by (1), define C :
Fn

2t → FN
2t as follows: For �x = (x1, x2, . . . , xn) ∈ Fn

2t , let
C(�x) = x1C(�e1) + x2C(�e2) + · · · + xnC(�en), where for each
i ∈ [1, n], C(�ei) is given by (2). Thus we have that N = mh =

N(r + �). From Lemma 4.4, let

Pm(x) = Pm1 (xd1m2 ) · Pm2 (xd2m1 )

= a0 + a1xb1 + · · · + ak−1xk−1

be an S m-decoding polynomial with k = k1k2 monomials.
For each i ∈ [1, n], a randomized decoding algorithm Di can
be defined exactly the same as Fig. 1. For each i ∈ [1, n], we
have that

Di(C(�x)) = Di

⎛⎜⎜⎜⎜⎜⎜⎝
n∑

j=1

x jC(�e j)

⎞⎟⎟⎟⎟⎟⎟⎠

=

n∑
j=1

x jDi(C(�e j)).

For each i ∈ [1, n] and each j ∈ [1, n] \ {i}, it suffices to
show that Pr[Di(C(�ei)) = 1] = 1 and Pr[Di(C(�e j)) = 0] =
1. From (2) and Lemma 4.4, it follows that for k queries
�v,�v + b1�ui, . . . ,�v + bk−1�ui ∈ Zh

m,

Di(C(�ei))

= γ−〈�ui,�v〉m ·
(
a0γ

〈�ui,�v〉m + a1γ
〈�ui,�v+b1�ui〉m

+ · · · + ak−1γ
〈�ui,�v+bk−1�ui〉m

)

= γ−〈�ui,�v〉m ·
(
a0γ

〈�ui,�v〉m + a1γ
〈�ui,�v〉mγb1〈�ui,�ui〉m

+ · · · + ak−1γ
〈�ui,�v〉mγbk−1〈�ui,�ui〉m

)

= a0 + a1γ
b1〈�ui,�ui〉m + · · · + ak−1γ

bk−1〈�ui,�ui〉m

= Pm

(
γ〈�ui,�ui〉m) = Pm(1) = 1;

Di(C(�e j))

= γ−〈�ui,�v〉m ·
(
a0γ

〈�u j,�v〉m + a1γ
〈�u j,�v+b1�ui〉m

+ · · · + ak−1γ
〈�u j,�v+bk−1�ui〉m

)

= γ−〈�ui,�v〉m ·
(
a0γ

〈�u j,�v〉m + a1γ
〈�u j,�v〉mγb1〈�ui,�u j〉m

+ · · · + ak−1γ
〈�u j,�v〉mγbk−1〈�ui,�u j〉m

)

= γ−〈�ui,�v〉m · γ〈�u j,�v〉m ·
(
a0 + a1γ

b1〈�ui,�u j〉m

+ · · · + ak−1γ
bk−1〈�ui,�u j〉m

)
.

= γ−〈�ui,�v〉m · γ〈�u j,�v〉m · Pm

(
γ〈�ui,�u j〉m) = 0.

Thus C : Fn
2t → FN

2t is a locally decodable code of length
N = N(r + �) that has an S m-decoding polynomial Pm(x) ∈
F2t [x] with k1k2 monomials.

From Theorem 4.1 and Remark 2.2, we can derive the
following corollaries on the constructions of query-efficient
locally decodable codes:

Corollary 4.1: For any integer n > 1 and any integer r > 3,
there exists a 3·2r−2-query locally decodable code C : Fn

2t →
FN

2t of length N(r).

Proof: As given in Fact 4.1, Efremenko [7, Example 3.7]
showed that for an odd integer m1 = 511 = 29 − 1 = 7 · 73,
there exists a 3-query locally decodable code CE : Fn

2t1
→

FN1

2t1
of length N1 = N(2) that has an S m1 -decoding poly-

nomial Pm1 (x) ∈ F2t1 [x] with 3 monomials. Efremenko [7,
Theorem 3.6] also derived that for a product m′ of � > 1 dis-
tinct odd primes, there exists a 2�-query locally decodable
code C′ : Fn

2t′ → FN′
2t′ of length N′ = N(�) that has an S m′ -

decoding polynomial Pm′ (x) ∈ F2t′ [x] with 2� monomials.
For any integer r > 3, we take a product m2 of r − 2 distinct
odd primes such that gcd(m1,m2) = 1 and construct a 2r−2-
query locally decodable code C2 : Fn

2t2
→ FN2

2t2
of length

N2 = N(r − 2) that has an S m2 -decoding polynomial Pm2 (x)
with 2r−2 monomials. Applying Theorem 4.1 to the 3-query
locally decodable code CE and the 2r−2-query locally de-
codable code C2, we can construct a 3 · 2r−2-query locally
decodable code C : Fn

2t → FN
2t of length N(r) that has an

S m-decoding polynomial Pm(x) ∈ F2t [x] with 3 · 2r−2 mono-
mials.

Corollary 4.2: For any integer n > 1 and any integer r > 5,
there exists a 9·2r−4-query locally decodable code C : Fn

2t →
FN

2t of length N(r).

Proof: For any integer r > 5, take a product m1 of r − 4
distinct odd primes such that gcd(m1, 511 · 2047) = 1. Then
there exists a 2r−4-query locally decodable code C1 : Fn

2t1
→

FN1

2t1
of length N1 = N(r − 4) that has an S m1 -decoding

polynomial Pm1 (x) with 2r−4 monomials. Applying The-
orem 4.1 to the 3-query locally decodable code CE given
in Fact 4.1, the 3-query locally decodable code CIS given
in Fact 4.2, and the 2r−4-query locally decodable code C1,
we can construct a 9 · 2r−4-query locally decodable code
C : Fn

2t → FN
2t of length N(r) that has an S m-decoding poly-

nomial Pm(x) ∈ F2t [x] with 9 · 2r−4 monomials.

5. Concluding Remarks

In this paper, we have shown the Composition Theorem that
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constructs a k1k2-query locally decodable code by compos-
ing a k1-query locally decodable code and a k2-query lo-
cally decodable code (see Theorem 4.1). As the application
of Theorem 4.1, we have also shown that (Corollary 4.1) for
any integer r > 3, there exists a 3 · 2r−2-query locally decod-
able code C : Fn

2t → FN
2t of length N(r) and (Corollary 4.2)

for any integer r > 5, there exists a 9 · 2r−4-query locally
decodable code C : Fn

2t → FN
2t of length N(r).

For perfectly smooth decoders, we can immediately
modify Theorem 4.1 as follows:

Theorem 5.1: For a product m1 of r > 1 distinct odd
primes, let C1 : Fn

2t1
→ FN1

2t1
be a k1-query locally decodable

code of length N1 = N(r) that has a perfectly smooth de-
coderD1 and an S m1 -decoding polynomial Pm1 (x) ∈ F2t1 [x]
with k1 monomials, and for a product m2 of � > 1 dis-
tinct odd primes, let C2 : Fn

2t2
→ FN2

2t2
be a k2-query lo-

cally decodable code of length N2 = N(�) that has a per-
fectly smooth decoderD2 and an S m2 -decoding polynomial
Pm2 (x) ∈ F2t2 [x] with k2 monomials. If gcd(m1,m2) = 1,
then we can construct a k1k2-query locally decodable code
C : Fn

2t → FN
2t of length N = N(r + �) that has a per-

fectly smooth decoder D and an S m-decoding polynomial
Pm(x) ∈ F2t [x] with k1k2 monomials.

From Theorem 5.1 and Corollaries 4.1 and 4.2, we can
transform k-query locally decodable codes with perfectly
smooth decoders to communication-efficient k-server pri-
vate information retrieval [20].

Theorem 5.2: For any integer n > 1 and any integer r > 3,
there exists a 3·2r−2-server private information retrieval with
the communication complexity

Ck(n) = n
O
(
(log log n/ log n)1−1/r

)
,

and for any integer n > 1 and any integer r > 5, there ex-
ists a 9 · 2r−4-server private information retrieval with the
communication complexity

Ck(n) = n
O
(
(log log n/ log n)1−1/r

)
,

At present, we know only 3-query locally decodable
codes CE : Fn

29 → FN
29 of length N = N(2) for an add

integer m1 = 511 = 29 − 1 = 7 · 73 [7, Example 3.7]
and CIS : Fn

211 → FN
211 of length N = N(2) for an odd

integer m2 = 2047 = 211 − 1 = 23 · 89 (see Fact 4.2).
Let Mr be a set of integers, each of which is a product
of r > 1 distinct odd primes.

From Composition Theorem (see Theorem 4.1), we
have that if there exist m1,m2, . . . ,m� ∈ M2 such that
gcd(mi,mj) = 1 for each 1 ≤ i < j ≤ � and each mi ∈ M2

generates a 3-query locally decodable code Ci : Fn
2ti
→ FNi

2ti

of length Ni = N(2) that has an S mi -decoding polynomial
Pmi (x) ∈ F2ti [x] with 3 monomials, then for the integer
m = m1m2 · · ·m�, we can construct a 3�-query locally de-
codable code C : Fn

2t → FN
2t of length N = N(2�) that has an

S m-decoding polynomial Pm(x) ∈ F2t [x] with 3� monomi-
als. For integers less than 2048, however, we do know only

such integers m1 = 511 ∈ M2 and m2 = 2047 ∈ M2.
Thus the following problems are both of theoretical in-

terest and of practical importance.

(1) Find integers m ∈ M2 \ {511, 2047} that generate a 3-
query locally decodable code C : Fn

2t → FN
2t , i.e., the

code C has an S m-decoding polynomial P(x) ∈ F2t [x]
with 3 monomials.

(2) For any integer r > 3, find an integer m ∈ Mr that
generate a k-query locally decodable code C : Fn

2t →
FN

2t that has an S m-decoding polynomial P(x) ∈ F2t [x]
with k < 3 · 2r−2 monomials.

(3) For any integer r > 5, find an integer m ∈ Mr that
generate a k-query locally decodable code C : Fn

2t →
FN

2t that has an S m-decoding polynomial P(x) ∈ F2t [x]
with k < 9 · 2r−4 monomials.
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